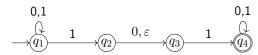
Theory of Formal Languages and Automata Lecture 4

Mahdi Dolati

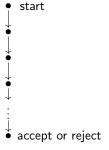
Sharif University of Technology
Fall 2025

February 17, 2025

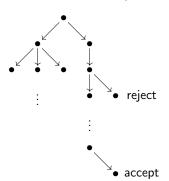
- Generalization of determinism: Every deterministic finite automaton (DFA) is a nondeterministic finite automaton (NFA)
 - Several transitions for a symbol
 - Machine splits into multiple copies of itself
 - Similar to parallel computation
 - No transition for every symbol
 - A machine (branch of computation) dies if it can not consume the current symbol on the input tape
 - ullet Transition with arepsilon
 - Make a transition without reading any symbol
 - NFA accepts the input string, if any of copies accept

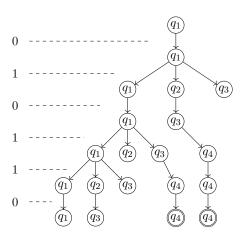


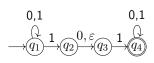
Deterministic computation



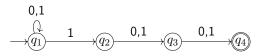
Nondeterministic computation





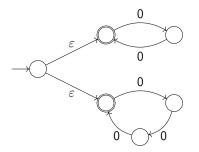


NFAs can guess:

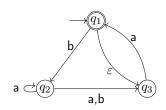


 $A = \{ w \mid w \text{ has a 1 in the third position from the end } \}$

NFAs can guess:



$$\mathsf{A} = \{0^{2k} | k \in \{0, 1, \dots\}\} \cup \{0^{3k} | k \in \{0, 1, \dots\}\}\$$



Accepts:

- ε
- a
- baba
- baa

Rejects:

- b
- bb
- babba

Formal definition:

Definition

A 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- \mathbf{Q} : (finite set of) states,
- 2Σ : (finite) alphabet,
- **3** $\delta: Q \times \Sigma_{\varepsilon} \to \mathcal{P}(Q)$ transition function,
- $q_0 \in Q$: start state,
- **5** $F \subseteq Q$: accept states.
 - $\mathcal{P}(Q)$: Power set of Q
 - $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$

Example

$$0,1 \qquad 0,1$$

$$q_1 \qquad 1 \qquad 0,\varepsilon \qquad 1 \qquad 0$$

 $Q = \{q_1, q_2, q_3, q_4\}$

0

2 $\Sigma = \{0, 1\}$

	q_1	$\{q_1\}$	$\{q_1,q_2\}$	Ø
3 δ:	q_2	$\{q_3\}$	Ø	$\{q_3\}$
	q_3	Ø	$\{q_4\}$	Ø
	q_4	$\{q_4\}$	$\{q_4\}$	Ø

- \mathbf{Q} q_1 : start state,
- **5** $F = \{q_4\}$

Prove that following languages are regular ($\Sigma = \{0, 1\}$):

- $L_1 = \emptyset$
- $L_2 = \{\varepsilon\}$
- $L_1 = \{ w \mid w \text{ starts with } 0 \text{ and ends with } 1 \}$

Definition (NFA's Computation)

Consider $N=(Q,\Sigma,\delta,q_0,F)$ $w\in L(N),$ if:

- **1** It is possible to write $w = y_1 y_2 \dots y_m$ where $y_i \in \Sigma_{\varepsilon}$,
- 2 There is a sequence of states r_1, \ldots, r_m with following conditions:
 - $\mathbf{0} r_0 = q_0$,
 - $\mathbf{2} \ \ r_{i+1} \in \delta(r_i, y_{i+1}), \ \text{for} \ i = 0, \dots, m-1, \ \text{and}$
 - $r_m \in F.$

 NFAs and DFAs are equivalent: They recognize the same class of languages

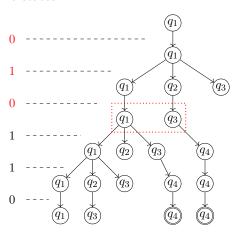
Theorem

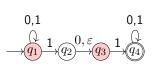
Every NFA has an equivalent DFA.

Proof idea:

- Construct a DFA that simulates the NFA,
- Keep track of branches of the computation (active states),
- If the NFA has k states, there are 2^k subsets of active states,
- The DFA needs 2^k states.

Active states:





Proof (Without ε).

Let $N=(Q,\Sigma,\delta,q_0,F)$ that has not ε arrows and A=L(N).

We construct $M = (Q', \Sigma, \delta', q'_0, F')$ that recognizes A.

- $Q' = \mathcal{P}(Q).$
- $\textbf{2} \ \, \mathsf{For} \,\, R \in Q' \,\, \mathsf{and} \,\, a \in \Sigma \mathsf{:} \,\,$

$$\delta'(R,a) = \{q \in Q | q \in \delta(r,a) \text{ for some } r \in R\}. \tag{1}$$

- $q_0' = \{q_0\}.$
- $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$

Proof (With ε).

 $E(R) = \{ q \mid \text{can reach } q \text{ from } r \in R \text{ via zero or more } \varepsilon \text{ arrows } \}$

- $Q' = \mathcal{P}(Q).$
- $2 R \in Q' \text{ and } a \in \Sigma:$

$$\delta'(R,a) = \{ q \in Q | q \in E(\delta(r,a)) \text{ for some } r \in R \}.$$
 (2)

- $q_0' = E(\{q_0\}).$
- $F' = \{R \in Q' | R \text{ contains an accept state of } N\}$

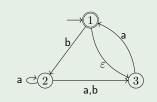
Example

$$Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

$$q_0' = E(\{1\}) = \{1, 3\}.$$

$$F' = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}.$$

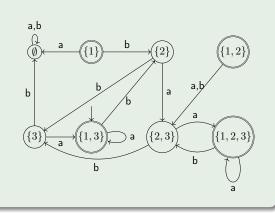
		a	D	
	Ø	Ø	Ø	
	{1}	Ø	{2}	
	$\{2\}$	$\{2, 3\}$	{3}	
4	$\{3\}$	$\{1, 3\}$	Ø	
	$\{1, 2\}$	$\{2, 3\}$	$\{2, 3\}$	
	$\{1, 3\}$	$\{1, 3\}$	{2}	
	$\{2, 3\}$	$\{1, 2, 3\}$	$\{3\}$	
	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2,3\}$	



Example

- $Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$
- **3** $F' = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}.$

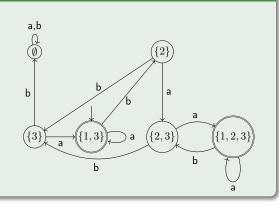
	Ø	Ø	Ø
	{1}	Ø	$\{2\}$
	{2}	$\{2, 3\}$	{3}
4	{3}	$\{1, 3\}$	Ø
	$\{1, 2\}$	$\{2, 3\}$	$\{2, 3\}$
	$\{1, 3\}$	$\{1, 3\}$	$\{2\}$
	$\{2, 3\}$	$\{1, 2, 3\}$	{3}
	{1, 2, 3}	{1, 2, 3}	{2.3}



Example

- $Q' = \{\emptyset, \{2\}, \{3\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$

		а	b
	Ø	Ø	Ø
	{2}	$\{2, 3\}$	{3}
4	{3}	$\{1, 3\}$	Ø
	$\{1, 3\}$	$\{1, 3\}$	$\{2\}$
	$\{2, 3\}$	$\{1, 2, 3\}$	{3}
	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2, 3\}$



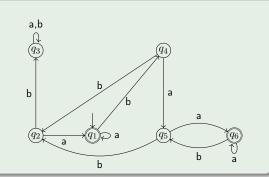
Example

- $Q' = \{q_1, q_2, \dots, q_6\}.$
- $q_0' = q_1.$

	q_3	q_3	q_3
	q_4	q_5	q_2
4	q_2	q_1	q_3
	q_1	q_1	q_4
	q_5	q_6	q_2

 q_6

 q_5



Example

- $Q' = \{q_1, q_2, \dots, q_6\}.$
- **2** $q'_0 = q_1$.
- **3** $F' = \{q_1, q_6\}.$

	а	b
q_1	q_1	q_4
α-	α.	α-

