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Abstract—In this paper, the problem of convolutive source sep-
aration via multimodal soft Nonnegative Matrix Co-Factorization
(NMCF) is addressed. Different aspects of a phenomenon may
be recorded by sensors of different types (e.g., audio and video
of human speech), and each of these recorded signals is called
a modality. Since the underlying phenomenon of the modalities
is the same, they have some similarities. Especially, they usually
have similar time changes. It means that changes in one of them
usually correspond to changes in the other one. So their active
or inactive periods are usually similar. Assuming this similarity,
it is expected that the activation coefficient matrices of their
Nonnegative Matrix Factorization (NMF) have a similar form.
In this paper, the similarity of the activation coefficient matrices
between the modalities is considered for co-factorization. This
similarity is used for separation procedure in a soft manner
by using penalty terms. This results in more flexibility in the
separation procedure. Simulation results and comparison with
state-of-the-art algorithms show the effectiveness of the proposed
algorithm.

Index Terms—multimodality, blind source separation, nonneg-
ative matrix co-factorization, convolutive mixture, audio-visual
speech separation.

I. INTRODUCTION

BLIND Source Separation (BSS) is a challenging problem
in signal processing which aims to separate original

sources from their mixtures where no information is available
about the mixing matrix or the sources except the statistical
independence of the original sources and the structure of the
mixtures (linear, time instantaneous, convolutive,...) [1]. An
M × M convolutive mixture, where M is the number of
sources and sensors, is modeled as [1]

xi(t) =

M∑
j=1

ãij(t) ∗ sj(t), i = 1, 2, ...,M (1)

where xi(t) is the i-th mixture, sj(t) is the j-th source, ãij(t)
is the impulse response filter from the j-th source to the i-
th mixture and ‘∗’ denotes the convolution operator. A usual
approach for solving the above convolutive source separation
problem is to resort to the frequency domain using Short
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Time Fourier Transform (STFT) [2], [3], [4]. STFT is usually
arranged in a matrix such that the n-th column of this STFT
matrix is the Fourier transform of the n-th frame of the signal.
The n-th frame of xi(t), denoted by xi,n(t), is defined as

xi,n(t) = xi(t+ (n− 1)τ ′)W (t), t ∈ [0 : τ ] (2)

where W (t) is a finite length window of length τ , and τ ′ is
the amount of the window shift.

Since STFT is a linear transform and by assuming that
the filter (ãij(t)) time duration is much less than the STFT
window length (τ ), (1) can be written in the STFT domain as
[5]

∀(f, n) xi(f, n) =

M∑
j=1

ãij(f)sj(f, n), (3)

where xi(f, n) is the (f, n)-th element of the STFT matrix
of xi(t), sj(f, n) is the (f, n)-th element of the STFT matrix
of sj(t), and ãij(f) is the Fourier transform of ãij(t). Dif-
ferent approaches have been proposed for convolutive source
separation in the STFT domain, e.g. [1], [6], [5], [2], [3], [4],
[7].

Multimodal nature of natural phenomena can also be ex-
ploited for convolutive source separation. Different aspects
of a multimodal phenomenon is measured by using different
instruments. Each of these measurements is called a modality.
For example, human talk is a multimodal phenomenon, with
basically two main modalities: audio signal received by ears
or microphones, and video signal received by eyes or cameras.
Indeed, modalities provide different (but related) signals com-
ing from a single phenomenon [8]. A review on separating
the acoustic part of the speech using the corresponding video
modality can be found in [7], [9].

Since the modalities are the different recordings of the same
phenomenon, they usually have some similarities. Therefore,
the joint analysis of the modalities is a powerful tool —in fact
a particular approach related to data fusion [8]— for exploiting
their similarities in solving different problems. Due to the
mentioned similarity among the modalities with the same
physical origin, the Nonnegative Matrix Factorization (NMF)
of the modalities can have similar parameters, called shared
factors [10]. NMF is a decomposition approach in which a
matrix V ∈ RF×N+ with nonnegative elements is factorized as
the product of two matrices with nonnegative elements [11]
as

V 'WH, (4)
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where W ∈ RF×K+ and H ∈ RK×N+ . K is usually chosen
less than F and N [11]. NMF can be achieved for example
by solving [11]

min
W≥0,H≥0

D(V‖WH), (5)

where D measures the divergence between V and WH.
Simultaneous nonnegative factorization of recordings of

multimodal or multichannel1 datasets with shared factors is
a common approach in data fusion and is called Nonnegative
Matrix Co-Factorization (NMCF). For multimodal or multi-
channel datasets with two recordings, NMCF can be achieved
by solving [5], [12], [13]

min
W1≥0,W2≥0,H≥0

λ1D(V1‖W1H) + λ2D(V2‖W2H), (6)

where λi is the weight of the i-th term, V1 ∈ RF×N+ and
V2 ∈ RF×N+ are the recordings of the dataset, H ∈ RK×N+

is the shared factor that is identical in both V1 and V2 and
W1 ∈ RF×K+ and W2 ∈ RF×K+ are the unshared factors.

In [5], NMCF of multichannel audio dataset is used for
convolutive source separation. Mixtures that are recorded by
different microphones are simultaneously factorized into ma-
trices which are then used for convolutive source separation.
In that paper, the shared factors of the recordings of the
observed multichannel dataset are assumed to be equal. It
leads to a method based on a cost function like (6), in
which there is a single matrix H in both of the two terms2

(this is called hard coupling). In [14], [10], the equality
constraint of the shared factors is replaced by the similarity
constraint of the shared factors: it leads to methods based on
a cost function with an additional penalty term measuring
the similarity between the shared factors (this is called soft
coupling). In [15], this method, called soft NMCF, is also used
for convolutive source separation. But the algorithm of [15], to
prevent the convergence of the shared factors to zero, requires
a normalization of W1 and W2 and additional matrix factors.

The algorithms proposed in [5], [15] for convolutive source
separation are only based on audio recordings, i.e., only the
similarities of the recordings of a multichannel audio dataset
are considered for convolutive source separation.

Conversely, in this paper, a multimodal soft NMCF approach
is proposed for convolutive source separation by exploiting
both audio and video signals. It is assumed that the audio
sources are mixed together convolutively at each microphone
and the videos of the speakers are also recorded such that the
video information of each speaker is available separately (i.e.,
non-mixed). The information provided by each video modality
is then exploited in the separation of the audio mixtures.
Actually, in this paper, the only information that we exploit
from the video modality is the surface of the lip opening of
the corresponding speaker, extracted from the actual video

1Multichannel dataset consists of recordings of a phenomenon with several
sensors of the same type while multimodal dataset consists of recordings of
a phenomenon with sensors of different types. Several audio recordings of a
human speech with different microphones is an example of a multichannel
dataset, while audio and video recordings of a human speech is an examples
of a multimodal dataset.

2Details on NMCF for convolutive source separation will be reviewed in
Section II.

signal [16]. Since the lip opening of a speaker can have non-
zero values during the silence periods (because the lips of the
speaker can be open during the silence periods), the derivative
of the lip opening signal is used as the second modality. So,
we have two modalities: the audio and the derivative of the
lip opening signal which for simplicity we call “lip surface”
signal throughout this paper.

These two modalities of a single speaker usually have
similar time changes. It means that changes in one of these
modalities usually correspond to changes in the other modality.
Especially, these modalities have nearly the same active or
inactive periods. Therefore, it is expected that their activation
coefficient matrices have zero elements in nearly the same
indices. In this paper, we use this similarity for convolutive
source separation. The lip surface modalities are factorized
first and then the resulting parameters are used for separating
the audio signals. As we show later, in this approach, the
problem of the convergence of the shared factors to zero
(which exists in the algorithm of [15]) no longer occurs.

The remainder of this article is organized as follows. In Sec-
tion II, NMCF for convolutive source separation is reviewed.
Soft NMCF will be reviewed in Section III. In Section IV, the
proposed multimodal soft NMCF algorithm for convolutive
source separation is presented and finally, Section V is devoted
to experimental results.

II. A REVIEW ON NMCF FOR CONVOLUTIVE SOURCE
SEPARATION

Separating convolutive mixtures using NMCF of multichan-
nel audio recordings has been introduced in [5]. The STFT
matrix of the j-th source, denoted by Sj , is a matrix of size
F ×N where F is the number of frequency bins and N is the
number of time frames. The power spectrogram matrix of the
j-th source is defined as Vsj ∈ RF×N+ whose elements are

vsj (f, n) = |sj(f, n)|2, (7)

where sj(f, n) and vsj (f, n) are the (f, n)-th elements of Sj
and Vsj , respectively. In [5], it is assumed that the power
spectrogram matrix of each individual source can be factorized
as

Vsj ≈WjHj , (8)

where Wj ∈ RF×K+ is the basis dictionary matrix and Hj ∈
RK×N+ is the activation coefficient matrix of the NMF of the
power spectrogram matrix of the j-th source (Vsj). It is also
assumed that the (f, n)-th element of Sj (i.e., sj(f, n)) has a
complex Gaussian distribution as

sj(f, n) ∼ Nc

(
0,

K∑
k=1

wj(f, k)hj(k, n)

)
, (9)

where wj(f, k) and hj(k, n) are the elements of Wj and
Hj , respectively. It is shown in [17] that under the above
assumption, and by assuming the mutual independence of the
elements across the frequency bins and the time frames, the



IEEE TRANS. ON SIGNAL PROCESSING, VOL. XX, NO. XX, AUGUST 20XX 3

Maximum Likelihood (ML) estimation of Wj and Hj from
Sj is achieved by minimizing

− logP (Sj |WjHj)

= −
N∑
n=1

F∑
f=1

logP

(
sj(f, n)|0,

K∑
k=1

wj(f, k)hj(k, n)

)

= NF log(π) +

N∑
n=1

F∑
f=1

log

(
K∑
k=1

wj(f, k)hj(k, n)

)

+
|sj(f, n)|2∑K

k=1 wj(f, k)hj(k, n)

=

N∑
n=1

F∑
f=1

dIS

(
|sj(f, n)|2‖

K∑
k=1

wj(f, k)hj(k, n)

)
+ cst

=

N∑
n=1

F∑
f=1

dIS

(
vsj (f, n)‖

K∑
k=1

wj(f, k)hj(k, n)

)
+ cst

= DIS(Vsj‖WjHj) + cst,
(10)

where P denotes the Probability Density Function (PDF),
“cst” denotes the terms which are independent of Wj or Hj

and DIS denotes the Itakura-Saito Divergence between two
matrices, defined as

DIS(Y‖Ŷ) =
∑
i,j

dIS(y(i, j)‖ŷ(i, j))

=
∑
i,j

y(i, j)

ŷ(i, j)
− log

y(i, j)

ŷ(i, j)
− 1,

(11)

where y(i, j) and ŷ(i, j) are the (i, j)-th elements of Y and Ŷ,
respectively, and dIS(y(i, j)‖ŷ(i, j)) denotes the element-wise
Itakura-Saito divergence. Based on (10) and by considering
(5), it is clear that the ML estimation of Wj and Hj for
the j-th source (Sj) is the NMF decomposition of its power
spectrogram matrix using the Itakura-Saito divergence.

Similar to the above discussion and by assuming that the
time durations of the impulse responses of ãij(t) filters are
much smaller than the STFT window size, the ML estimation
of the parameters from the STFT matrix of the i-th mixture,
denoted by Xi of size F ×N , is achieved by minimizing (as
detailed in [5])

− logP (Xi‖
M∑
j=1

AijWjHj) =

N∑
n=1

F∑
f=1

dIS

|xi(f, n)|2‖ M∑
j=1

|ãij(f)|2
K∑
k=1

wj(f, k)hj(k, n)


+ cst = DIS

Vxi ‖
M∑
j=1

AijWjHj

+ cst,

(12)

where M is the number of sources (and also the number of
mixtures), xi(f, n) is the (f, n)-th element of Xi, the matrix
Vxi ∈ RF×N+ is the power spectrogram matrix of the i-th mix-
ture whose (f, n)-th element is equal to |xi(f, n)|2, ãij(f) is

the Fourier transform of ãij(t) and Aij ∈ RF×F+ is a diagonal
matrix whose (f, f)-th element is aij(f, f) = |ãij(f)|2.

It worth emphasizing that Wj and Hj (the factorization
parameters of the j-th source) are the same for all of the
mixtures, but Aij’s have different values for each mixture. In
[5], convolutive source separation is then achieved by minimiz-
ing

∑M
i=1− logP (Xi‖

∑M
j=1 AijWjHj) which is equivalent

to minimizing the following cost function

C =

M∑
i=1

DIS

Vxi ‖
M∑
j=1

AijWjHj

 . (13)

The above equation is an NMCF problem of a multichannel
dataset for convolutive source separation in which Wj’s and
Hj’s are the shared factors and Aij’s are the unshared factors.
The parameters wj(f, k), hj(k, n) and aij(f, f) are estimated
by minimizing the cost function (13) with respect to wj(f, k),
hj(k, n) and aij(f, f). Finally, the j-th source in the i-th
mixture is reconstructed using Wiener filtering as [5]

ŝij(f, n) =
aij(f, f)

(∑K
k=1 wj(f, k)hj(k, n)

)
xi(f, n)

v̂i(f, n)
,

(14)
where ŝij(f, n) is the (f, n)-th element of the reconstructed
j-th source in the i-th mixture and v̂i(f, n) is the (f, n)-th
element of V̂i =

∑M
j=1 AijWjHj (note that V̂i ∈ RF×N+ ).

III. A REVIEW ON SOFT NMCF FOR CONVOLUTIVE
SOURCE SEPARATION

In [15], the hard coupling approach of the previous section
has been modified to a soft coupling, and so a soft NMCF
has been proposed for separating multichannel (in fact, stereo)
audio datasets. In that paper, the first and the second mixtures
(the signals received in the left and the right microphones) are
modeled as

xl(t) = s1(t) + s2(t),

xr(t) = ã1(t) ∗ s1(t) + ã2(t) ∗ s2(t),
(15)

where ã1(t) and ã2(t) are the time domain filters for the first
and the second sources. So the elements of the STFT matrices
of the mixtures are

xl(f, n) = s1(f, n) + s2(f, n),

xr(f, n) = ã1(f)s1(f, n) + ã2(f)s2(f, n), (16)

where xl(f, n) and xr(f, n) are the (f, n)-th elements of the
STFT matrices of the mixtures received in the left and the
right microphones, respectively, and ã1(f) and ã2(f) are the
Fourier transforms of ã1(t) and ã2(t), respectively. Convo-
lutive source separation using soft NMCF is then achieved
by minimizing the following cost function with respect to
θ , (Wl,Hl,Wr,Hr,A1,A2)[15]

C(θ) = DIS(Vxl ‖W1lH1l + W2lH2l)

+DIS(Vxr‖A1W1rH1r + A2W2rH2r) + λsp(Hl,Hr),
(17)

where Vxl ∈ RF×N+ and Vxr ∈ RF×N+ are the power
spectrogram matrices of the mixtures received in the left
and the right microphones, Wl = [W1l,W2l] ∈ RF×2K+ ,
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Hl = [HT
1l,H

T
2l]
T ∈ R2K×N

+ , Wr = [W1r,W2r] ∈ RF×2K+

and Hr = [HT
1r,H

T
2r]

T ∈ R2K×N
+ where W1l, W2l, W1r, W2r

are of size F ×K and H1l, H2l, H1r, H2r are K×N matrices
and A1 and A2 are diagonal F × F matrices whose diagonal
elements are a1(f, f) = |ã1(f)|2 and a2(f, f) = |ã2(f)|2,
respectively [15]. Wil and Hil (i = 1, 2) are the NMF
parameters of the i-th source received in the left microphone,
Wir and Hir (i = 1, 2) are the NMF parameters of the i-th
source received in the right microphone and (.)T denotes the
matrix transpose operator. p(Hl,Hr) is the penalty term which
controls the similarity of Hl and Hr and λs is the weight of the
penalty term. The value of λs highly affects the performance
of the soft coupling algorithm. So in [15] the soft coupling
algorithm is executed for different values for λs and finally
the best result is selected.

As it is clear from (17), the equality constraint (i.e., hard
coupling) of Hl and Hr of the two mixtures, which was
assumed in [5], is replaced by the similarity constraint (i.e.,
soft coupling) of Hl and Hr (it should be noted that in [15],
as in [5], it is assumed that Wl = Wr). In other words, it is no
more required that Hl and Hr are equal, they only have to be
similar. The similarity of the parameters is controlled by the
penalty term, p(Hl,Hr), which is added to the cost function.

The penalty terms that are used in [15] are ‖Hl − Hr‖1
and ‖Hl − Hr‖2F , where ‖.‖1 denotes the sum of the ab-
solute values of a matrix (`1 penalty term) and ‖.‖F is
the Frobenius norm of a matrix (`2 penalty term). For any
0 < α < 1, the cost function (17) satisfies the following
property: C( 1

αWl, αHl,
1
αWr, αHr) < C(Wl,Hl,Wr,Hr)

[15]. So without any additional constraint, Hl and Hr will
converge to zero, i.e., to a trivial solution. To avoid this
problem, in [15], each column of Wl and Wr is normalized
to have a unit `1 norm and then to compensate for the
effect of the normalization, the k-th rows of Hl and Hr are
multiplied by additional parameters blk =

∑
f wl(f, k) and

brk =
∑
f wr(f, k), respectively. In addition, due to possibly

different scalings of the activation coefficient matrices, espe-
cially when the activation coefficient matrices are extracted
from modalities of different types (e.g., audio and lip surface
modalities of a speech), a diagonal matrix is multiplied to one
of the matrices in the penalty term. So the `2 penalty term in
[15] is

p(Hl,Hr) = ‖BlHl − SBrHr‖2F , (18)

where Bl and Br are diagonal matrices of size K × K,
whose (k, k)-th elements are blk and brk, respectively, and
S ∈ RK×K+ is a diagonal matrix to compensate for the
potentially scale difference between Hl and Hr. More details
about Bl, Br and S can be found in [15].

Finally, after the estimation of the parameters by minimizing
the cost function of (17), the sources are reconstructed using
Wiener filtering.

IV. THE PROPOSED MULTIMODAL SOFT NMCF
ALGORITHM FOR CONVOLUTIVE SOURCE SEPARATION

As mentioned before, audio and lip surface modalities com-
ing from a single speech have some similarities. In particular,
changes in one of them usually correspond to changes in the
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Fig. 1. Time variations of human speech viewed by the two modalities: (top)
the audio modality, (down) the lip surface modality of the speaker.

other one. This similarity is shown in Fig. 1. Due to this
similarity, it is expected that the activation coefficient matrices
resulted from the NMF of the modalities are similar, especially
for the entries close to zero (silence periods). This similarity
is used in papers such as [14] for speaker diarization.

In this paper, we use this similarity along with soft NMCF
presented in [15] for convolutive source separation. In the
first step of the proposed algorithm, the activation coefficient
matrices of the lip surface modalities are extracted by the NMF
of the power spectrogram matrices of the lip surface modalities
as (it should be noted again that the lip surface modality of
each speaker is available separately)

min
Wv

j≥0,Hv
j≥0

DIS(Vvj‖Wv
jHv

j ), (19)

where Vvj ∈ RF×N+ is the power spectrogram matrix of the
lip surface modality of the j-th speaker and Wv

j ∈ RF×K+ and
Hv
j ∈ RK×N+ are the factorization parameters.
The penalty term in (17), which controls the similarity of the

activation coefficient matrices, is broken into the two following
terms

p(Hl,Hr)→ pl(Hl,Hv) + pr(Hr,Hv),

where for a 2 × 2 mixture, Hv = [Hv
1
T ,Hv

2
T ]T . Each of the

rows of Hv is normalized to have unit `1 norm. The above
penalty terms can also be written as

pl(H1l,Hv
1)+pl(H2l,Hv

2)+pr(H1r,Hv
1)+pr(H2r,Hv

2). (20)

By the above discussion, in the second step of the proposed
algorithm, the following cost function is proposed for convo-
lutive source separation via multimodal soft NMCF

CNEW(θ) =DIS(Vxl ‖W1lH1l + W2lH2l)

+DIS(Vxr‖A1W1rH1r + A2W2rH2r)

+ λlpl(Hl,Hv) + λrpr(Hr,Hv),

(21)

where θ , (Wl,Wr,Hl,Hr,A1,A2). It is assumed that
W1l = W1r and W2l = W2r (as in [5] and [15]), so in
the rest of the paper W1 is used instead of W1l and W1r,
and W2 is used instead of W2l and W2r. λl and λr are the
weighs of the penalty terms. The dimensions of the matrices
are the same as in Section III. In this paper, it is assumed that
pl(.) = pr(.) = p(.). The extension of the above cost function
to more than two sources and sensors is straightforward.
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Suppose that for the NMF of each of the lip surface
modalities, K is set to a positive integer such as κ, so for
2 × 2 mixtures, Hv = [Hv

1
T ,Hv

2
T ]T ∈ R2κ×N

+ . Since Hv
1

and Hv
2 correspond to the lip surface modalities of the first

and the second speakers, respectively, and by considering
(20), it is expected that after the update procedure H1l and
H1r correspond to the activation coefficient matrix of the
first source and H2l and H2r correspond to the activation
coefficient matrix of the second source. Consequently, after
the update procedure, W1 corresponds to the first source and
W2 corresponds to the second source. Finally, the sources are
reconstructed using Wiener filtering (14). It should be noted
that in this paper we consider the same κ for both audio and
lip surface modalities.

The details of the proposed penalty term and the update
rules are discussed in the following subsections.

A. The proposed penalty term

In this paper, the following penalty term is proposed for
controlling the similarity of the activation coefficient matrices
of the corresponding audio and lip surface modalities:

p(H,Hv) = DMM(Hv‖H) =
∑
k,n

dIS(h
v(k, n)‖h(k, n))
hv(k, n)

=

∑
k,n

1

h(k, n)
− log hv(k, n)

hv(k, n)
+

log h(k, n)

hv(k, n)
− 1

hv(k, n)
,

(22)

where DMM(Hv‖H) is the proposed multimodal penalty term
(where MM stands for MultiModal), dIS is the element-wise
Itakura-Saito divergence defined in (11), H denotes Hl or Hr

and h(k, n) and hv(k, n) are the (k, n)-th elements of H and
Hv , respectively. The zero valued elements of Hv are replaced
by a very small positive constant ε to prevent division by zero.

As mentioned before, the zero valued (very small valued)
indices of the activation coefficient matrices of the audio
and the lips surface modalities are nearly the same. Thus,
the penalty term must take into account this similarity, es-
pecially during the silence periods, i.e., for the small valued
indices of the activation coefficient matrix of the lip surface
modality (Hv). This is done in (22) by weighting each term
dIS(h

v(k, n)‖h(k, n)) by 1
hv(k,n) . This ensures that H and Hv

are very similar for the small values, but can be far from
similarity for the larger values of hv(k, n).

Similarity of Hl and Hr to Hv guarantees the similarity of
Hl and Hr. So the proposed cost function for separating 2×2
convolutive mixtures, i.e., (21), can be written as

CNEW(θ) =DIS(Vxl ‖W1H1l + W2H2l)

+DIS(Vxr‖A1W1H1r + A2W2H2r)

+ λlDMM(Hv‖Hl) + λrDMM(Hv‖Hr).

(23)

In addition, since Hv has been computed in advance and
is kept fixed during the update procedure, the problem of the
convergence of Hl and Hr to zero, which was noted in [15],
no longer occurs. Consequently, the matrices Bl and Br, used
in [15] to compensate for the effect of the normalization of
the basis vectors, is not needed in the proposed penalty term.

B. The update rules
Similar to [11], [18], in this paper the update rules are

derived using a majorization-minimization approach and ex-
ploiting auxiliary functions [11]. G(H,Ht) is an auxiliary
function for F (H) if the following conditions hold [11]

G(H,Ht) ≥ F (H) G(Ht,Ht) = F (Ht),

where Ht is the point at which the values of G(Ht,Ht) and
F (Ht) are the same. Thus F (H) is non-increasing under the
update

Ht+1 = argmin
H

G(H,Ht).

This is because [11]:

F (Ht+1) ≤ G(Ht+1,Ht) ≤ G(Ht,Ht) = F (Ht).

It means that minimizing the auxiliary function results in min-
imizing F (H). So finding a proper convex auxiliary function
is an important step for deriving the update rules.

Suppose that V̂l = W1H1l + W2H2l ∈ RF×N+ and
V̂r = A1W1H1r + A2W2H2r ∈ RF×N+ , whose (f, n)-th ele-
ments are v̂l(f, n) and v̂r(f, n), respectively and vxl (f, n) and
vxr (f, n) are the (f, n)-th elements of Vxl and Vxr , respectively.
By using a majorization-minimization approach and finding
proper auxiliary functions, the update rules are derived as
(details are deferred to Appendix A)

wq(f, k)← wq(f, k)×√√√√√∑n hql(k, n)
vxl (f,n)

v̂2l (f,n)
+
∑
n aq(f, f)hqr(k, n)

vxr (f,n)
v̂2r(f,n)∑

n
hql(k,n)
v̂l(f,n)

+
∑
n
aq(f,f)hqr(k,n)

v̂r(f,n)

,

(24)

hql(k, n)←

√√√√√h2ql(k, n)
∑
f wq(f, k)

vxl (f,n)

v̂2l (f,n)
+ λl∑

f
wq(f,k)
v̂l(f,n)

+ λl

hv
q (k,n)hql(k,n)

, (25)

hqr(k, n)←

√√√√√h2qr(k, n)
∑
f aq(f, f)wq(f, k)

vxr (f,n)
v̂2r(f,n)

+ λr∑
f
aq(f,f)wq(f,k)

v̂r(f,n)
+ λr

hv
q (k,n)hqr(k,n)

,

(26)

a1(f, f)← a1(f, f)

√√√√∑n h
′(f, n)

vxr (f,n)
v̂2r(f,n)∑

n
h′(f,n)
v̂r(f,n)

, (27)

a2(f, f)← a2(f, f)

√√√√∑n h
′′(f, n)

vxr (f,n)
v̂2r(f,n)∑

n
h′′(f,n)
v̂r(f,n)

, (28)

where H′ , W1H1r ∈ RF×N+ and H′′ , W2H2r ∈
RF×N+ with elements h′(f, n) and h′′(f, n), respectively and
wq(f, k), hql(k, n), hqr(k, n), aq(f, f), hvq(k, n) are the el-
ements of Wq , Hql, Hqr, Aq , Hv

q (q = 1, 2), respectively.
The parameters are updated sequentially in each iteration until
convergence.

The proposed multimodal soft NMCF algorithm for convo-
lutive source separation (for 2×2 mixtures) is summarized in
Algorithm 1.
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Algorithm 1 Proposed multimodal soft NMCF algorithm
1: Compute the power spectrogram of each of the lip surface

modalities (Vvj (j = 1, 2)).
2: Compute Hv

j (j = 1, 2) for a predetermined κ. (κ is the
number of the rows of Hv

j )
3: for k = 1 : κ do
4: hvj (k, n) =

hv
j (k,n)∑

n h
v
j (k,n)

5: end for
6: Hv = [Hv

1
T ,Hv

2
T ]T

7: if hv(k, n) = 0 then
8: hv(k, n)← ε
9: end if

10: Update the parameters sequentially in each iteration using
(24)-(28) until convergence.

11: Reconstruct the original sources using (14).

V. EXPERIMENTAL RESULTS

In this section, the validity of the proposed algorithm is
investigated via experimental results. Pairs of audio and lip
surface modalities extracted from human speeches are used
for the simulations. The details about extracting the lip surface
modalities and recording the audio signals can be found in
[16]. Since the sampling frequency of the audio modalities is
16kHz and the sampling frequency of the lip surface signals
is 50Hz, the lip surface signals are up-sampled by rate of
320 using the “interp.m” function of Matlab. The audio
mixtures are artificially created as

xl(t) = s1(t) + s2(t)

xr(t) = s1(t− 0.0019) + s2(t− 0.0031).

The duration of the audio signals is 32 sec (512000 sam-
ples). It should be noted again that the lip surface signals
are not mixed, so each lip surface modality corresponds to a
speaker and consequently to an audio signal.

In the first step, the similarity of the activation coefficient
matrices of the two modalities coming from a single speech,
which is the basic assumption of this paper, is studied. Acti-
vation coefficient matrices of audio and lip surface modalities
corresponding to a single speech are computed separately. For
the simplicity of the comparison, in this experiment κ (i.e.,
the number of the rows of Hv

i , i = 1, 2) is set equal to 1. So
each of the estimated matrices has only one row. In Fig. 2,
the estimated activation coefficient matrices of the audio (top)
and the lip surface (down) modalities of a speech are shown.
As it is seen, the estimated activation coefficient matrices of
the audio and the lip surface modalities are similar especially
in their zero indices. The simulations regarding the proposed
algorithm are presented in the following subsections.

A. Convergence of the proposed algorithm

In this subsection, the convergence of the proposed cost
function is experimentally investigated. In this experiment,
the proposed algorithm is used for separating sources from
2× 2 mixtures. The number of the iterations of the proposed
algorithm is set equal to 200, κ (the number of the rows of
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Fig. 2. The estimated activation coefficient matrices of the audio modality
(top) and the lip surface modality (down) of a human speech with κ = 1
(note that there is no mixture for the audio signal and by κ = 1 the activation
coefficient matrices reduce to a simple row).
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Fig. 3. The proposed cost function for 10 executions of the proposed
algorithm.

Hv
i ) is set equal to 10 and λl and λr (the weights of the

penalty terms) are set equal to 1. The window length of STFT
is 1000 samples which is equal to 0.0625 sec. For numerical
comparison, the following Signal to Noise Ratio (SNR) is used

SNR = 10 log10

( ∑
f,n |s(f, n)|2∑

f,n (|s(f, n)| − |ŝ(f, n)|)2
)
, (29)

where s(f, n) is the (f, n)-th element of the STFT matrix
of the original signal and ŝ(f, n) is the (f, n)-th element of
the STFT matrix of the estimated signal. We also define the
average SNR for the first and the second separated sources
from 2× 2 mixtures as

SNRavg =
SNR1 + SNR2

2
, (30)

where SNRi (i = 1, 2) is the average of the separating SNRs
of the i-th separated source from each mixture. The value of
the cost function and SNRavg for 10 executions of the proposed
algorithm for the separation of the sources from 2×2 mixtures
are shown in Fig. 3 and Fig. 4. It should be noted that the
mixtures are the same in each execution but the parameters
of the algorithm are initialized randomly. It is clear that, for
these executions of the proposed algorithm, the cost function
(Fig. 3) and the SNRavg curves (Fig. 4) converge to different
values depending on the initializations of the parameters.

B. Comparison of the proposed algorithm with other separat-
ing algorithms

To have a comparison between the proposed multimodal
algorithm and the algorithms proposed in [5] and [15], several
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Fig. 4. SNRavg (in dB) for 10 executions of the proposed algorithm.

2 × 2 convolutive mixtures are separated using the three
mentioned algorithms. In this paper, we refer to the algorithm
proposed in [5] as the hard coupling algorithm and the
algorithm proposed in [15] as the soft coupling algorithm. The
window length of STFT is 1000 samples which is equal to
0.0625 sec, the penalty coefficients λl and λr are set equal to
1 and κ is set equal to 10 (since κ somehow determines the
structure of the algorithm, for a fair comparison, we choose
the same κ for all of the algorithms). As mentioned earlier,
choosing a proper penalty coefficient (λs in (17)) highly
affects the performance of the soft coupling algorithm. So,
for each mixture, the soft coupling algorithm is executed for
λs = [0.5, 1, 1.5, 2, 2.5] and finally the best result is selected.
All of the algorithms are initialized randomly with nonnegative
elements. The resulting SNR1’s and SNR2’s are given in
Table I, for our proposed algorithm (multimodal soft), the
algorithm of [15] (soft coupling) and the algorithm of [5]
(hard coupling). Clearly, the proposed multimodal soft NMCF
algorithm outperforms the other audio-only algorithms.

For visually demonstrating the quality of the proposed
algorithm in source separation, a 2 × 2 mixture is separated
using the proposed algorithm. λl and λr are set equal to 1 and
κ is set equal to 10. The original and the separated signals
are shown in Fig. 5 and Fig. 6, respectively. The quality of
the proposed algorithm in source separation is clear from the
results.

The efficiency of the proposed algorithm when the lip
surface information is only available for one of the sources
(say s1) is investigated in Table II. For this propose, the
coefficients of the penalty terms corresponding to the second
source (the second and the fourth terms of (20)) are set equal to
zero and H2l = H2r. Clearly, the SNR performance, although
smaller than when the lip surface modality is available for
all speakers, is more than the performances of the hard and
the soft coupling algorithms, for most mixtures. It should be
noted that since the mixtures in Table I and Table II are the
same and the best results are selected for the soft coupling
algorithm, the results for the soft coupling algorithm in both
tables are the same.

The efficiency of the proposed algorithm for separating 3× 3
mixtures is compared with the hard coupling algorithm. The
results are presented in Table III. It is clear from the results
that the performance of the proposed algorithm for separating
3 × 3 mixtures is less than the performance of the proposed
algorithm for separating 2× 2 mixtures. But the performance

TABLE I
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF,
THE SOFT AND THE HARD COUPLING ALGORITHMS FOR SEPARATING 20

MIXTURES.

#
multimodal soft soft coupling hard coupling

Ŝ1 Ŝ2 Ŝ1 Ŝ2 Ŝ1 Ŝ2

1 5.59 8.06 -0.75 3.26 -1.66 1.13
2 5.36 6.85 -0.22 2.60 -0.77 0.80
3 3.86 4.78 -0.39 1.44 -1.24 -0.34
4 9.05 7.35 2.52 -0.04 2.31 -0.44
5 4.28 2.45 1.42 0.86 1.85 0.33
6 4.36 3.60 1.51 -0.76 2.46 0.39
7 6.69 2.83 2.65 -1.21 5.48 -2.40
8 3.23 3.02 2.13 2.00 0.54 -1.99
9 5.65 1.02 4.03 -1.76 5.30 -2.82

10 5.63 1.35 4.79 0.06 4.55 -3.07
11 6.19 5.35 0.58 1.40 0.94 -2.66
12 -0.21 4.34 0.01 2.75 -1.18 0.67
13 4.71 6.22 0.37 1.78 -1.11 -1.80
14 4.45 1.74 0.03 0.53 2.91 -2.96
15 0.10 3.58 1.51 2.47 1.32 2.61
16 7.33 7.19 1.95 0.01 2.51 -2.67
17 4.80 3.27 2.64 -0.25 3.69 -5.50
18 4.89 4.09 2.10 0.71 3.20 -1.36
19 7.20 5.51 2.36 -0.55 2.62 0.90
20 3.96 6.04 -0.57 1.38 -2.24 -1.47

avg 4.856 4.432 1.433 0.834 1.574 -1.132

TABLE II
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF

WHEN THE LIP SURFACE INFORMATION IS AVAILABLE ONLY FOR THE
FIRST SOURCE, THE SOFT AND THE HARD COUPLING ALGORITHMS FOR

SEPARATING 20 MIXTURES.

#
multimodal soft soft coupling hard coupling

Ŝ1 Ŝ2 Ŝ1 Ŝ2 Ŝ1 Ŝ2

1 -1.51 1.30 -0.75 3.26 -0.35 1.02
2 -0.22 1.31 -0.22 2.60 -0.84 1.04
3 -0.69 1.14 -0.39 1.44 -1.31 -0.97
4 2.52 1.21 2.52 -0.04 1.93 2.47
5 2.81 0.01 1.42 0.86 3.39 1.55
6 3.04 1.20 1.51 -0.76 2.07 0.24
7 4.97 -0.36 2.65 -1.21 4.69 0.01
8 3.47 2.86 2.13 2.00 1.98 -3.02
9 4.16 0.98 4.03 -1.76 4.70 -3.88

10 4.45 -1.16 4.79 0.06 4.46 -0.55
11 3.79 2.64 0.58 1.40 0.95 -2.61
12 -0.5 1.09 0.01 2.75 -1.32 -2.15
13 -0.60 3.19 0.37 1.78 -0.64 0.81
14 0.28 1.07 0.03 0.53 2.72 -3.72
15 -1.70 0.82 1.51 2.47 -0.03 -0.27
16 3.96 2.93 1.95 0.01 2.60 -1.94
17 2.99 0.70 2.64 -0.25 3.39 -1.17
18 3.43 0.82 2.10 0.71 0.43 0.21
19 0.77 0.01 2.36 -0.55 2.25 -1.78
20 1.39 3.61 -0.57 1.38 -2.3 -1.65

avg 1.840 1.268 1.433 0.834 1.438 -0.818
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Fig. 5. The original sources of the experiment of Section. V-B.
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Fig. 6. The reconstructed sources of the experiment of Section. V-B.

of the proposed algorithm, in most cases, is better than the
performance of the hard coupling algorithm.

C. Investigating the effect of λl and λr

The effect of λl and λr on the quality of the proposed
algorithm is studied in Table IV. The results are the averaged
SNRavg for 5 different mixtures. It is clear from these results
that, generally, the performance of the proposed algorithm is
first improved by increasing λl and λr, but further increase

TABLE III
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF
ALGORITHM AND THE HARD COUPLING ALGORITHM FOR SEPARATING

3× 3 MIXTURES.

#
multimodal soft hard coupling

Ŝ1 Ŝ2 Ŝ3 Ŝ1 Ŝ2 Ŝ3

1 -0.06 2.36 0.40 -3.43 0.45 1.66
2 1.12 1.16 0.15 1.52 2.32 1.18
3 0.30 1.64 0.01 -1.22 1.45 1.32
4 -1.22 1.92 -0.32 -3.69 0.02 -0.35
5 0.53 1.64 -0.24 0.98 3.06 1.10
6 2.12 0.07 0.33 3.23 -3.31 1.70
7 1.50 0.68 0.1 2.86 -2.51 -0.87
8 2.10 1.91 0.14 1.76 -0.44 -0.85
9 -1.05 2.04 0.04 -3.32 -1.08 -0.39

10 -1.85 1.14 -0.13 -2.76 0.75 0.76
avg 0.349 1.456 0.048 -0.407 0.071 0.526

TABLE IV
SNRavg (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF

ALGORITHM VERSUS λl AND λr AVERAGED OVER 5 MIXTURES.

penalty λr

coefficients 1 1.5 2 2.5 3

λl

1 5.607 5.735 5.724 5.707 5.653
1.5 5.577 5.705 5.690 5.683 5.667
2 5.580 5.680 5.646 5.616 5.593

2.5 5.573 5.647 5.599 5.575 5.523
3 5.548 5.627 5.578 5.564 5.510

of these penalty coefficients results in a reduction of the
performance of the proposed algorithm.

D. Investigating the effect of κ

In this section, the effect of κ (the number of the rows
of Hv

i ) on the performance of the proposed algorithm is
investigated. In Fig. 7, SNRavg averaged over 10 different
mixtures is plotted for different values of κ. It is seen that
the separation performance is increased with κ, up to κ = 10,
but increasing κ to larger amounts does not highly affect the
quality of the proposed algorithm.

E. Soft or hard coupling

For investigating the effect of the proposed multimodal
soft coupling of the audio and the lip surface modalities, in
Table V, the proposed method is compared with the situation
when Hl = Hv and Hr = Hv , i.e., with the hard coupling
of the activation coefficient matrices of the audio and the
lip surface modalities. In this approach, Hl and Hr are set
equal to Hv and are kept fixed, that is, only Wl and Wr

are updated during the update procedure. SNR1 and SNR2

for the separated sources using the mentioned approaches are
presented in Table V. It is clear from the results that the pro-
posed multimodal soft coupling results in a better separation
performance compared with the hard coupling of the activation
coefficient matrices of the audio and the lip surface modalities.
As mentioned before, the activation coefficient matrices of the
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Fig. 7. The averaged SNRavg for separating 10 different mixtures versus κ
(the number of the rows of Hv

i ).

TABLE V
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF

ALGORITHM AND THE APPROACH BASED ON THE HARD COUPLING OF THE
ACTIVATION COEFFICIENT MATRICES OF THE AUDIO AND THE LIP

SURFACE MODALITIES

#
multimodal soft hard coupling of Hl,Hr and Hv

Ŝ1 Ŝ2 Ŝ1 Ŝ2

1 4.10 6.6 6.00 8.50
2 5.99 7.43 3.92 5.55
3 4.01 4.82 3.43 4.38
4 10.27 8.56 7.19 5.55
5 4.18 2.68 4.22 2.62
6 4.2 3.31 3.96 3.11
7 6.86 2.72 7.04 2.63
8 2.70 2.63 2.84 3.05
9 5.79 0.68 4.39 0.29

10 6.10 1.76 5.34 1.03

avg 5.42 4.119 4.833 3.671

corresponding audio and lip surface modalities are similar, but
they are not necessarily equal. So, the proposed soft coupling
between Hl, Hr and Hv , which is able to preserve their
difference, results in a better source separation performance
compared with the hard coupling situation in which Hl = Hv

and Hr = Hv .
In the next simulation, the proposed method is compared

with the situation where Hl = Hr but they are coupled in a soft
manner to Hv . The results are presented in Table VI. It is seen
that, for most mixtures, the proposed multimodal soft NMCF
algorithm achieves a better source separation performance.

F. Investigating the penalty term

In this section, the effect of the proposed penalty term on
the performance of the proposed algorithm is investigated. For
this purpose, the proposed penalty term is compared with the
`2 penalty term defined as (where ‖.‖F stands for Frobenius
norm)

‖Hl −Hv‖2F + ‖Hr −Hv‖2F , (31)

and also compared with the `1 penalty term defined as

‖Hl −Hv‖1 + ‖Hr −Hv‖1. (32)

The proposed cost function (23) and the cost functions ob-
tained from (31) and (32) are compared with each other. The

TABLE VI
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF

ALGORITHM AND THE SITUATION WHEN Hl AND Hr ARE ASSUMED TO BE
EQUAL.

#
multimodal soft multimodal with hard coupling of Hl,Hr

Ŝ1 Ŝ2 Ŝ1 Ŝ2

1 3.56 5.24 3.30 3.67
2 6.80 8.31 6.65 8.03
3 3.23 4.28 2.15 3.26
4 10.37 8.64 11.55 9.85
5 4.37 3.53 4.28 3.19
6 4.16 3.25 3.97 3.15
7 6.86 2.64 8.37 3.67
8 3.06 2.84 2.98 2.73
9 5.74 1.32 5.95 1.04
10 5.67 1.23 5.45 0.79

avg 5.382 4.128 5.465 3.938

TABLE VII
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF

ALGORITHM AND FOR THE COST FUNCTIONS WITH `2 AND `1 COUPLINGS.

#
multimodal soft `2 coupling `1 coupling

Ŝ1 Ŝ2 Ŝ1 Ŝ2 Ŝ1 Ŝ2

1 5.66 8.30 -0.42 2.77 -1.17 2.65
2 4.74 6.23 0.80 3.42 1.88 3.55
3 3.53 4.54 0.99 3.77 0.44 3.04
4 10.61 8.84 2.34 1.23 1.18 0.84
5 3.95 3.08 2.69 1.34 2.64 1.3
6 4.64 3.69 2.74 2.09 2.89 2.15
7 6.70 2.53 2.86 -1.28 2.78 -0.83
8 3.35 3.22 1.88 1.95 1.06 1.69
9 5.12 0.58 3.29 -0.03 3.16 0.19
10 6.31 1.84 3.23 -0.85 2.58 -1.41

avg 5.461 4.285 2.04 1.441 1.744 1.317

penalty coefficients are set equal to 1. The results are presented
in Table VII. It is clear that the proposed penalty term results
in a better separation performance compared with the `2 and
the `1 penalty terms.

G. Simultaneous factorization of the audio and the lip surface
modalities

In this part, the proposed algorithm is compared with an
approach in which the audio mixtures and the lip surface
modalities are factorized simultaneously. In this situation, the
cost function (21) changes to

Csim =DIS(Vxl ‖W1lH1l + W2lH2l)

+DIS(Vxr‖A1W1rH1r + A2W2rH2r)

+DIS(Vv1‖Wv
1Hv

1) +DIS(Vv2‖Wv
2Hv

2)

+ λlp(Hl,Hv) + λrp(Hr,Hv),

where Vv1 ∈ RF×N+ and Vv2 ∈ RF×N+ are the power
spectrogram matrices of the first and the second lip surface
modalities and Wv

1 ∈ RF×K+ and Wv
2 ∈ RF×K+ are the basis

dictionary matrices resulted from the factorization of Vv1 and
Vv2 , respectively. Recall that Hv = [Hv

1
T ,Hv

2
T ]T . The other
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TABLE VIII
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF

ALGORITHM AND FOR THE SITUATION WHEN THE LIP SURFACE
MODALITIES AND THE AUDIO MIXTURES ARE FACTORIZED

SIMULTANEOUSLY.

#
multimodal soft simultaneous factorization of modalities

Ŝ1 Ŝ2 Ŝ1 Ŝ2

1 7.14 9.80 5.44 8.17
2 6.64 8.44 4.64 6.79
3 3.72 4.70 3.51 4.68
4 8.70 6.65 6.3 4.20
5 4.39 3.32 4.31 3.59
6 4.46 3.37 3.93 3.21
7 6.73 2.47 7.71 2.29
8 3.47 3.14 2.81 1.92
9 6.17 1.44 5.92 0.12

10 5.62 1.24 4.03 0.56

avg 5.704 4.457 4.86 3.553

parameters have been defined earlier. The third and the fourth
terms of Csim correspond to the factorization of the lip surface
modalities and the last two terms correspond to the penalty
terms. The penalty coefficients are set equal to 1. The resulting
SNR’s are presented in Table VIII.

It is clear from the results that, most of the times, the
sequential factorization of the lip surface signals and the
audio mixtures, which is proposed in this paper, results in
a better source separation performance, compared with the
simultaneous factorization of the lip surface modalities and
the audio mixtures.

H. More complicated mixtures

Finally, we investigate the performance of the proposed al-
gorithm for separating the following more complicated mixing
system:

xl(t) =s1(t) + s2(t),

xr(t) =0.8s1(t− 0.0019) + 0.4s1(t− 0.0062)+

0.2s1(t− 0.0094) + s2(t− 0.0031)+

0.3s2(t− 0.0075) + 0.1s2(t− 0.0125).

The proposed algorithm is compared with the soft coupling
algorithm and the Expectation Maximization (EM) based
algorithm proposed in [5]. The EM based algorithm proposed
in [5], is based on the maximization of the joint likelihood of
the mixtures using EM algorithm. The results are presented in
Table IX.

It is seen that even for more complicated mixtures, the
performance of the proposed algorithm is more than the
performances achieved by the soft coupling and the EM based
algorithms.

VI. CONCLUSION

In this paper, a multimodal algorithm was proposed for the
separation of the convolutive mixtures of the audio signals
when the video signals of the speakers are also available.
The proposed algorithm was focused on separating the audio

TABLE IX
SEPARATION SNR (dB) FOR THE PROPOSED MULTIMODAL SOFT NMCF,

THE SOFT COUPLING AND THE EM BASED ALGORITHMS FOR A MORE
COMPLICATED MIXTURE.

#
multimodal soft EM based soft coupling

Ŝ1 Ŝ2 Ŝ1 Ŝ2 Ŝ1 Ŝ2

1 7.39 9.99 -0.53 4.44 -0.77 1.93
2 6.10 7.65 -1.50 -0.12 0.82 2.49
3 3.43 4.55 0.02 3.12 -0.85 3.37
4 11.12 9.47 1.85 -0.12 0.53 0.27
5 4.70 3.28 1.4 -0.05 1.17 0.39
6 4.48 3.72 0.91 0.17 2.17 1.69
7 7.46 2.63 1.02 -3.52 3.24 -2.70
8 3.21 3.19 1.17 -0.15 2.81 2.22
9 4.60 1.27 0.80 -0.21 4.49 -1.26
10 5.44 1.18 3.15 -1.05 1.89 -1.84

avg 5.793 4.693 0.829 0.251 1.55 0.656

sources from the stereo mixtures, and with the help of the lip
surface signal of each speaker as the second modality. The
similarity of the activation coefficient matrices of the audio
and the lip surface modalities along with the similarity of
the NMF parameters of the audio signals of the two mixtures
were used for convolutive source separation using the proposed
multimodal soft NMCF approach. The penalty term of the
soft NMCF algorithm [15], which controls the similarity of
the activation coefficient matrices of the audio modalities,
was split into two penalty terms that control the similarity
of the activation coefficient matrices of the audio and the lip
surface modalities corresponding to a same speech. In the first
step of the algorithm, the activation coefficient matrices of
the lip surface modalities were extracted and in the second
step, the resulting activation coefficient matrices were used for
convolutive audio source separation. The proposed algorithm
does not need deriving any prior probability model for the
audio and the lip surface modalities and does not suffer from
the permutation problem. The update rules are derived using
a majorization-minimization approach and with the help of
convex auxiliary functions. Although the auxiliary functions
are convex, the main cost function is not convex and the
algorithm usually converges to a local minimum of the cost
function. The extraction of the lip surface signals of each
speaker requires a good video quality, but it is a very simple
feature, and the simulation results show that despite this simple
feature, the multimodal algorithm proposed here outperforms
the audio-only algorithms. Future works can be devoted to
source separation by taking into account the delay between
the audio and the lip surface modalities and considering more
accurate video information of each speaker than the lip surface
signal.

APPENDIX A
DERIVING THE UPDATE RULES

As mentioned earlier, the update rules are derived using a
majorization-minimization approach and with the help of aux-
iliary functions [18]. In [18], the following auxiliary function
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is used for estimating H in (5) when D is the Itakura-Saito
divergence

G1(H,Ht) =
∑
f,n

{
v(f, n)

∑
k

ht(k, n)2w(f, k)

h(k, n)v̂(f, n)2

+
∑
k

h(k, n)
w(f, k)

v̂(f, n)

}
+ cst,

where ht(k, n) is the (k, n)-th element of Ht and v̂(f, n)
is the (f, n)-th element of V̂ = WHt. The first term of
the above auxiliary function is derived by using the Jensen’s
inequality and the second term of the above auxiliary function
is achieved by replacing the “log” function by its tangent at the
point ht(k, n) [18]. In this paper, we have used the following
auxiliary function for optimizing the proposed penalty term

G2(H,Ht) =
∑
k,n

1

h(k, n)
+

h(k, n)

hv(k, n)ht(k, n)
+ cst.

Similar to [18], the above auxiliary function is achieved by
replacing the “log” function by its tangent at the point ht(k, n).

By the above discussions, the following auxiliary functions
are used for optimizing H1l at the point Ht

1l and H2l at the
point Ht

2l:∑
f,n

{
vxl (f, n)

∑
k

ht1l(k, n)
2w1(f, k)

h1l(k, n)v̂l(f, n)2
+

∑
k

h1l(k, n)
w1(f, k)

v̂l(f, n)

}

+ λl

∑
k,n

{
1

h1l(k, n)
+

h1l(k, n)

hv1(k, n)h
t
1l(k, n)

}+ cst,

∑
f,n

{
vxl (f, n)

∑
k

ht2l(k, n)
2w2(f, k)

h2l(k, n)v̂l(f, n)2
+

∑
k

h2l(k, n)
w2(f, k)

v̂l(f, n)

}

+ λl

∑
k,n

{
1

h2l(k, n)
+

h2l(k, n)

hv2(k, n)h
t
2l(k, n)

}+ cst,

where ht1l(k, n) and ht2l(k, n) are the (k, n)-th elements of
Ht

1l and Ht
2l, respectively.

In a similar manner, the following auxiliary functions are
used for optimizing H1r and H2r at the points Ht

1r and Ht
2r,

respectively:∑
f,n

{
vxr (f, n)

∑
k

ht1r(k, n)
2a1(f, f)w1(f, k)

h1r(k, n)v̂r(f, n)2
+

∑
k

h1r(k, n)
a1(f, f)w1(f, k)

v̂r(f, n)

}

+λr

(∑
k,n

{
1

h1r(k, n)
+

h1r(k, n)

hv1(k, n)h
t
1r(k, n)

})
+ cst,

∑
f,n

{
vxr (f, n)

∑
k

ht2r(k, n)
2a2(f, f)w2(f, k)

h2r(k, n)v̂r(f, n)2
+

∑
k

h2r(k, n)
a2(f, f)w2(f, k)

v̂r(f, n)

}
+

λr

(∑
k,n

{
1

h2r(k, n)
+

h2r(k, n)

hv2(k, n)h
t
2r(k, n)

})
+ cst.

The auxiliary functions for optimizing W1 and W2 at the
points Wt

1 and Wt
2 are

∑
f,n

{
vxl (f, n)

∑
k

wt1(f, k)
2h1l(k, n)

w1(f, k)v̂l(f, n)2

+
∑
k

w1(f, k)
h1l(k, n)

v̂l(f, n)

}
+

∑
f,n

{
vxr (f, n)

∑
k

wt1(f, k)
2a1(f, f)h1r(k, n)

w1(f, k)v̂r(f, n)2

+
∑
k

w1(f, k)
a1(f, f)h1r(k, n)

v̂r(f, n)

}
+ cst,

∑
f,n

{
vxl (f, n)

∑
k

wt2(f, k)
2h2l(k, n)

w2(f, k)v̂l(f, n)2

+
∑
k

w2(f, k)
h2l(k, n)

v̂l(f, n)

}
+

∑
f,n

{
vxr (f, n)

∑
k

wt2(f, k)
2a2(f, f)h2r(k, n)

w2(f, k)v̂r(f, n)2

+
∑
k

w2(f, k)
a2(f, f)h2r(k, n)

v̂r(f, n)

}
+ cst.

Finally, the following auxiliary functions are used for optimiz-
ing A1 and A2 at the points At1 and At2:

∑
f,n

{
vxr (f, n)

at1(f, f)
2h′(f, n)

a1(f, f)v̂r(f, n)2
+ a1(f, f)

h′(f, n)

v̂r(f, n)

}
+ cst,

∑
f,n

{
vxr (f, n)

at2(f, f)
2h′′(f, n)

a2(f, f)v̂r(f, n)2
+ a2(f, f)

h′′(f, n)

v̂r(f, n)

}
+ cst,

where h′(f, n) and h′′(f, n) are the elements of H′ and H′′
defined after (28). As mentioned earlier, in the above auxiliary
functions, “cst” contains the terms that do not depend on the
target parameter. Setting the derivative of each of the above
auxiliary functions with respect to their target parameters
equal to zero and finding the nonnegative root, result in
the mentioned update rules. Noting that the parameters with
the superscript “t” correspond to the previous iteration (t-
th iteration) and the resulting parameters using the proposed
update rules correspond to the current iteration ((t + 1)-th
iteration).
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