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Abstract

Permutation and scaling ambiguities are relevant issues in tensor decomposition

and source separation algorithms. Although these ambiguities are inevitable

when working on real data sets, it is preferred to eliminate these uncertainties

for evaluating algorithms on synthetic data sets. As shown in the paper, the

existing performance indices for this purpose are either greedy and unreliable

or computationally costly. In this paper, we propose a new performance in-

dex, called CorrIndex, whose reliability can be proved theoretically. Moreover,

compared to previous performance indices, it has a low computational cost.

Theoretical results and computer experiments demonstrate these advantages of

CorrIndex compared to other indices.
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1. Introduction

Permutation and scaling ambiguities are relevant issues in some applica-

tions such as tensor decomposition [1] and Blind Source Separation (BSS) [2].

By scaling, we mean multiplication by diagonal matrix with non-zero entries,

which may be complex in the most general case. Firstly, these two ambiguities5

are inherent in tensor representations, by definition of tensors [1]. Secondly, in

BSS, statistical independence is not affected by scaling or permutation of the

sources [2]. A mixing (or demixing) matrix can then only be estimated up to

these ambiguities under the independence assumption. Although it is impossi-

ble to eliminate these ambiguities when working with real data sets, where the10

original parameters are not available, it is feasible to get rid of these uncertain-

ties in evaluating algorithm performance on synthetic data sets. Furthermore,

reasonable comparisons on synthetic data sets are very helpful to choose ade-

quately an appropriate algorithm to be applied on real data sets. Therefore,

in order to report reasonably the performance indices of existing algorithms on15

synthetic data sets where the desired parameters are accessible, it is important

to employ proper methods to measure the performances.

Assume that the original and estimated components have been normalized,

then the only remaining ambiguities are the permutation and scaling with com-

plex numbers of unit modulus. The existing approaches to measure the per-20

formances of the algorithms of BSS and tensor decomposition can be classified

in three main categories: “greedy approaches”, “graph-based methods” and

“invariant indices”. Greedy approaches [3, 4, 5, 6] try to assign the most cor-

related components estimated by an algorithm, and then compute the error of

estimation or decomposition. Although most of these methods return back an25

estimated permutation as well as a performance index, they are not reliable in

noisy conditions. In other words, the reported index by these kinds of meth-

ods depends directly on the manner of computing and analyzing the correlation

matrix.

Graph-based methods [7, 8, 9] are originated from the well-known optimal30
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assignment problem [10], which is itself a particular case of the optimal transport

problem [11]. Although these kinds of methods have the guarantee to find the

optimal permutation, they are computationally expensive (as we shall see, the

minimum cost is O(8N3) with a correlation matrix of size N × N), especially

when the correlation matrix is large.35

However, the viewpoint of a third category, namely invariant indices [12,

13, 14], differs from the latter approaches. These invariant indices measure the

performance regardless of permutation and scaling, and yield an index that can

directly be used to compare algorithms. The reported indices of [12, 13, 14] are

invariant to permutation and scaling, and the index of [12] provides the guar-40

antee of a zero distance between estimated and original matrices up to column

permutation and scaling, when the obtained index is zero. Nevertheless, the in-

dex of [12] is not bounded from above. More importantly, the upper bounds of

indices of [13, 14] have not been investigated, and it seems that these bounds are

not easy to interpret. In addition, these methods are in the literature of source45

separation, and the indices introduced therein utilize the inverse (or pseudo-

inverse) of the mixing matrix, which may involve an additional computational

burden.

In this paper, we studied critically other performance indices to point out

their drawbacks such as being optimistic or pessimistic. Moreover, we introduce50

a new performance index, called CorrIndex, which can be considered to belong

to the category of “invariant indices”. CorrIndex is based on some correlation

matrix (in fact scalar products), and hence, it does not lead to a high compu-

tational cost since matrix inversion is avoided. In addition, not only CorrIndex

is invariant, but also it provides an interpretable upper bound and guarantees55

a zero distance up to column permutation and scaling if CorrIndex = 0 (a more

formal definition of this distance will be subsequently given). Hence, compared

to greedy methods, CorrIndex is more reliable. Moreover, compared to graph-

based methods and other invariant indices, it requires the lowest computational

cost. More importantly, CorrIndex is not limited to BSS after pre-whitening:60

it applies to tensor decompositions as well, contrary to other similar indices
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proposed in [12, 13, 14].

This paper is organized as follows. In Section 2, the problem is formulated

and a brief review of previous methods and indices is provided. The proposed

index, CorrIndex, and its comparison with other existing indices is presented in65

Section 3. Section 4 proposes experimental results with discussion. Eventually,

the remarks of Section 5 concludes the paper.

2. A critical survey

Let A = [a1,a2, . . . ,aN ] ∈ CM×N and Â = [â1, â2, . . . , âN ] ∈ CM×N be

the original and estimated matrices respectively, where CM×N stands for the70

set of M by N complex-valued matrices. Let us denote the set of permutations

of N elements by Perm(N), and denote by P σ the matrix associated with the

permutation σ ∈ Perm(N). If the columns of A and Â are normalized by their

L2 norms, scaling ambiguity reduces to post-multiplication by a diagonal matrix

Λ with entries of unit modulus.75

Assume Â = AP σΛ + W , where the columns of A and Â are normalized,

Λ is a diagonal matrix with unit modulus entries and W is an additive noise.

More formally, the goal is to measure the gap defined below:

ε0(A, Â) = min
σ,Λ
‖AP σΛ− Â‖2F (1)

This gap can be computed with or without estimating permutation σ explicitly.

Seeking the optimal permutation σ can be written as the following optimization

problem:

argmin
σ

1

2

N∑
n=1

‖an − âσ(n)‖22 = argmax
σ

N∑
n=1

|aH
nâσ(n)|. (2)

Let Cij = |aH
i âj |, and denote by C the matrix whose entries are Cij . Then, if

the columns of A and Â are normalized by their L2 norms, we have 0 ≤ Cij ≤ 1.

In the sequel, three main approaches of measuring the distance between A and

Â appeared in the literature are reviewed.
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2.1. Methods based on correlation matrix80

2.1.1. Greedy approach of [3]

In this approach, âj is assigned to ai if Cij has the maximum value in the jth

column of C. This straightforward approach has two drawbacks. On one hand,

if two or more maximum values occurred in the same row, a reasonable assign-

ment could not be concluded. This happens for instance in far-field antenna85

array processing when sources are angularly close, in the presence of noise [15].

On the other hand, the delivered index is not reliable, since, even if the index is

zero, one cannot guarantee Â = AP σΛ. The following toy numerical example

illustrates this problem.

Assume that in an experiment matrix C is:

C =


0.8 0.3 0.1

0.85 0.9 0.5

0.5 0.2 0.7

 . (3)

The concluded assignment by this method is (â1,a2), (â2,a2), (â3,a3) which90

is obviously not acceptable because column a2 is selected twice. Computing

the square error via 1
2

∑3
n=1 ‖an − âσ(n)‖22 by considering the assumption of

normalized an and âσ(n) with respect to L2 norm and by substituting the values

of |aH
i âj | from Cij , one obtains 3−0.85−0.9−0.7 = 0.55, which is less than the

exact error, 3−0.8−0.9−0.7 = 0.60 (the exact error is given in Section 2.3 with95

the optimal permutation). This example shows that this algorithm outputs a

matrix P that may not be a permutation.

This index is always optimistic since it searches in a set of assignments larger

than Perm(N). In fact, if a set A contains a set B, i.e. B ⊆ A, then

min
x∈A

f(x) ≤ min
x∈B

f(x) (4)

for any function f(x). Therefore, the reported error is always smaller than or

equal to the exact error based on the optimal assignment.
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2.1.2. Greedy approach of [4, 5]100

In order to avoid a non-acceptable assignment, after detecting the maximum

value of each column of C, its row and column can be removed for the rest of the

algorithm. In other words, if in jth column of matrix C, Cij is the maximum

value, then the ith row and jth column of C will be ignored in the search of the

next maximum value.105

This is a greedy approach, since the index depends on the order of choosing

the maximum values. For example, if this greedy algorithm is applied on matrix

C expressed in (3), the resulted assignment will be (â1,a2), (â2,a1), (â3,a3)

provided that the columns are swept from left to right. However, if the columns

are swept in the opposite way, the assignment will be (â1,a1), (â2,a2), (â3,a3).110

Compared to the optimistic index, the error output by this greedy approach by

sweeping from left to right, 3− 0.85− 0.3− 0.7 = 1.15, is larger than the exact

error, 3−0.8−0.9−0.7 = 0.60, while by sweeping from right to left, the reported

error equals to the exact error 0.6.

By imposing a column ordering, this greedy approach searches a set of as-115

signments smaller than Perm(N): following (4), one can conclude that the error

measurement is always pessimistic. Therefore, the reported error is always larger

than or equal to the exact error based on the optimal assignment.

2.1.3. Score measure [6]

This index, which is also known as congruence [16], is customized for tensors

and is applied to evaluate the performance of a tensor decomposition in terms

of estimating all the loading matrices (defined below) together. Let us explain

the permutation ambiguity by means of a tensor decomposition example called

Canonical Polyadic (CP) [1]. The CP decomposition of a third order tensor of

rank 2 admits the following form:

T I×J×K =

2∑
r=1

a(1)
r ⊗ a(2)

r ⊗ a(3)
r , (5)

where ⊗ denotes the outer (tensor) product, and a
(1)
r ,a

(2)
r and a

(3)
r are some120

vectors of size I, J and K, respectively. Equation (5) can be represented in
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a compact form as T = JA(1),A(2),A(3)K, where A(i) = [a
(i)
1 ,a

(i)
2 ] is called

the mode-i loading matrix of T . Observe that the permuted version of loading

matrices, i.e. A(i)
p = [a

(i)
2 ,a

(i)
1 ], i = 1, 2, 3, results in the same tensor as T

in (5).125

The score measure of the tensor T = JA(1),A(2),A(3)K is calculated based

on the correlation matrix C = C(1) � C(2) � C(3), where � is the Hadamard

product (element-wise product) and C
(k)
ij , |a

(k)
i

H
â
(k)
j |, k = 1, 2, 3. This index

is also greedy, since the assignment is concluded based on the maximum values

of C, which have been chosen in a way explained in Section 2.1.2, and the130

corresponding score is an average of these selected values.

2.2. Methods based on graph matching

The optimal assignment (or optimal transport) problem is an old, well-

known and fundamental combinatorial optimization problem [8, 9, 11]. The

first polynomial time algorithm for optimal assignment problems is the “Hun-135

garian method” [7] also known as “Kuhn-Munkres” [9, 17], and the complexity

of the algorithm is O(N4) [9]. This algorithm has been employed in [17] for an

optimal pairing of the sources in BSS.

The optimal assignment problem can also be considered as a special case

of Maximum Weighted Matching (MWM), which is a well-known problem in140

graph theory, for which several polynomial time algorithms exist [8]. The best

exact [10, 18, 19] and approximate [20] MWM algorithms cost O(8N3) and

O(N2), respectively.

2.3. Methods based on optimal permutation

Searching for the optimal permutation σ, i.e. for the optimal permutation

matrix P ?, described at the beginning of Section 2, can be viewed as finding

some entries of C such that no pair among them lies in the same row or column,

while the sum of these entries is maximum. One can formulate this as the

following optimization problem [11]:

P ? = argmin
P∈RN×N

+

∑
i,j

DijPij s.t. P1N = P T
1N = 1N , (6)
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where D = −C, 1N is a vector of ones of dimension N and the superscript ?

denotes the optimal solution. In other words, we look for a bistochastic matrix,

i.e. a square matrix of non-negative real numbers, whose rows and columns

have unit L1 norm [21]. By vectorizing (concatenating columns) P and D into

vectors d and p, (6) can be rewritten in the standard form of linear program [11,

Sec. 3.1]:

p? = argmin
p∈RN2

+

dHp s.t. Qp = 12N , (7)

where Q = [1T
N � IN , IN �1T

N ]T ∈ R2N×N2

, IN and � denote the identity145

matrix of size N and the Kronecker product, respectively. Yet, from Birkhoff’s

Theorem, the set of bistochastic matrices is a polyhedron1 whose vertices are

permutations [22, Theorem 8.7.1]. On the other hand, a fundamental theorem

of linear programming [23, Theorem 2.7] tells that the minimum of a linear

objective in a non-empty polytope (i.e. a finite polyhedron) is reached at a150

vertex of the polytope. This permits to relax the search for a permutation into

(6) or (7): in fact, looking for the best bistochastic matrix will eventually yield

a permutation and this is the whole power of the method.

For example, by employing MWM or the linear program described above,

the optimal permutation in experiment (3) is the identity matrix.155

Recently, by improving some required computational steps, the running

time of implementing the linear programming algorithms has been reduced to

O(q2+
1
6 ) [24] and O(q2+

1
18 ) [25], where q is the size of unknown vector in the

linear programming problem. Therefore, as q = N2 in (7), the lowest complex-

ity to find the optimal permutation of the problem described at the beginning160

of Section 2 by the means of linear programming is approximately O(N4). In

addition, in [11, 26], authors proposed sub-optimal solutions, called Auction

algorithms, which costs O(N2) [26].

1convex by definition.
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2.4. Indices invariant to permutation

Methods described in Section 2.1 try first to estimate the permutation, and165

then measure some distances based on the estimated permutation. As it is seen

in Section 2.1.1, these kinds of methods may actually not return a permutation,

and there is no guarantee that ε0(A, Â) = 0 even if the indices they output

are zero. Conversely, the algorithms of Section 2.2 behave better (in terms of

returning optimal permutation) but may become very costly for large values of170

N .

However, in the literature of source separation [2], some indices have been

proposed to measure the gap (based on their own definition of gap) between

original and estimated mixing matrices without needing to find the correspond-

ing permutation [12, 13, 14]. Moreover, these indices are zero if and only if175

ε0(A, Â) = 0, which offers a valuable guarantee.

The indices proposed in [12, 13, 14] are based on S = A−1Â (or S = A†Â

for non-square A). The details of these indices are as follows.

2.4.1. Comon index [12]

Comon’s index is a combination of L1 and L2 norms, and is calculated as:

ε1(S) =

N∑
i=1

∣∣∣∣∣∣
N∑
j=1

|Sij | − 1

∣∣∣∣∣∣
2

+

N∑
j=1

∣∣∣∣∣
N∑
i=1

|Sij | − 1

∣∣∣∣∣
2

,

N∑
i=1

∣∣∣∣∣∣
N∑
j=1

|Sij |2 − 1

∣∣∣∣∣∣+

N∑
j=1

∣∣∣∣∣
N∑
i=1

|Sij |2 − 1

∣∣∣∣∣ .
In [12], it has been proved that ε1 is invariant to permutation, i.e. ε1(A, Â) =180

ε1(A, ÂPΛ). Moreover, it has been shown that ε1(A, Â) = 0 if and only if

Â = AP σΛ, where σ is the optimal permutation. However, ε1 can increase enor-

mously, depending on the values of matrix S, hence, this index is not bounded

from above.
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2.4.2. Moreau-Macchi index [13]185

The index proposed in [13] measures a gap between matrix S and a permu-

tation matrix. It is defined as:

ε2(S) =

N∑
i=1

 N∑
j=1

|Sij |2

(maxk |Sik|)2
− 1

+

N∑
j=1

(
N∑
i=1

|Sij |2

(maxk |Skj |)2
− 1

)
.

Dividing by the maximum value (e.g. (maxk |Sik|)2) provides an upper bound

for ε2 unlike ε1.

2.4.3. Amari index [14]

This performance index takes the form:

ε3(S) =

N∑
i=1

 N∑
j=1

|Sij |
maxk |Sik|

− 1

+

N∑
j=1

(
N∑
i=1

|Sij |
maxk |Skj |

− 1

)
.

The only difference between Amari and Moreau-Macchi index is the power 2

which exists in ε2. Therefore, calculating ε3 is less costly compared to ε2. In190

addition, as for ε2, the division by the maximum value (e.g. maxk |Sik|) provides

an upper bound for ε3.

An accurate investigation of indices reviewed in this section reveals that ε1 is

not bounded from above. Furthermore, the upper bounds on ε2 and ε3 have not

been studied in [13, 14], so that their upper bound cannot be easily interpreted.195

In order to obtain interpretable upper bounds and to reduce computational cost,

one may think of replacing S = A†Â by C, but in this case the property that

εi = 0 is equivalent to ε0 = 0, for i ∈ {1, 2, 3} does not hold anymore.

3. Our proposed index: CorrIndex

In this section, we introduce, “CorrIndex”, which is based on a correlation200

matrix. Remind that we define C = |AHÂ|, where A ∈ CM×N and Â ∈ CM×N

and modulus is understood entrywise. In addition, we assume that the columns

of A and Â are normalized by their L2 norms.

Basically, if ε0(A, Â) = 0, N entries of C are one, since |an| = |ân| and the

columns of A and Â are normalized to unit L2 norms. Remember that it is
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desired that a performance index is zero if and only if ε0(A, Â) = 0. In order

to satisfy these basic requirements in the matrix case, i.e. M > 1, CorrIndex is

defined as follows:

CorrIndex(C) =
1

2N

[
N∑
i=1

|max
k

Cik − 1|+
N∑
j=1

|max
k

Ckj − 1|

]
. (8)

The coefficient
1

2N
keeps CorrIndex values in the range [0, 1]. Moreover,

modulus operator, i.e. |.|, helps to guarantee a zero distance between A and Â205

if CorrIndex = 0 (cf. Proposition 2). In addition, according to (8), it is obvious

that if the distance between A and Â is zero, then CorrIndex = 0. Therefore,

the two requirements mentioned above are simply satisfied by (8). Further,

CorrIndex is invariant to permutation and scaling (cf. Proposition 1).

Remark: It can be also observed that CorrIndex is bounded: 0 ≤ CorrIndex ≤ 1.210

According to (8), unlike ε2 and ε3, the upper bound of CorrIndex is easier to

interpret when M > 1, since it is achieved when entries of C are minimal (i.e

the largest possible angular distance between A and Â). In particular, when

M ≥ 2N , C = 0 when all the columns of A and Â are orthogonal to each other,

which yields CorrIndex = 1. Next, as proved below, the zero lower bound is215

meaningful, since it corresponds to ε0 = 0.

The one-row case: On the other hand in the row vector case, i.e. M = 1,

as CorrIndex is based on (2), we should return back to the basic minimization

of finding optimal assignment (σ), which is a restatement of (2) as follows:

argmin
σ

1

2

N∑
n=1

(an − âσ(n))2. (9)

In order to respect (9) and to consider the scaling ambiguity, a new matrix

C with entries Cij = (|ai| − |âj |)2 is used to define CorrIndex for row vectors:

CorrIndex(C) =
1

2N

[
N∑
i=1

min
k
Cik +

N∑
j=1

min
k
Ckj

]
. (10)

Comparing (8) and (10) reveals that “max” and “1” have been replaced with

“min” and “0”, respectively, which helps benefit from the same properties as

(8) in the vector case.
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In the following, it is shown that CorrIndex is invariant to scaling and per-220

mutation, i.e. CorrIndex(A, Â) = CorrIndex(A, ÂPΛ). Moreover, it is shown

that CorrIndex(C) = 0 if and only if Â = AP σΛ, i.e. ε0(A, Â) = 0.

Proposition 1. CorrIndex is invariant to permutation and scaling:

CorrIndex(A, Â) = CorrIndex(APΛ, Â) = CorrIndex(A, ÂPΛ). (11)

Proof. Assume that C1 = |AHÂ| and C2 = |(APΛ)HÂ|. As modulus operator

is insensitive to matrix Λ, then C2 = P HC1, and since CorrIndex is invariant225

to row permutation according to (8), the proof is complete. The same proof

applies to C3 = |AHÂPΛ|, because of the invariance of CorrIndex to column

permutation.

Proposition 2. Suppose that A ∈ CM×N and Â ∈ CM×N . CorrIndex(A, Â) =

0 if and only if Â can be written as a permuted version of A:

CorrIndex(A, Â) = 0 ⇐⇒ Â = AP σΛ. (12)

Proof. Firstly, if Â = AP σΛ, then maxk Cik = 1,∀i and maxk Ckj = 1,∀j.

Thus CorrIndex(A, Â) = 0. Secondly, we prove the converse. If CorrIndex(A, Â) =230

0, then it implies that maxk Cik = 1,∀i and maxk Ckj = 1,∀j. From these two

equalities, it can be inferred that there is at least one 1 in each column and

row of C. Let us assume Cij = |aH
i âj | = 1. According to the Cauchy–Schwarz

inequality and the assumption of normalized columns of A and Â, we have

|aH
i âj | ≤ ‖ai‖‖âj‖, where the equality of two sides occurs if and only if ai = âj .235

Since such a conclusion holds for all other associated pairs of columns of A and

Â, therefore, Â = AP σΛ.

As mentioned before, it is hard to assess the relative error made on loading

matrices in tensor decompositions, because of scaling and permutation ambi-

guities [1]. So as to overcome these ambiguities, we can use CorrIndex as a240

performance on estimating loading matrices. However, if we report CorrIndex
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on each loading matrix separately, it would be an optimistic index, since im-

plicitly a different permutation would be permitted for each loading matrix.

In order to have a more reliable performance index, we can apply CorrIndex

to a matrix X, built upon loading matrices stacked one below the other. In

other words, for the tensor described in (5), CorrIndex(X, X̂) applies to:

X =


A(1)

A(2)

A(3)

 , X̂ =


Â(1)

Â(2)

Â(3)

 .

4. Discussion and computer results

A multi-aspect comparison between CorrIndex and other reviewed methods245

has been carried out, and is reported in Table 1, where the methods of Section 2.1

and 2.2 are referred by “Greedy” and “Graph”, respectively. The number of

multiplications of each stage, i.e. computing the input matrix (C = |AHÂ| or

S = A†Â), estimating the permutation and computing the index, are reported.

In addition, the last column of Table 1 (“Significance of upper bound”) indicates250

if the upper bound makes sense, i.e. returning the maximum index value for

the largest distance between A and Â. According to Table 1, it is inferred that

CorrIndex has the lowest computational complexity compared to the others

in terms of the number of multiplications besides its theoretical guarantee, its

invariance to permutation and scaling ambiguity and its meaningful bounds.255

In the rest of this section, we report either the relative error (for the greedy

and graph-based methods) which is defined in (13) or the indices εi (Moreau-

Macchi, Amari, . . . ). As greedy and graph-based methods estimate the permu-

tation, we report the relative error between normalized A and Â, by means of

estimated matrix P , as follows:

relative error =
‖A− ÂP ‖F
‖A‖F

, (13)

where ‖.‖F denotes the Frobenius norm. Remind that P is aimed at being a

permutation matrix, but that it might not be (see Section 2.1.1).
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Table 1: Numbers of multiplications of computing each stage of CorrIndex and other methods

Method C or S Permutation Index
Significance

of upper bound

Greedy O(N2M) 0 O(2MN) No

Graph O(N2M) O(8N3) O(2MN) Yes

Linprog O(N2M) O(N4) O(2MN) Yes

Comon [12] O(11N3) - O(2N2) No

Moreau-Macchi [13] O(11N3) - O(2N2) No

Amari [14] O(11N3) - O(2N) No

CorrIndex O(N2M) - 1 Yes

The index and computation time of each index in a numerical experiment

is reported in Table 2 to evaluate the methods practically. This experiment is

executed on a laptop with a processor of 3.1 GHz Intel Core i5, 16 GB RAM,260

running macOS Mojave and MATLAB 2019a.

In order to show the drawbacks of greedy methods, this experiment is done

on some matrices, A ∈ RM×N , whose columns are highly correlated. For this

purpose, a correlation matrix, RN×N , of the columns of A is designed such

that its diagonal and off-diagonal entries are 1 and γ, respectively, where γ is265

an arbitrary mutual coherence constant among the columns of A. Then, by

considering the Cholesky decomposition of R, i.e. R = LTL, and a random

orthogonal matrix UM×N (U can be obtained by the QR decomposition of a

random matrix), we set A = UL.

Â is generated by permuting randomly the columns of A and adding a noise

matrix, W , of the same size as A with i.i.d. entries of Gaussian distribution with

zero mean and unit variance, and weighted by the parameter δ. The variance

δ2 of the additive noise is adjusted such that we reach a desired Signal to Noise

Ratio (SNR) defined as:

SNR = 10 log10

∑
i,jA(i, j)2∑

i,j δ
2W (i, j)2

. (14)

At the end, the columns of A and Â are normalized.270
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Table 2: A numerical comparison on methods measuring the distance between A150×100 with

the mutual coherence constant γ = 0.75 and its permuted noisy version Â with SNR =

−1.76 dB averaged over 50 realizations. The index in five first rows of the table is the relative

error defined in (13). On the other hand, the four last indices of the table are defined differently

and are hence not comparable.

Method Index Computing time (ms)
Significance

of upper bound

Greedy of [3] 0.37 0.9 No

Greedy of [4, 5] 1.05 5.3 No

Hungarian [9] 0.86 4.5 Yes

MWM [10] 0.86 2.9 Yes

Linprog [11] 0.86 1310 Yes

Comon [12] 1.8e4 3.3 No

Moreau-Macchi [13] 897.91 3.3 No

Amari [14] 3.2e3 2.9 No

CorrIndex 0.36 0.4 Yes

In the experiment of Table 2, M = 150, N = 100, with the mutual coherence

constant γ = 0.75, δ = 0.1 (which is equivalent to SNR = −1.76 dB), and

U is an orthogonal matrix obtained by concatenating the first N left-singular

vectors of a random matrix whose entries are chosen randomly from a uniform

distribution on (0, 1). The reported values are averaged over 50 realizations.275

The indices obtained by greedy methods and reported in Table 2 explicitly

show the effect of coherence of input matrix on these types of methods. For

instance, according to the performed experiment, greedy methods either report

less (37%) or larger (105%) error than the exact index (86%). Note that as

greedy methods try first to estimate permutation P , and then calculate the280

error between matrices AP and Â; hence, the indices computed by greedy

methods may be compared to the exact error computed by graph-based meth-

ods. However, comparing other indices such as CorrIndex with the exact error

does not make sense, since these indices are intrinsically different from (13).

As can be seen in Table 2, CorrIndex is the fastest index. In addition,285
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Table 3: A numerical comparison on methods measuring the distance between A150×100 with

the mutual coherence constant γ = 0.95 and its permuted noiseless version Â averaged over

50 realizations. The index in five first rows of the table is the relative error defined in (13).

The four last indices of the table are defined differently and are hence not comparable.

Method Index Computing time (ms)
Significance

of upper bound

Greedy of [3] 3.82e− 17 0.89 No

Greedy of [4, 5] 0.10 5.2 No

Hungarian [9] 0 2.7 Yes

MWM [10] 0 4.0 Yes

Linprog [11] 0 1630 Yes

Comon [12] 2.14e− 13 3.3 No

Moreau-Macchi [13] 0 4.5 No

Amari [14] 3.35e− 16 3.8 No

CorrIndex 2.37e− 16 0.59 Yes

contrary to the indices of Comon, Moreau-Macchi and Amari, CorrIndex returns

a value in the bounded range [0, 1]. One could normalize the Moreau-Macchi

and Amari indices in order to obtain bounded values, but the signification of

such upper bounds on these indices has never been investigated.

The experiment of Table 2 corresponds to an inaccurate estimation of A290

(i.e. SNR = −1.76), and all the performance indices (perhaps except the greedy

method of [3] which yields 37%) demonstrate convincingly the fact that estima-

tion is not accurate. In order to evaluate the indices in the opposite situation

(accurate estimation), we perform another experiment with the same setting as

that of Table 2 except that Â is a permuted noiseless version of A150×100 with295

γ = 0.95. The result of this experiment is reported in Table 3.

As it can be interpreted from the reported indices in Table 3, the greedy

method of [4, 5] does not report zero relative error between A and Â which

is not correct. However, in spite of highly correlated columns of A, all indices

(except the greedy method of [4, 5]) demonstrate zero distance between A and Â300
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which is true. Comparing Table 2 and Table 3 reveals that the greedy methods

are much more sensitive to the correlation of the columns than other indices.
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Figure 1: CorrIndex and noise. CorrIndex of a random matrix A6×4 and its permuted noisy

version Â. This figure confirms the fact that the larger ε0, the larger CorrIndex.

As mentioned before, CorrIndex is based on (2) which tries to minimize the

least square error between A and Â. Therefore, if the distance between A

and Â increases due to the additive noise in Â, CorrIndex will return a larger305

value. To show this fact in practice, we performed an experiment whose result

is depicted in Fig. 1. Generating a random matrix A of dimension 6 × 4, Â is

obtained by permuting its columns and by adding a noise matrix, W , of the

same size as A with independent and identically distributed (i.i.d.) entries of

Gaussian distribution with zero mean and unit variance, and weighted by the310

parameter δ. The variance δ2 of the additive noise is adjusted such that we

reach a desired SNR as described in (14).

Figure 1 confirms the fact that the larger ε0, the larger CorrIndex. Therefore,

in evaluating different decomposition methods, the one with the least CorrIndex

would perform the best.315
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In Table 2, we show the effect of mutual coherence and noise on the results

of each index. However, Fig. 2 investigates the effect of noise intensity, which

is measured by SNR. In this experiment, as in Table 2, we generate a random

matrix A of dimension 150× 100 with the mutual coherence constant γ = 0.75

and averaged the results over 50 realizations. Then, the matrix Â is obtained by320

permuting randomly the columns of A and by adding a noise matrix according

to each SNR value. The goal of this experiment is to show the drawbacks of

greedy methods, and to do this, we compare the result of the greedy methods

of [3, 4, 5] by one of the graph-based method (i.e. MWM [10]) which outputs

the exact error. Therefore, we can simply conclude the inaccuracy of [3, 4, 5].325
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Figure 2: Drawbacks of greedy methods of [3, 4, 5]. Compare the relative error between a

random matrix A150×100 with the mutual coherence constant γ = 0.75 and its permuted

noisy version Â versus SNR reported by greedy methods of [3, 4, 5] and by one of the exact

indices, i.e. MWM averaged over 50 realizations.

Figure 2 shows the relative error (13) between Â as an estimation of A.

As the error output by MWM is exact, the difference between errors output

by the greedy methods of [3, 4, 5] and the one by MWM show the inaccuracy
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of [3, 4, 5]. As it is expected, the relative error by greedy method [3] (resp. [4, 5])

is optimistic (resp. pessimistic), since its reported error is smaller (resp. larger)330

than the exact error. In addition, as SNR increases, this error gets larger, which

demonstrates that by decreasing the additive noise, the influence of mutual

coherence becomes more effective on the result of greedy methods.

5. Conclusion

In this paper, the problem of computing the distance between two matrices335

up to permutation and scaling ambiguities is addressed. This problem occurs

for instance in tensor decompositions or in blind source separation. Existing

performance indices are classified in three main categories: “greedy methods”,

“graph-based methods” and “invariant indices”. These methods are reviewed,

and it is inferred that greedy methods are not reliable especially in noisy situa-340

tions (they are either optimistic or pessimistic). In addition, graph-based meth-

ods and invariant indices are computationally expensive. We propose a new

performance index belonging to the class of invariant indices, called CorrIndex,

whose upper and lower bounds are easy to interpret, while being computation-

ally cheap.345
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