
1 

 

SR-NBS: A fast Sparse Representation based N-best class Selector for 

robust phoneme classification 

 

Armin Saeb
a
, Farbod Razzazi

a
, Massoud Babaie-Zadeh

b 

 

a
Department of Electrical and Computer Engineering, Science and Research 

Branch, Islamic Azad University, Tehran, Iran. 

b
Electrical Engineering Department, Sharif University of Technology, Tehran, 

Iran. 

ABSTRACT 

Although exemplar based approaches have shown good accuracy in classification 

problems, some limitations are observed in the accuracy of exemplar based 

automatic speech recognition (ASR) applications. The main limitation of these 

algorithms is their high computational complexity which makes them difficult to 

extend to ASR applications. In this paper, an N-best class selector is introduced 

based on sparse representation (SR) and a tree search strategy. In this approach, the 

classification is fulfilled in three steps. At first, the set of similar training samples 

for the specific test sample is selected by k-dimensional (KD) tree search 

algorithm. Then, an SR based N-best class selector is used to limit the 

classification among certain classes. This makes the classifier adapt to each test 

sample and reduces the empirical risk. Finally, a well known low error rate 

classifier is trained by the selected exemplar samples and the trained classifier is 

employed to classify among the candidate classes. The algorithm is applied to 

phoneme classification and it is compared with some well-known phoneme 

classifiers according to accuracy and complexity issues. By this approach, we 

obtain competitive classification rate with promising computational complexity in 

comparison with the state of the art phoneme classifiers in clean and well known 

acoustic noisy environments which causes this approach become a suitable 

candidate for ASR applications.  

Keywords: N-best Class Selector, Sparse Representation, Phoneme Classification, 

KD-Tree, Support Vector Machines 
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1. INTRODUCTION 

Phoneme classification is the labeling procedure of isolated speech segments with 

the most likely phonetic labels. Phoneme classification plays a key role in most of 

automatic speech recognition (ASR) algorithms. The final performance of an ASR 

system basically depends on the phoneme classifier accuracy (Rabiner, 1989; 

Juang and Rabiner, 2005; Keshet et al., 2007).  

In traditional phoneme classifiers, it is assumed that the training ensembles can 

represent the behavior of the test unseen data.  The model parameters are 

determined by a set of training utterances and the resulted model is then employed 

to classify the test utterances. As a result, model parameters are not adapted to test 

examples and the empirical risk of classification can be high. In addition, in noisy 

environments, the model is usually trained by both noisy and noiseless utterances 

to make the system robust against different signal to noise ratios. Indeed, it makes 

the model parameters be matched to the average of noisy samples, while it is better 

to adapt the system to the specific noisy situation as in the test input. The mismatch 

between noise specifications of training and test utterances causes the accuracy of 

the phoneme classifier decrease in noisy environments in comparison to the 

situation in which the noise specifications of the training and test utterances are 

completely matched (Amrouche et al., 2010). Although most practical speech 

models have been developed based on statistical modeling of speech (e.g. Gaussian 

Mixture Models (GMM), Hidden Markov Models (HMM)), exemplar based 

classifiers have shown their superiority in non-speech classification applications 

(Joachims, 2002; Tzicas et al., 2006; Wang 2010) and clustering (Ping et al., 

2010). Exemplar-based classifiers like K-Nearest Neighbors (KNN), Support 

Vector Machines (SVM) (Vapnik, 1998) and Relevance Vector Machines (RVM) 

(Tipping, 2001) have tried to decrease the empirical risk of classification by 

adapting the model parameters to the details of the training samples, not to the 

average behavior of them. However, due to large number and vast variety of 

training samples in speech recognition, most of the training samples try to 

incorporate in the classification procedure, which makes the model impractical 

(e.g. the large number of support vectors (SVs) in an SVM phoneme classifier (Li, 

2008) or the required exhaustive search in an KNN phoneme classifier). In 

addition, in conventional exemplar-based methods, the model is fully estimated by 

the training samples and the test utterance is not incorporated to adapt the model 

parameters. Therefore, their classification accuracy is limited in ASR real world 

applications. Although some online learning algorithms like Passive Aggressive 

(PA) algorithms (Crammer et al., 2006) are potentially capable to add the test 
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utterance for complementary training; but they need some suitable confidence 

criteria that it has not been presented yet; up to our best knowledge. 

Sparse signal representation (SR), a technique to represent a signal by a small 

number of basic signals (atoms) (Chen et al., 1999; Elad, 2010), has been shown to 

be successful in many signal processing application (e.g. face recognition (Wright 

et al., 2009), phoneme classification (Sainath et al., 2010) and multi-party speech 

recovery (Asaei et al., 2011)). In sparse representation, an n×1 signal vector y is 

represented by a linear combination of m basic n×1 signal vectors (atoms) x1, x2, 

…, xm, so that y = X . λ where n < m.  As n < m the solution is not unique. But as 

we want to use the minimum number of atoms (i.e. sparse solution), the coefficient 

vector λ would be unique in most of practical cases (Donoho, 2006). 

Sparse representation seems to be an appropriate approach in classification 

problems where there is sufficiently a large number of training samples. Due to the 

existence of good standard transcribed corpora in speech processing, phoneme 

classification meets this condition well. It is because when there is a large number 

of training examples, the chance of similarity between the test sample and a sparse 

set of training examples will be increased and it would be more likely that the test 

sample can be stated as a linear combination of a sparse set of training samples. 

Sainath et al have used this approach for phoneme classification (Sainath et al., 

2010) and have extended their method to large vocabulary continuous speech 

recognition (LVCSR) (Sainath et al., 2011a). They have used Approximate 

Bayesian Compressive Sensing (ABCS) algorithm as the sparse representation 

method that has been reported by IBM research group (Carmi et al., 2009). 

Gemmeke et al have employed SR for noisy speech modeling as a linear 

combination of speech and noise samples. They have used this strategy for noise 

robust digit recognition (Gemmeke and Virtanen, 2010). They also have used SR 

as a missing data technique (MDT) to estimate the clean speech features from 

noisy speech signal (Gemmeke et al., 2010). LASSO algorithm (Tibshirani, 1996) 

has been the sparse representation method in their study. Both of the above 

algorithms are based on l
1
 or l

2 
norm minimization which are computationally too 

complex and time consuming. Therefore, as stated in (Sainath et al., 2011a), 

implementing an exemplar based method in LVCSR applications has been reported 

as a computationally hard approach. 

In this paper, we use a new classifier architecture using a fast l
0 

norm SR 

algorithm for phoneme classification. This SR algorithm, which is called smoothed 

l
0 

(SL0), has been firstly introduced by Mohimani et al (Mohimani et al., 2009).  

Although previous approaches in using SR in phoneme classification have used it 
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only as the classification engine, we propose that SL0 approach may be regarded 

as a training set selector for a classic pattern recognition system. This tunes the 

model to the test sample with limited computational complexity. By using this 

approach, we present a two stage classifier named as sparse representation based 

N-best class selector (SR-NBS). In this classifier, the N-best classes are chosen by 

using a searching strategy and the SL0 algorithm. Subsequently, a low error rate 

classifier (e.g. SVM) is trained by the selected samples and the classifier is 

employed to classify the test utterance among the candidate classes. Simulations 

show that this method results in a noticeable phoneme classification rate in a fair 

computational complexity, outperforming previously proposed exemplar based 

classifiers. Basic ideas of this paper and preliminary results of the simulations were 

presented in (Saeb and Razzazi, 2012). 

The rest of the paper is organized as follows. In section 2, the general 

framework for sparse classification is explained, making the framework 

compatible to phoneme classification problem. In this section, SL0 algorithm and 

some of its properties will be explained too. In section 3, we explain the proposed 

algorithm. The motivation, mathematical formulation and computational 

complexity analysis of the algorithm are presented in this section. The 

experimental results of evaluation of the idea on a phoneme classification 

benchmark and comparison with other well known classifiers in noiseless and 

noisy environments are presented in section 4. Finally, section 5 concludes the 

paper and discusses some future works.  

2. SR APPROACH FOR PHONEME CLASSIFICATION 

2.1 General Framework 

In traditional exemplar based classification frameworks, the classification 

procedure is indeed the approach to employ the training set to find out the most 

similar training samples given a test sample. For example, as depicted in Figure 1, 

the received test sample is classified as class 2 in nearest neighborhood approach, 

because the most training samples in its neighborhood belong to this class.  
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Fig. 1. An example of classification: the test sample is classified as class 2 

  The main motivation for sparse classification is the fact that if there are sufficient 

training samples from the class that the test sample belongs to, the test sample can 

be represented as a linear combination of the nearest training samples (Wright et 

al., 2009). However, the optimization problem is underdetermined and there are 

many combinations to represent the sample. But the sparse combination of the 

training samples that has ideally a few nonzero elements is the desired 

combination. 

  Suppose that x1, x2, …, xm  are the training n×1 utterance vectors where n is the 

number of extracted features and m>>n (the hypothesis that is usually correct in 

speech recognition and other pattern recognition problems with sufficient training 

data). Due to the large number of training samples, it is expected that the test 

utterance vector y can be determined by a linear combination of a few neighboring 

training utterance vectors of the same class of the test vector. Therefore, 

classification may be performed by the following equation based on SR model: 

)(fmaxArgj
j

*

j
                 (1) 

where (.)f  is a function which is determined by the classification rule and 

 
m21

,...,, *λ is a sparse vector resulted from SR optimization: 

X.λyλλ
*  tosubjectminArg

0
             (2) 

where  
m21

x,...,x,xX  . 

 Unfortunately, there are some challenges to apply (2) to phoneme classification 

directly. At first, as m and n increase, solving (2) is an NP-hard problem. 

Therefore, some researchers have examined other approaches and focused on 
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convex relaxations of l
0
 norm like l

1
 norm (e. g. LASSO algorithm (Tibshirani, 

1996)) or non convex l
p 

norm (0<p<1) (e. g. FOCUSS algorithm (Gorodnitsky and 

Rao, 1997)). In some algorithms such as Approximate Elastic Net (EN) (Zou and 

Cole, 2005) or ABCS (Carmi et al., 2009), a combination of l
1
 and l

2
 norms have 

been used and better results have been obtained in comparison of l
1
 norm (Sainath 

et al., 2011a). Although these algorithms are tractable, they are still slow, 

especially in LVCSR applications (Sainath et al., 2011a). Therefore, it seems that 

using an SR algorithm with low complexity and reasonable accuracy instead of a 

complex SR algorithm would be a good approach in employing SR in LVCSR 

applications. Recently, minimizing l
0
 norm in (2) has been noticed by some 

researchers and they have tried to solve (2) directly, without substituting with l
1
, l

2
 

or l
p
 norms (e.g. (Ulfarsson and Solo, 2011; Ulfarsson and Solo, 2012;  Seneviratne 

and Solo, 2012)). Among the approaches for l
0
 norm minimization, SL0 

(Mohimani et al., 2009) is one of the most successful approaches with low 

complexity and appropriate accuracy. In SL0, the l
0
 norm term ||λ||0 of (2) is 

substituted by a suitable continuous function of λ. In the next subsection, this 

algorithm will be briefly reviewed. 

 The second challenge is the classification rule. Equation (2) only gives the 

coefficients of the sparse decomposition. It is expected that λ has nonzero elements 

only in locations that corresponds to the training vectors with the same label as the 

test vector y. Therefore, if y and the training vectors xk (k=1, 2, …, m) belong to 

the classes cy and ck respectively, we expect to have λk ≠ 0 only if cy = ck. In 

addition, if there are enough training samples, we expect that the test sample 

corresponds to one of the training samples and therefore one of the λk’s is much 

greater than the others. However, in the classification problems that the classes are 

not separable (e.g. phoneme classification), this is not true and λ has many nonzero 

elements. Therefore, we need a suitable classification rule to determine the class of 

y from the coefficient vector of the sparse solution λ. In (Wright et al., 2009) and 

(Sainath et al., 2011a), some of these decision rules are examined. If we define 

m×1 vector δc(λ) as the vector that its elements are zero except for the elements in 

λ corresponding to class c, some examined decision rules are: 

 λ* maxArgc     (Maximum Support)                  (3) 

 
2

maxArgc λδ
c

*    (Maximum l
2
 Support)         (4) 

 
2

minArgc λX.δ-y
c

*   (Minimum Class Residual Error)       (5) 
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    Although the class that minimizes the intra-class residual error in the selected 

sparse samples is selected in (5); it is not necessarily implies that this strategy 

minimizes the total residual error (Sainath et al., 2011a). In this paper, we have 

used (4) as the classification rule.  

     The third challenge is the selection of m and X in (2). We cannot use all training 

vectors in (2) for two reasons. First, in phoneme classification, the number of 

training vectors is usually very large (at least one hundred thousand vectors in 

small vocabulary experiments) and if the whole set of training vectors is employed 

in the sparse decomposition, solving (2) will be complex and intractable. Secondly, 

in sparse classification approach, it is better to use the training vectors near the test 

vector to decrease the errors that may happen from unsuitable sparse combinations. 

The reason is, as it is shown in Figure 2, the test sample can be exactly expressed 

as the linear combination of two far training samples x1 and x2 driven from wrong 

classes.           

 

Fig. 2. An example of sparse classification error: the test sample can be 

stated as linear combination of training samples x1 and x2 

  Obviously, this combination is sparse, but not suitable. Although there are some 

methods that have been used to select appropriate exemplars (e. g. seeding X from 

nearest neighbors (Sainath et al., 2010) or using a Trigram Language Model (Soan 

et al., 2003)) , this problem is still open and new algorithms may improve the 

classifier’s complexity and accuracy. In this paper, we have employed the KD-tree 

search strategy and have seeded X by the nearest neighbors of each test sample 

which have been chosen from the tree. 

  The block diagram of a general sparse classifier is shown in Figure 3. First, the 

matrix X is constructed by a search strategy. Then, SR algorithm determines the 

coefficient vector λ. Finally, the class of the test vector is estimated by one of the 

discussed rules.  
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Fig. 3. General SR approach for phoneme classification 

2.2 SL0 algorithm 

Smoothed l
0
 norm algorithm (SL0) (Mohimani et al., 2009) is an approach to solve 

the optimization problem (2) without relaxing the l
0
 norm by l

1
 or l

2
 norm. Instead, 

the l
0
 norm term ||λ||0 of (2) is substituted by a continuous function of λ that 

approximates the l
0
 norm. In this approach, (2) is substituted by the following 

equation: 

  X.λyλλ
*  to.t.smArgMin


F                (6) 

  or equivalently: 

  X.λyλλ
*  to.t.sArgMax


F                       (7) 

 In the above formulation, Fσ(λ) is a smooth differentiable function of  λ as an 

approximation of m-||λ||0. The following equation is an example of F 

(Mohimani et al., 2009): 






m

k

kF

1

22 )2/exp()(                 (8) 

   where σ is the smoothness controlling parameter which affects the accuracy of 

the approximation. For large σ, the function is very smooth and its maximization is 

easy, however, it is not a good approximation of l
0
 norm. In contrast, small σ 

makes the function a better approximation to l
0
 norm, but there are many local 

maxima in the cost function which causes the optimization unreliable. To 

overcome this deficiency, hoping to escape from getting trapped into local 

maxima, SL0 decreases σ gradually from large values to small values (Mohimani 
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et al., 2009). This approach is called Graduated Non-Convexity (GNC) to optimize 

a non-convex function (Blake and Zisserman, 1987). If σ =∞, the solution of (7) 

corresponds to the l
2
 norm solution of equation y = X . λ which is a rough solution 

of (6) and therefore it is a good initial value for λ (Mohimani et al., 2009). After 

assigning the initial value of λ and a suitable decreasing sequence for σ, the 

maximum of Fσ(λ) will be searched among the set { λ | y = X . λ } by steepest 

ascent (SA) algorithm. Then the solution is projected to this set. The inner loop of 

SL0 algorithm is repeated by a fixed, small number of times (L). In other words, to 

increase the speed, the algorithm does not wait for the steepest ascent algorithm to 

converge. This may be justified by the gradual decrease in the value of    and the 

fact that for each value of , it does not need the exact maximize of F . But, it 

needs to enter the region near the global maximum of F to escape from its local 

maximum (Mohimani et al., 2009). It should be noted that the initial point of SA in 

each step is the maximum of the previous step. Thus, in each step, a better 
estimation of λ is obtained. In Figure 4, the SL0 pseudo code is presented.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. SL0 pseudo code 

 Initialization  

1) 2l
0
λ  norm solution of X.λy   

2) choose a suitable decreasing sequence  
P1

,...,   

 Main loop 

for P,...,1j   

 
j

   

1j
 λλ  

2

  

 for L,...,1k   

   )(F λλλ


     (SA ) 

)()( 1
yX.λXXXλλ

TT  
 (Projection) 

  end 

  λλ 
j

 

 end 

 The final answer is P
λλ   
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   SL0 has been shown to be a fast algorithm with an acceptable accuracy. Its 

complexity is O(m
2
) (for one iteration of the main loop) and may be reduced to 

O(m
1.376

) by using MSL0 (Mohimani et al., 2010). The evaluation of this 

representation has been shown to be comparable (and even better in some 

problems) to LASSO with O(mn
2
)  and its descendants like Relaxed LASSO with 

O(mn
3
) (Meinshausen 2007) and ABCS  with O(mn

2
) complexity or reduced 

complexity ABCS with O(mn) complexity (Sainath et al., 2011b). Therefore, due 

to reasonable complexity of SL0, It is expected that SL0 would be a good 

candidate for LVCSR speech recognition applications. 

3. SPARSE REPRESENTATION BASED N BEST CLASS SELECTOR         

(SR-NBS) 

3.1 Motivation 

In the sparse classifier of Figure 3, the use a complex SR algorithm (like ABCS or 

LASSO) results in good accuracy, but greatly sacrifices the classifier speed. On the 

other hand, by using a fast SR algorithm (e.g. SL0 or similar algorithms) the 

accuracy is affected, but the classifier becomes fast. Therefore, there is a trade-off 

between speed and accuracy. This problem arises especially when we need a fast 

and accurate classifier (e.g. LVCSR). Here, we considered a number of 

motivations. 

   Firstly, preliminary experiments and tests on the sparse classifier of Figure 3 

showed us that although the accuracy of SL0 based phoneme classifier was not 

acceptable, it was very fast. Analyzing the results of simulations, we observed that 

for error classified samples, the correct class was usually located in the second to 

fifth ranks of the maximization list of (1). Therefore, if we use this algorithm as a 

class selector, not as a classifier, the number of classes can be reduced and the 

classification may be performed in a few most probable classes. 

   Secondly, large margin classifiers like SVM are regarded as the minimum risk 

classifier in the binary case (Vapnik, 1998). In contrast, this is not true in 

multiclass case (Vapnik, 1998). In addition, some large margin online learning 

algorithms (e.g. Passive Aggressive (PA) algorithms (Crammer et al., 2006)) have 

been originally presented as online learning binary classifiers.  

   Thirdly, when the training samples are near the test sample, the classifier is 

expected to be more accurate, because the training samples describe the space of 

features near the test sample more accurately in this case.  



11 

 

   Therefore it seems that SR, instead of using as a classifier, may be employed as 

an N-best class selector to limit the classifier into certain classes. In addition, a tree 

search strategy may be used to select the most similar training subset to the test 

utterance to select the appropriate training subset for each test sample. By using 

this approach, the secondary classifier may be trained by a limited number of 

training data that are adapted to the current test example. As a result, test samples 

can be classified with a better accuracy and with an acceptable complexity. The 

training procedure of the secondary classifier is repeated for each test sample. 

However, due to small number of selected neighboring samples, the training would 

be very fast. 

3.2 Mathematical formulation 

Consider the training set S that contains p training samples. Each training sample 

has a label from the set of class labels C with q elements. In speech recognition 

problems, we usually have p>>q (even p→∞). At the first stage, a small subset Sy 

with m samples (m<<p) is selected using a search strategy at the neighborhood of 

each test sample y. Therefore, as depicted in Figure 5, the training set S is reduced 

to a smaller subset, containing the training samples at the neighborhood of the test 

sample. This can be shown as: 

) ,C ,(S) C, (S, yy
yy

                        (9) 

 

Fig. 5. The first stage of SR classifiers: selecting small subset of Sy 

corresponding to the test sample y 
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   In common sparse classifiers, the decision is made by applying the SR algorithm 

and classification rule on (9):  

 cy
yy

) ,C ,(S                       (10) 

   In contrast, in the proposed classifier (SR-NBS) each subset Sy is divided into 

smaller subsets with one corresponding label ck (1≤ k ≤ q) by a fast SR algorithm 

(SL0), as depicted in Figure 6. Then N best subsets S
1

y , S
2

y , ... , S
N

y (i.e. the 

subsets that their corresponding classes are located at the top ranked list of the 

classifier) are selected. The parameter N was empirically chosen to include the 

correct label and should be as small as possible. 

   At this reduced space, we expect that a large margin discriminative classifier can 

decide fast and with acceptable accuracy. Therefore at the final stage of SR-NBS 

classifier we have: 

 ), ,(S ,..., ) ,(S , ) ,(S N21 yccc
Ny2y1y

(a large margin model , y)   *c     (11)    

                 

 

Fig. 6. The second stage of the proposed classifier (SR-NBS): each subset Sy 

is divided into smaller subsets S
1

y , S
2

y , ... , S
N

y  
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3.3 Architecture 

The architecture of the proposed phoneme classifier algorithm is depicted in Fig. 6. 

Firstly, the training selected subset X in (6) should be constructed. This is 

performed by choosing m neighbors of the test vector from the training set, by a 

simple KD-tree fast search algorithm (Berg et al., 2008). After constructing the set 

X, (6) is solved using SL0 algorithm and N-best classes are chosen. The N-best 

classes are used to select the proper training set. Finally a discriminative exemplar-

based classifier is trained on exemplars of N-best classes to determine the final 

decision on the label of the test sample. In this paper both SVM and PA algorithms 

are used as large margin discriminative exemplar-based classifiers. Applicability of 

an online learning algorithm (PA) as the secondary classifier makes the approach 

flexible for gradual adaptation of the model to test samples in future studies. 

3.4 Computational complexity 

One of the main advantages of this approach is the low complexity of the classifier 

in the classification stage. Obviously, the system does not employ any offline 

training (except KD-Tree tree construction). Therefore, the complexity of the 

approach should be analyzed in the classification phase.  

 

Fig. 7. Block diagram of SR-NBS classifier 
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  SR-NBS complexity can be summarized as follows: 

 Searching the training set S with p samples and selecting m samples 

from this set. We used KD-tree query and then KNN search to select m 

best samples. As the tree can be built off-line, the search time on Kd-

tree is only the query time that its computational order is O(p
1−1/n

 +mt) 

where mt is the number of samples that are reported by the query on 

KD-tree search and n is the dimension of samples (Berg et al., 

2008).Then m samples should be selected from mt samples by KNN 

search. The complexity of this exhaustive search is O(nmmt) (Chen et 

al., 2000). 

 SL0 algorithm. For accurate complexity analysis of SL0, we used the 

pseudo code, which is presented in Fig. 3.  The computationally 

expensive parts of the algorithm are two parts. First, calculating the 

term X
T
(XX

T
)

-1
 out of the main loop one time per each sample. It 

needs two matrix multiplication each with O(n
2
m) complexity and one 

matrix inversion with roughly O(n
3
) complexity (Strang, 2003). 

Therefore its total computational complexity is roughly O(2n
2
m+n

3
). 

The second computationally complex part of SL0 algorithm is 

calculating the term X
T
(XX

T
)

-1
(X . λ – y) inside the main loop which 

needs two matrix by vector multiplication each with  O(nm) 

complexity. Therefore its total computational complexity is roughly 

O(2dnm) where d is the number of the iterations.   

 Applying second classifier in the reduced space. This classifier should 

be initially trained and then the test sample should be classified. As 

there are a few samples in the reduced space, this classifier can be 

trained and employed to classify the test sample very fast. For 

example, if we use SVM classifier with r training samples and α 

support vectors and Nc binary classifiers (for multi-class classification 

problems), a reasonable training complexity is between O(Ncr
2
) and 

O(Ncr
3
) and the test complexity is between O(Ncα) and O(Ncα

2
) (Tang 

et al., 2009; Basu et al., 2003).       

  The results of computational complexity analysis of SR-NBS are shown in Table 

1. By assuming p=142879, n=40 and mt=1000
1
, m=200, d=15, Nc=1 (binary SVM), 

r=80, and α=60
2
, it is observed that the computational complexity of SR-NBS 

                                                 
1
 It should be noted that the exact value of mt is not specified. In our experiments it depends on 

the chosen threshold for the KD-tree search. 
2
 In reduced space, we have α ≤ r ≤ m=200. 
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classifier is dominated by KNN search to select m neighbors of the test sample 

from mt samples (resulted from KD query).  

Table 1. Approximate computational complexity of SR-NBS classifier  

SR-NBS step computational complexity 

KD query O(p
1−1/n

 +mt) 

KNN search O(nm mt) 

SL0 (out of the main loop) O(2n
2
m+n

3
) 

SL0 (inside the main loop) O(2dnm) 

SVM training between O(Ncr
2
) and O(Ncr

3
) 

SVM classify between O(Ncα) and O(Ncα
2
) 

p: training samples  n: dimension of samples  mt : samples results from query m: KNN output samples  

d : SL0 iterations  Nc : the number of SVM binary classifiers  r: SVM training samples  α: support vectors 

  It is worth to compare the SR-NBS complexity with other well-known classifiers. 

If we use KNN classifier, finding out k neighbors of each test sample by exhaustive 

search, its computational complexity is O(kpn). By assuming p=142879, k=22 and 

n=40, we conclude that SR-NBS is very fast in comparison to KNN classifier. On 

the other hand, if we use a general SVM classifier with the test complexity 

between O(Ncα) and O(Ncα
2
), assuming that about %50 of 142879 training samples 

have been selected as the support vectors, then we have α=70000. If the one versus 

one strategy is used for multiclass classification, and the number of the classes is 

48 (i.e. for phoneme classification), we have Nc=(48*47)/2=1128. Therefore the 

computational complexity of SVM classifier is much higher that SR-NBS 

classifier. 

4. Experiments and Results 

4.1 Evaluation Benchmark 

To assess the proposed classification approach, a set of experiments were 

conducted on extracted features from TIMIT database (Lemel et al., 1986). TIMIT 

contains phonetically balanced 6300 sentences where 10 sentences are uttered by 

each of 630 speakers from 8 major dialect regions of the United States. In this 

paper, 3696 utterances from training set and core test set containing 192 utterances 

from test set were used as training and evaluation sets, respectively. The test was 

employed in accordance with standard examinations on TIMIT (Lee and Hon, 

1989). Firstly, 61 phonetic labels were converted to 48 labels. Then, the acoustic 

model was trained with 48 labels (Lee and Hon, 1989). Finally, these 48 labels 

were collapsed into a smaller set of 39 labels to improve the recognition 



16 

 

performance (Lee and Hon, 1989). The segmental features were extracted as in 

(Gao et al., 2001). At the first stage, each speech utterance was chunked into 20ms 

frames with a frame shift of 5ms.Then, 13 Mel frequency cepstral coefficients 

(MFCC) of each frame were extracted. The MFCC vectors of beginning, middle 

and ending frames of each phoneme were averaged and the resulting three vectors 

were merged. Therefore, a 39 dimensional vector was obtained. Then, a 117 

dimensional vector per each three consecutive phonemes was generated. Finally, 

the dimensionality of this vector was reduced to 40 by linear discriminative 

analysis (LDA) transform
3
; perhaps to deal with curse of dimensionality effect.

4
 By 

this approach, 3696 and 192 training and test utterances were converted to 142879 

and 7330 vectors respectively where each vector represented one phoneme. The 

experiments were evaluated based on the architecture of Fig. 6. The number of 

neighbors in KD-Tree search was set to 200 (Sainath et al., 2010).
5
  

    4.2 Parameter selection of SR-NBS classifier 

    Experiment 1. In the first experiment, the probability that the label of test 

sample is in the N-best class list (the best selected classes by SL0 algorithm) was 

investigated.
 6
 As shown in Fig. 7, the test samples were located at 3 to 5 best 

classes with the probability 0.9 to 0.95 respectively. Therefore, it seems that only 5 

best classes are sufficient to select and use at the secondary classifier.  

Experiment 2. In the next experiment, the test set accuracy of the proposed 

architecture using an SVM classifier with Radial Basis Function (RBF) kernel 

(Vapnik, 1998) and by applying the KD-tree selected examples of the SL0 selected 

classes as the training set was evaluated.
 7
Firstly, the suitable parameters for the 

SVM kernel (C and Gamma) and SL0 algorithm were chosen by a grid search. As 

shown in Fig. 8, the best accuracy was achieved when the number of selected 

classes was two. It means that although the correct label of 83% of test samples 

were located at 2-best classes in comparison to nearly 96% in the case of 5 best 

classes, the SVM classifier classified 86% of them correctly and the accuracy of 

                                                 
3
 For LDA transform we used the MATLAB code available at http://homepage.tudelft.nl/19j49. 

4
Although, LDA is theoretically justified for jointly Gaussian observations, but the advantage of 

using LDA for dimensionality reduction of features has been revealed experimentally in other 

natural conditions, including speech recognition. For example see (Eisele et al., 1996), (Gao et 

al., 2001) and (Zolnay et al., 2005). 
5
 For KD search algorithm we used the MATLAB code available at http://guy.shechter.org 

6
 For SL0 algorithm we used the MATLAB code available at http://ee.sharif.ir/~SLzero 

6
  For SVM algorithm we used the LIBSVM toolbox available at    

  http://www.csie.ntu.edu.tw/~cjlin/libsvm 

 

http://homepage.tudelft.nl/19j49
http://guy.shechter.org/
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71.33% was obtained. In contrast, in the case of 5-best classes, only 70% of test 

samples were classified correctly. Therefore, it is better to use a 2-best class 

candidates set for the final classifier training when the second classifier is SVM. It 

should be noted that the best selection for N may depend on the second classifier 

architecture. Therefore, if another classifier is used instead of SVM, the optimum 

value of N may be different. 

 

Fig. 8. The probability that test sample is among the N-best list versus N 

 

Fig. 9. Percentage of correct classification of SR-NBS phoneme classifier 

versus the number of best classes 
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4.3 Empirical comparison of accuracy and computational complexity of             

SR-NBS with other classifiers 

In this experiment, the accuracy and computational complexity of SR-NBS 

classifier was compared empirically with some well known classifiers while they 

were used as the phoneme classifier. The parameters of all algorithms (except to 

SVM2) were selected by grid search to empirically optimize the error rate. For 

SVM2, the parameters were selected to result in a small number of support vectors 

and to achieve maximum speed. In this experiment, online learning PA and SVM 

classifiers with RBF kernel (C=1.7, Gamma=0.044) were used as the secondary 

classifier and the result of 2-best class candidates was used to train this final 

classifier.
 8
 As indicated in Table 2, SR-NBS-SVM and SR-NBS-PA classifiers 

both outperform the well known classifiers like KNN with K=22, PA with RBF 

kernel (C=0.7, Gamma=0.02), SR-SL0 and SVM2 with RBF kernel (C=2*10
7
, 

Gamma=2*10
-8

), resulting a moderate number of support vectors (52.3% of 

training samples). However, SVM1 classifier with RBF kernel (C=1.7, 

Gamma=0.04) and large number of support vectors (74.5% of training samples) 

has better accuracy in comparison to SR-NBS-SVM and SR-NBS-PA classifiers. 

The latter classifier suffers from very high complexity and is not an appropriate 

candidate for most ASR applications. It should be mentioned that we have reported 

the mean of the accuracy for proposed algorithms in Table 2. As some software 

packages, which we used in our algorithms, are sensitive to the order of the 

training samples, the accuracy could change slightly. For example, the unbiased 

standard deviation of accuracy for SR-NBS-PA and SR-NBS-SVM are 0.207 and 

0.26 respectively for 10 independent evaluations.  

Table 2. Accuracy of different phoneme classifiers on TIMIT 

classifier accuracy (percent) 

SVM1
1
 77.09 

SVM2
2
 71.30 

KNN 73.76 

PA
3
 72.00 

SR-SL0 70.60 

SR-NBS-PA 74.25 

SR-NBS-SVM 75.12 
1
RBF kernel (C=1.7, Gamma=0.04) and 74.5% of training samples were selected as the support vector 

2
RBF kernel (C=2*10

7
, Gamma=2*10

-8
) and 52.3% of training samples were selected as the support vector 

                      3
RBF kernel (C=0.7, Gamma=0.02) and 74.8% of training samples were selected as the support vector 

                                                 
8
 For PA algorithm we used the MATLAB code available at http://dogma.sourceforge.net. 

http://dogma.sourceforge.net/
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   Statistical significance of the results: As we used a large number of samples in 

our experiments (7330 test vectors), the reported results in Table 2 are correct with 

probability more than 0.99. For example, to calculate the statistical significance of 

the results for SR-NBS-SVM and KNN classifiers, we have obtained from 

simulations that 5507 and 5370 test vectors were classified correctly by SR-NBS-

SVM and KNN respectively. On the other hand, 1824 and 1960 test vectors have 

been classified incorrectly by SR-NBS-SVM and KNN respectively. Therefore the 

group means ( 1  and 2 ) and the overall mean (  ) are:      

 

19.742/)26.7312.75(

26.73019601005370

12.75018241005506

2

1













 

 

   The sum of squares of errors ( SSE ) and sum of squares between the groups 

( SSG) are: 

 

840,072,28)19.740(1960)19.74100(5370

)19.740(1824)19.74100(5506

037,976,27)26.730(1960)26.73100(5370

)12.750(1824)12.75100(5506

22

22

22

22









SSG

SSE

 

 

   As the degree of freedom for individual within groups ( DFE) and between 

groups ( DFG) are: 

  

112

732827330





DFG

DFE
 

 

  Therefore mean square error ( MSE ), mean square for groups ( MSG) and F-Test 

parameter ( F ) are: 

 

338.7353/

840,072,28/

7.3817/







MSEMSGF

DFGSSGMSG

DFESSEMSE
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   By consulting an F-distribution table with 7328DFE and 1DFG we find that the 

probability of 338.7353F  is less than 0.01. Therefore, the achieved results are 

statistically significant with the probability more than 0.99.  

 
       Although, the mathematical analysis and analytical calculation of the 

computational complexity of the proposed phoneme classifier and comparing it 

with some well-known classifiers have been presented in section 3.4 and Table 1 

which shows that this algorithm is faster than them, but it is informative to 

compare the complexities empirically. Therefore, we used a laptop computer with 

Intel core I5 2.53GHZ CPU and 4GB RAM and well-known MATLAB toolboxes. 

As the toolboxes which may not be optimized in programming codes, their 

empirical speed may not be comparable. Therefore, as we have used PA and SVM 

classifiers in the final stage of the proposed approach, we compared the empirical 

complexity of the proposed phoneme classifier with PA and SVM classifiers. 

Tables 3 and 4 compare the time complexities of SR-NBS-PA and SR-NBS-SVM 

with PA and SVM classifiers respectively. As it is indicated in Tables 3 and 4, 

excluding the KD search, our approach makes the classification faster and with less 

time complexity than PA and SVM classifiers. It is because our classifier firstly 

searches and selects a smaller training subset and then trains the classifier with this 

subset. Therefore, the number of the support vectors is much smaller than SVM or 

PA which selects the support vectors from the whole training set. A closer study of 

SR-NBS-SVM and SR-NBS-PA classifiers in Tables 2, 3 and 4 indicates that SR-

NBS-SVM is faster and more accurate, comparing to SR-NBS-PA. It is because 

PA is an online learning algorithm; therefore its training is slower than SVM 

training for small subset of training samples.  

For a better understanding of the speed of the algorithm, we compared our 

proposed phoneme classifier with the sparse representation phoneme recognition 

system which was proposed in (Sainath et al., 2011a). The authors computed the 

average time per frame to search the training subset and to estimate the label of 

each frame. They reported that the frame classification time is approximately 3 

times of the frame search time. But as indicated in Table 3 and 4, in our proposed 

approach (especially for SR-NBS-SVM) the classification time is much less than 

the search time. 
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Table 3. Time complexity (msec per test sample) for two PA based phoneme 

classifiers on TIMIT 

Classifier search 

(msec) 

classify 

(msec) 

total test 

(msec) 

PA ----- 68.6 68.6 

SR-NBS-PA 92.4 44.1 136.5 

 

Table 4. Time complexity (msec per test sample) for three SVM based 

phoneme classifiers on TIMIT 

Classifier search 

(msec) 

classify 

(msec) 

total test 

(msec) 

SVM1 ----- 395.1 395.1 

SVM2 ----- 312.8 312.8 

SR-NBS-SVM 92.4 4.4 96.8 

 

Finally we compared the proposed phoneme classifier with some reported 

phoneme classifiers on TIMIT and summarized the results in Table 5. As it can be 

observed in Table 5, the accuracy of the proposed phoneme classifier is better than 

most of the proposed phoneme classifier. It is better than hierarchical phoneme 

classifiers (Dekel et al., 2005), some combinational phoneme classifiers like 

HMM-GMM, HMM-ANN and HMM-MLP (Pinto and Hermansky, 2008) and 

GMM and KNN (Sainath et al., 2010). On the other hand, SVM and CS-HlinH
2
H

3
 

classifiers (Sainath et al., 2010) have better accuracy in comparison with SR-NBS-

SVM and SR-NBS-PA. As stated above, these two phoneme classifier are much 

more complex than our proposed classifiers.   
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Table 5. The accuracy comparison of the proposed approach with some 

reported phoneme classifiers on TIMIT 

classifier accuracy 

(percent) 

Online Hierarchical (Tree)
1
  60.00 

Online Hierarchical (Flat)
1
  61.30 

Batch Hierarchical (Tree)
1
  59.40 

Batch Hierarchical (Flat)
1
 58.20 

Batch Hierarchical (Greedy)
1
 41.80 

HMM-GMM (3-states)
2
  64.10 

Hierarchy, GMM posteriors(3-states)
2
  68.40 

Hierarchy, GMM log-likelihoods(3-states)
2
  71.00 

HMM-ANN (3-states)
2
 71.60 

Hierarchy, MLP posteriors(3-states)
2
 73.40 

GMM
3
  74.19 

KNN
3
 73.69 

SVM
3
 76.20 

CS-HlinH
2
H

3 3
 76.44 

SR-NBS-PA 74.25 

SR-NBS-SVM 75.12 
1 
(Dekel et al., 2005) 

2 
(Pinto and Hermansky, 2008) 

3 
(Sainath et al., 2010) 

4.4 SR-NBS in noisy environment 

In the next experiments, the accuracy of SR-NBS phoneme classifier was 

compared to SVM classifier in additive noise environment. We used different 

additive noise typed driven from NoiseX database (Varga et al., 1992) and we 

compared SR-NBS-PA and SR-NBS-SVM classifiers with two SVM classifiers 

with the parameters which are mentioned in Table 2. Other test conditions were as 

in section 4.1. The noise was added to the first 3696 and 192 training and test 

utterances and 142879 and 7330 vectors were extracted respectively. 

  Experiment 1. In this experiment, the accuracies of the classifiers were 

compared in matched training condition. The classifiers were trained and tested 

with noisy vectors with the same signal to noise ratios using white noise. The 

results are shown in Figure (10-a). As shown in this figure, the accuracies of SR-

NBs classifiers were between SVM1 and SVM2 classifiers like noiseless 
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condition (see Table 2). In addition, the accuracy of SR-NBS-SVM outperforms 

SR-NBS-PA. 

  Experiment 2. In this experiment, the accuracies of the classifiers were 

compared in clean training condition. Therefore the classifiers were trained with 

noiseless training vectors. Then, they were tested by noisy test vectors using 

white noise. The results are shown in Figure (10-b). As shown in this Figure, the 

results of all classifiers were almost the same.  

  Experiment 3. In this experiment, the accuracies of the classifiers were 

compared in a general training condition using white noise. In this case, the 

classifiers were trained with noisy training vectors with various signal to noise 

ratios. Then, they were tested by test vectors with a fixed, but unknown signal to 

noise ratio. The results are shown in figure (10-c). As shown in this Figure, the 

accuracies of SR-NBS classifiers were between SVM1 and SVM2 classifiers 

and the accuracies of SR-NBS-SVM and SR-NBS-PA were the same.  

Experiment 4. In this experiment, the accuracies of SR-NBS-PA and SR-NBS-

SVM were evaluated in other types of noisy environments. We added white, 

babble, exhibition and office additive noise from NoiseX database to each 

training and test utterance of TIMIT in 20dB signal to noise ratio. We also 

corrupted the utterances by AR model reported in (Singh and Chaterjee, 2011) 

in 20dB signal to noise ratio. The results are shown in Table 6. We observe that 

both proposed phoneme classifiers are robust to additive noise characteristics 

and also interferences resulted from the mentioned AR model.      
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(a)              (b) 

 

(c)  

Fig. 10. Accuracy comparison of the classifiers in additive white noise 

environment (a) matched training (b) clean training (c) general training  

   

Table 6. Accuracy comparison of SR-NBS-SVM and SR-NBS-PA phoneme 

classifiers in various noisy environments for S/N=20dB and match training  

classifier %accuracy 

White Babble Exhibition Office AR model 

SR-NBS-PA 70.53 70.41 70.46 69.74 70.16 

SR-NBS-SVM 71.19 71.10 71.32 70.12 71.06 
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  Experiment 5. In the final experiment, we compared the accuracies of SR-

NBS-SVM and SVM1 (SVM with better accuracy and more support vectors) 

classifiers in an almost equal computational complexity. Therefore, we used 

1428790 and 220000 training set which contained the training vectors with 

various signal to noise ratios for SR-NBS-SVM and SVM1 classifiers 

respectively. In this condition the computational complexities of these two 

classifiers were almost the same. The accuracies of the classifiers were 

compared in 10dB signal to noise. The results are shown in Table 7 which 

indicates that SR-NBS-SVM classifier has was more accurate in comparison 

with SVM1 classifier in approximately the same computational complexity.   

Table 7. Accuracy comparison of SR-NBS-SVM and SVM1 phoneme 

classifiers for approximately same computational complexity and S/N=10dB 

classifier %accuracy 

SVM1 57.18 

SR-NBS-SVM 59.84 

5. CONCLUSIONS AND FUTURE WORKS 

In this paper, SR-NBS classifier has been introduced which is a fast phoneme 

classifier with acceptable accuracy. The key contribution of the paper is the 

reduction of the number of classes (labels) using a fast SR model; therefore, the 

classifier encounters with a reduced number of more probable labels and can 

decide better and more efficiently. This procedure was implemented by a search 

algorithm and then a fast SR algorithm. Finally a well-known classifier was trained 

by these reduced and adapted training samples. Simulation results showed that SR-

NBS is very fast and accurate enough in clean and noisy environments. In addition, 

SR-NBS has a good potential to increase the speed and accuracy. Making this 

trade-off between these two criteria is very promising. 

  Our future works will be directed in three subjects. At first, we decide to 

investigate some faster searching algorithms to increase the SR-NBS speed while 

maintaining its accuracy. Specially as we used l
0
 norm SR algorithm and unlike the 

l
1
 norm SR algorithms it can be modified to a weighted sparse signal 

decomposition (Babaie-Zadeh et al., 2012), we expect that by implementing this 

algorithm, the search in SR-NBS becomes faster. Secondly, we are trying to use 

this phoneme classifier as a recognizer engine for ASR and then extend it to 

LVCSR applications. Finally, the study can be more extended to adapt the 

classifier parameters to the test sample.   
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