
1

Learning Overcomplete Dictionaries Based on
Atom-by-Atom Updating

Mostafa Sadeghi∗, Massoud Babaie-Zadeh, Senior Member, IEEE, and Christian Jutten, Fellow, IEEE

Abstract—A dictionary learning algorithm aims to learn a
set of atoms from some training signals in such a way that
each signal can be approximated as a linear combination of
only a few atoms. Most dictionary learning algorithms use
a two-stage iterative procedure. The first stage is to sparsely
approximate the training signals over the current dictionary.
The second stage is the update of the dictionary. In this paper
we develop some atom-by-atom dictionary learning algorithms,
which update the atoms sequentially. Specifically, we propose an
efficient alternative to the well-known K-SVD algorithm, and
show by various experiments that the proposed algorithm has
much less execution time compared to K-SVD while its results
are better. Moreover, we propose a novel algorithm that instead of
alternating between the two dictionary learning stages, performs
only the second stage. While in K-SVD each atom is updated
along with the nonzero entries of its associated row vector in
the coefficient matrix (which we name it its profile), in the new
algorithm, each atom is updated along with the whole entries of
its profile. As a result, contrary to K-SVD, the support of each
profile can be changed while updating the dictionary.

To further accelerate the convergence of this algorithm and
to have a control on the cardinality of the representations, we
then propose its two-stage counterpart by adding the sparse ap-
proximation stage. We evaluate the performance of the proposed
algorithms by performing two sets of experiments. The first set
is the reconstruction of a true underlying dictionary, while the
second set is designing a sparsifying dictionary for a certain class
of signals. The results emphasize on the promising performance
of the proposed algorithms.

Index Terms—Sparse approximation, dictionary learning, com-
pressive sensing, K-SVD.

I. INTRODUCTION

A. Sparse Signal Approximation

SPARSE decomposition of signals based on some basis
functions has attracted a lot of attention during the last

decade [1]. The problem consists in approximating a given
signal as a linear combination of as few as possible basis
functions. In this context, each basis function is called an
atom and their collection as the columns of a matrix is called
dictionary [2]. The dictionary may be overcomplete, i.e., the
number of atoms may be (much) more than the dimension

Copyright c⃝ 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.
This work was supported in part by Iran National Science Foundation (INSF)
under Contract 91004600, and by European project 2012-ERC-AdG-320684
CHESS.

M. Sadeghi and M. Babaie-Zadeh are with the Electrical Engineer-
ing Department, Sharif University of Technology, Tehran, Iran (e-mail:
m.saadeghii@gmail.com; mbzadeh@yahoo.com).

C. Jutten is with the GIPSA-Lab, Department of Images and Signals,
University of Grenoble and Institut Universitaire de France, France (e-mail:
Christian.Jutten@inpg.fr).

of the atoms. Specifically, let y ∈ Rn be the signal which is
going to be sparsely represented in the dictionary D ∈ Rn×K

with K > n. This amounts to solve the following problem,

P0 : min
x

∥x∥0 subject to y = Dx, (1)

where ∥.∥0 stands for the so-called ℓ0 pseudo-norm which
counts the number of nonzero elements. Because of the
combinatorial nature of P0 [1] that makes it hard to solve,
especially in high dimensions, some relaxation methods have
been introduced. A well-known relaxation approach is to use
the ℓ1 norm instead of the ℓ0 pseudo-norm. This leads to the
following convex P1 problem which is known as Basis Pursuit
(BP) [3]

P1 : min
x

∥x∥1 subject to y = Dx. (2)

In practical situations instead of the exact equality y = Dx,
the constraint ∥y−Dx∥2 ≤ ϵ is used, which has a denoising
and stabilizing effect [4], [5]. In this case, usually the term
approximation is used instead of representation.

Many algorithms have been introduced to solve the problem
of finding the sparsest approximation of a signal in a given
overcomplete dictionary (as a good review, see [6]). These
methods can be classified into two general categories, greedy
methods such as Orthogonal Matching Pursuit (OMP) [7],
Stagewise Orthogonal Matching Pursuit (StOMP) [8], Com-
pressive Sampling Matching Pursuit (CoSaMP) [9], Subspace
Pursuit (SP) [10], and relaxation methods, which replace
the combinatorial P0 problem with a tractable one, e.g., P1

problem. Iterative Shrinkage-Thresholding (IST) [11], [12],
[13], Iterative Hard-Thresholding (IHT) [14], Iteratively Re-
weighted Least Squares (IRLS) [15], Smoothed ℓ0 (SL0)
[16], and interior-point methods [17] are some examples of
the second category. Greedy algorithms successively choose
the appropriate atoms of the dictionary that result in the
greatest improvement in the quality of the approximation.
These algorithms benefit from having high speed, but their
accuracy is usually less than that of the second category.

Various image processing tasks (e.g., denoising, compres-
sion, inpainting, zooming) [18], Blind Source Separation
(BSS) in underdetermined mixtures [19], Compressive Sensing
(CS) [20], [21], decoding real field codes [22], linear regres-
sion and variable selection [23] are some applications where
the sparse approximation approach has already been applied.

B. Learning overcomplete dictionaries

For a given class of signals, e.g., class of natural facial
images, the dictionary should have the capability of sparsely

2

representing the signals. To this aim, atoms of the dictionary
should capture the most salient features of the signals. In some
applications there are predefined and universal dictionaries
which are known to be well-matched to the contents of the
given class of signals, for example the overcomplete DCT
dictionary for the class of natural images. These non-adaptive
dictionaries are appealing because of their simplicity and
in some cases their fast computations. However, learning
the atoms from a set of training signals would result in
dictionaries with the capability of better matching the contents
of the signals. In this way, the adaptive dictionaries would
outperform the non-adaptive ones in many applications such as
image denoising [24], image compression [25], classification
tasks [26], and so on.

Most dictionary learning algorithms are indeed a general-
ization of the K-means clustering algorithm [27]. While in
K-means each training signal is forced to use only one atom
(cluster center) as its approximation, in the dictionary learning
problem each signal is allowed to use more than one atom
provided that it uses as few as possible atoms. The approach
of K-means to optimize a set of atoms (called codebook)
is to iteratively perform two stages [28]. In the first stage,
known as the clustering stage, training signals are assigned to
their nearest atoms (usually in the sense of the ℓ2 norm). The
second stage is the update of the atoms in which each atom
is updated as the average of the signals in its cluster. This
procedure is repeated several times. As a generalization of this
approach, dictionary learning algorithms iteratively perform
the two stages of sparse approximation and dictionary update.
In the first stage, which is actually the clustering of the signals
into a union of subspaces, the sparse approximations of the
signals are computed using the current dictionary. The second
stage is the update of the dictionary.

Up to our best knowledge, most dictionary learning algo-
rithms differ mainly in the way of updating the dictionary
[27], [29], [30]. Some algorithms such as K-Singular Value
Decomposition (K-SVD) [27] are based on updating the atoms
one-by-one, while some others such as Method of Optimal
Directions (MOD) [29] update the whole set of atoms at once.

In another point of view, dictionary learning algorithms
are divided into two groups: online [31], [32], [33] and
batch-based [29], [27], [30] algorithms. Online algorithms
continuously update the dictionary using only one (or a mini
batch of) training data. Because of this, they enjoy from having
the capability of handling very large sets of signals, which
is common in, for example, image processing tasks (see the
experiments of [31] on a high-resolution image). Recursive
Least Squares dictionary learning algorithm (RLS-DLA) [32]
is an example of online algorithms, which can be considered
as a generalization of the McQueen variant of K-means [34].
One major benefit of online algorithms is to learn gradually,
which is denoted as the scaling the past data in [31], and by
using a forgetting factor in [32]. Batch-based algorithms use
the whole set of training data to update the dictionary. This
increases the computational burden of these algorithms in high
dimensions. However, an advantage of batch-based algorithms
over online algorithms is their low computational loads and
memory requirements in relatively low dimensions. This is due

to the fact that at each sparse approximation stage, the whole
set of signals are approximated in the same dictionary. So, the
sparse coding algorithm can be optimized to avoid performing
common operations. Batch-OMP [35] is an example of such
optimized sparse coding algorithms.

C. Our contributions and the structure of the paper

The focus of this paper is on the algorithms that update
atoms one-by-one. We first propose an efficient way of up-
dating each atom along with its associated row vector in the
coefficient matrix: we call this idea parallel atom-updating.
From this, we propose an efficient and fast alternative for K-
SVD: we call this algorithm PAU-DL, and show by various
experiments that it performs better than K-SVD while its
computational burden is substantially lower than it. We then
propose a novel method of dictionary learning whose structure
is different from the existing algorithms. Specifically, instead
of alternating between the two dictionary learning stages, the
proposed algorithm performs only the dictionary update stage.
We call this algorithm OS-DL. In each alternation of OS-
DL, each atom is updated along with the whole entries of
its associated row vector in the coefficient matrix. The main
differences between the new algorithm and the current atom-
by-atom dictionary learning algorithms, are as follows. Firstly,
the new algorithm does not explicitly perform the sparse
approximation stage. Secondly, in this algorithm the support of
each row vector of the coefficient matrix is allowed to change.

To further accelerate the convergence of this method and
have a control on the cardinality of the representations, we pro-
pose to add the sparse approximation stage to this algorithm,
and hence we derive another new algorithm, called APrU-
DL. OS-DL and APrU-DL use the parallel atom-updating ap-
proach. Experimental results show the promising performance
of the proposed algorithms relative to K-SVD.

The paper is organized as follows. Section II is devoted
to the formulation of the dictionary learning problem. In
Section III we describe our proposed algorithms. This section
begins with introducing the parallel atom-updating approach;
a general idea for updating the atoms of the dictionary one-
by-one. Using this idea in the dictionary update stage, we
derive the parallel atom-updating dictionary learning (PAU-
DL) algorithm. We then propose the two novel atom-by-atom
dictionary learning algorithms, i.e., OS-DL and APrU-DL.
Section IV presents some experimental results.

D. Notation

We use the following notations. For vector and matrix
valued quantities we use small and capital bold face characters,
respectively. The superscript “T ” denotes vector or matrix
transpose. We denote the ith column vector of a matrix X

as xi, and its ith row vector as xT
[i]. ∥X∥F =

√∑
ij x

2
ij and

∥x∥p = (
∑

i |xi|p)
1
p denote the Frobenius norm of the matrix

X, and the ℓp norm of the vector x, respectively. In an iterative
algorithm, we denote a parameter in the kth iteration with the
iteration number in parenthesis, e.g., d(k). For a matrix X
with L columns and ω ⊆ {1, 2, . . . , L}, we define X(:, ω) as

3

Fig. 1. A dictionary learning problem is to factorize a training data matrix
Y as Y ≃ DX with X a sparse-column matrix.

a matrix containing those columns of X that their indices are
in ω. Also, x(ω) is a vector containing those entries of x that
are indexed by ω. Finally, |ω| denotes the cardinality of ω,
that is, its number of entries.

II. DICTIONARY LEARNING PROBLEM

Let {yi}Li=1 be a set of L training signals in Rn. Putting
these signals as the columns of the matrix Y, the general
dictionary learning problem is then to find a sparsifying
dictionary, D, by solving the following problem

min
D∈D,X∈X

∥Y −DX∥2F , (3)

where D and X are admissible sets of the dictionary and the
coefficient matrix, respectively. D is usually defined as the set
of all dictionaries with unit column-norms. Since we require
that each signal has a sparse approximation, X is the set of
all matrices X with sparse columns (see Fig. 1). The sparsity
measure can be, for example, the non-convex ℓ0 pseudo-norm,
or the convex ℓ1 norm. The general approach to solve (3) is to
use alternating minimization over X and D, i.e., by fixing D,
the objective function is minimized over X, and vice versa.

A. Sparse Approximation

With a fixed D, the minimization of (3) with respect to X is
equivalent to sparsely approximating the training signals over
D. Among the various sparse coding algorithms, OMP (or its
variants) is very appealing for this stage. This is due to two
reasons. The first reason is the high speed of OMP compared
to relaxation algorithms. The second one is its capability to
be efficiently implemented in the batch mode. This fact along
with the use of Cholesky factorization result in the significant
acceleration of OMP, which leads to Batch-OMP algorithm
[35].

Another option, which we use in this paper, is the IST
algorithms. Although the speed of these algorithms is lower
than that of OMP, their accuracy is better.

B. Dictionary Update

As stated previously, dictionary learning algorithms differ
mainly in the way they perform the second stage, i.e., the dic-
tionary update. In this stage, some desired properties about the
dictionary may be applied, such as having bounded Frobenius
norm [30], and having bounded self-coherence (i.e., pairwise
similarity of the atoms) [36]. However, the constraint of having
unit column-norms is usually used in this stage.

In spite of its name, in the dictionary update stage some
information about the coefficient matrix may be updated,

too. This information may be the nonzero coefficients of X
(as in K-SVD and [37]) or the whole coefficients of it (as
in two of our suggested algorithms). Furthermore, as stated
previously, one of the differences among various dictionary
learning algorithms is that they either update the whole set of
atoms at once (as in MOD) or each atom separately (as in
K-SVD).

C. MOD and K-SVD

MOD [29] is one of the simplest dictionary learning al-
gorithms which firstly finds the unconstrained minimum of
∥Y − DX∥2F and then projects the solution onto the set D.
This leads to the closed-form expression

D = YXT (XXT)−1, (4)

followed by normalizing the columns of D.
K-SVD [27] is one of the most successful dictionary learn-

ing algorithms. In its dictionary update stage, only one atom
is updated at a time. Moreover, while updating each atom, the
nonzero entries in the associated row vector of X are also
updated. In other words, only those signals that have used
a specific atom participate in updating that atom. This is in
accordance with the approach of K-means in which each atom
is updated using its own cluster signals. As stated in [27],
this also prevents each row vector in X to be filled and thus
violating the sparsity constraint of the coefficient matrix.

Assume that we want to update the ith atom, di, along with
the nonzero entries of xT

[i], the ith row of X. We define ωi ={
j : xT

[i](j) ̸= 0
}

as the support of xT
[i]. Then the problem of

updating di along with xT
[i](ωi) amounts to solve the following

minimization problem

min
d,xr

∥Er
i − dxT

r ∥2F subject to ∥d∥22 = 1, (5)

where Er
i = Ei(:, ωi), in which Ei = Y −

∑
j ̸=i djx

T
[j]

denotes the approximation error matrix when di is removed,
and xT

r is a row vector of length |ωi|. The above problem is
in fact equivalent to finding the closest rank-1 approximation
to Er

i , which can be easily solved via SVD of Er
i . For more

details refer to [27].

III. ATOM-BY-ATOM DICTIONARY UPDATE

In this section we propose three algorithms that update
the dictionary atom-by-atom. We call the ith row vector of
the coefficient matrix, the profile of the ith atom, because
this vector indicates which signals use this atom in their
representations. We first introduce the idea of parallel atom-
updating and from which we then propose the parallel atom-
updating dictionary learning (PAU-DL) algorithm, which is
introduced to overcome the computational burden of K-SVD.
We then proceed with introducing a novel method for dictio-
nary learning which is based on performing only the second
stage of the general dictionary learning procedure, and thus
we name it One-Stage Dictionary Learning (OS-DL). In OS-
DL, the support of each profile is allowed to change during the
update of the dictionary. To further accelerate the convergence
rate of OS-DL (as will be shown in the simulations) and

4

control the sparsity level of the representations, we propose
an algorithm, which we call Atom-Profile Updating Dictionary
Learning (APrU-DL), which in fact adds the first stage of
dictionary learning to OS-DL. In all of these algorithms, we
choose D to be the set of all unit column-norm dictionaries
in Rn×K .

A. Parallel Atom-Updating Dictionary Learning (PAU-DL)

The main drawback of K-SVD is its computational burden
especially in high dimensions. This is due to performing SVD
for atom updating. An alternative way of solving (5) is to
use the idea of alternating minimization [35]. In other words,
(5) is alternatively minimized over d and xr. A few (e.g., 3)
alternations give a fast approximation to SVD. The resulting
algorithm is known as the Approximate K-SVD (AK-SVD)
[35]. Although performing more alternations gives a better
approximation, the average performance will not exceed the
performance of the exact solution, i.e., via SVD.

In this subsection we describe a different way of performing
alternating minimization to update the atoms and their profiles.
To this aim, consider the overall error matrix,

E = Y − (A1 +A2 + . . .+AK), ∀i : Ai = dix
T
[i]. (6)

In K-SVD (or AK-SVD), in order to update (the nonzero
columns of) for example Ai, the updated versions of
A1, . . . ,Ai−1 are used to compute Ei, while Ai+1, . . . ,AK

have not been yet updated. Keeping this point in mind, we
propose to update the atoms in parallel. In other words, instead
of fully updating each Ai by performing “A” alternations
between di and xr, “A” alternations are performed in such
a way that in each alternation all of Ai’s are partially updated
(using only one alternation). In this way, in the subsequent
alternations, all Ai’s have been partially updated. As our
experimental results in Section IV suggest, parallel updating of
the atoms may result in further accelerating the convergence
rate and the quality of the final results. In other words, the
new algorithm outperforms K-SVD, which is based on exact
solving of the rank-1 approximation problem.

To update each Ai, we need to compute the error matrix
Ei. It can be easily seen that this matrix can be updated as
follows. The overall error matrix is firstly computed as E =
Y −DX using the current dictionary and coefficient matrix.
Then Ei = E+Ai and after updating Ai to A

(new)
i , the error

matrix E is updated as E = Ei −A
(new)
i .

Algorithm 1 gives a description of the dictionary update
based on parallel atom-updating. PAU-DL is an alternative to
K-SVD that uses this atom-updating procedure. Algorithm 2
gives a complete description of PAU-DL and AK-SVD. By
Batch-OMP(Y,D, τ) we mean the sparse approximation of
Y in D and with threshold τ . Depending on the application
at hand, τ may be the threshold on the approximation error
or the maximum allowed number of atoms in the sparse
approximation of each training signal.

Considering Algorithm 2, we see that in K-SVD: A = 1,
with a large B, in AK-SVD: A = 1, B = 3, and in PAU-DL:
A = 3, B = 1. Here the reader may suggest to use A = 3,
B = 3. However, as we saw in our simulations, the results are

Algorithm 1 Parallel Atom-Updating
1: E = Y −DX
2: for a = 1, . . . , A do
3: for i = 1, . . . ,K do
4: Ei = E+ dix

T
[i]

5: Update xT
[i]

6: Update di

7: E = Ei − dix
T
[i]

8: end for
9: end for

Algorithm 2 AK-SVD (A = 1, B = 3) and PAU-DL (A = 3,
B = 1)

1: Task: Learning a dictionary for Y
2: Initialization: D = D(0)

3: Repeat:
4: Sparse Approximation: X = Batch-OMP(Y,D, τ)
5: Dictionary Update: set E = Y −DX
6: for a = 1, . . . , A do
7: for i = 1, . . . ,K do
8: Ei = E+ dix

T
[i]

9: Er
i = Ei(:, ωi) where ωi =

{
j : xT

[i](j) ̸= 0
}

10: for b = 1, . . . , B do
11: di = Er

ix
T
[i](ωi)

12: di = di/∥di∥2
13: xT

[i](ωi) = dT
i E

r
i

14: end for
15: E = Ei − dix

T
[i]

16: end for
17: end for
18: Until convergence

similar to those of PAU-DL, yet with a higher computational
load.

At first glance, one may think that PAU-DL differs from
AK-SVD by simply changing the operation orders. This,
however, is not just a simple rescheduling. As explained
earlier, the main idea behind PAU-DL is to partially update
each atom before moving to the next atom. In this way, we
have in our disposal more reliable updates of Ai’s in order
to compute the error matrix associated with the atom we
are going to update; see (6). Moreover, as will be seen in
Section IV, PAU-DL has a sufficiently better performance than
AK-SVD and even original K-SVD.

B. One-stage Dictionary Learning (OS-DL)

In [27], after developing the main steps of K-SVD algo-
rithm, the authors asserted that “Here one might be tempted
to suggest skipping the step of sparse coding and using only
updates of columns in D, along with their coefficients, applied
in a cyclic fashion, again and again. This, however, will not
work well, as the support of the representations will never be
changed, and such an algorithm will necessarily fall into a
local minimum trap.”

In this subsection, we describe OS-DL algorithm. This

5

algorithm ignores the sparse approximation stage and perform
dictionary learning by updating atoms along with their profiles
in a cyclic fashion. To prevent the above mentioned problem, a
sparsity constraint on the profiles of the atoms is introduced,
which at the same time allows the support of each profile
to change (and probably not getting trapped into a local
minimum) and prevents each profile to be filled. Allowing
the support of each profile to change lets each atom adaptively
find its cluster members (see Subsection III-C). Each atom and
its profile are updated by solving the following minimization
problem

∀i :
{
di,x[i]

}
= argmin

d,z

1

2
∥Ei − dzT ∥2F + λ∥z∥1, (7)

subject to the constraint ∥di∥22 = 1. Note that if we set
λ = 0 and restrict Ei and xT

[i] to those training data that
have used di in their approximations, then equation (7) is
exactly the one used in K-SVD. Note also that the above
problem is indeed a regularized rank-1 approximation of Ei. It
is worth mentioning that in OS-DL there is no control on the
cardinalities of the representations, and indeed each one may
have a different cardinality. However, in the next algorithm
described in Subsection III-C, this problem is avoided by
performing the sparse approximation stage.

To solve (7), we use alternating minimization. At the first
stage, we update z with a fixed d, and at the second stage,
we update d using the previously updated z. The update
formula for z is obtained by solving (7) with d being fixed.
Interestingly, this leads to a simple closed-form formula [38].
To see this, note that (7) can be de-coupled for each entry of
z. Then, we should solve L scalar problems of the form

min
z

f(z) =
1

2
∥e− zd∥22 + λ|z|, (8)

where e is the corresponding column of Ei. Since the last term
in f(z) is non-differentiable, we require that zero is included
in the subgradient of f(z), i.e., 0 ∈ ∂f(z). This results in

0 = −dT (e− zd) + λsgn(z). (9)

Now, considering the assumption ∥d∥22 = 1, the final solution
is found using the soft-thresholding operation

z = sgn(eTd).max(0, |eTd| − λ) = Sλ(e
Td), (10)

where Sλ(a) is the well-known soft-thresholding function [38]
defined as follows

Sλ(a) ≜

 a− λ if a > λ
0 if |a| ≤ λ

a+ λ if a < −λ
. (11)

The final solution is x[i] = Sλ(E
T
i di), where Sλ(.) acts

component-wise.
The update formula for d is also of the simple form

di = Eix[i], (12)

followed by a normalization. Like PAU-DL, in OS-DL the
atoms are updated in parallel. A few iterations (A = 3 in our
experiments) of the alternating minimization is sufficient to
obtain xT

[i] and di. This process is repeated several iterations
until a stopping condition is satisfied. The final algorithm is
summarized in Algorithm 3.

Algorithm 3 OS-DL
1: Task: Learning a dictionary for Y
2: Initialization: D = D(0) and X = X(0)

3: The main loop: Set E = Y −DX
4: for a = 1, . . . , A do
5: for i = 1, . . . ,K do
6: Ei = E+ dix

T
[i]

7: x[i] = Sλ(E
T
i di)

8: di = Eix[i]

9: di = di/∥di∥2
10: E = Ei − dix

T
[i]

11: end for
12: end for

How does it work?

According to (10), only those columns of Ei are represented
by di that are sufficiently similar to it. After finding these
signals, the cluster members of di are actually found. Similar
to K-means, each atom is updated as the (weighted) average of
its cluster members, followed by a normalization. Indeed, each
atom is updated as a sparse linear combination of the columns
of the error matrix, see (12). In OS-DL, a sparse coding-like
stage is implicitly performed1. This is because after updating
the whole row vectors of the coefficient matrix, its columns are
also updated. This way of sparse coding is very similar to an
ordinary sparse coding algorithm that is based on updating the
coefficients sequentially using a coordinate descent algorithm
[39], [38].

C. Atom-Profile Updating Dictionary Learning (APrU-DL)

Recall that the idea of K-SVD to update each atom is indeed
a generalization of K-means clustering algorithm. In other
words, each atom is updated using only its cluster members,
i.e., those signals that have used it in their representations.
However, there is a main difference between these two al-
gorithms. As stated in [27], since in K-means each training
data uses only one atom, the atom updating problems are
decoupled, while this is not the case in K-SVD. In other words,
each training data belongs possibly to multiple atom clusters,
thus the atom update problems are indeed coupled. So, we
believe that restricting the support of the profiles to be fixed
during atom updates, as done in K-SVD, is not well justified.

To overcome this problem, we propose to allow the support
of each profile to change during the atom updating procedure.
In this way, each atom adaptively finds its cluster members.
This idea is used in OS-DL algorithm described in the previous
section. In this section, we describe the two-stage counterpart
of this algorithm by performing the sparse approximation
stage, too. Contrary to OS-DL, by this method, the cardinality
of the representations can be controlled. Moreover, as will
be seen in the simulations, the new algorithm has a better

1Note that this differs from the usual sparse approximation stage per-
formed in a typical dictionary learning algorithm. Actually, in (7), the sparsity
constraint (i.e., the ℓ1 norm penalty) is on the rows of the coefficient matrix,
not on its columns. As explained in the text, we include this constraint to
prevent each profile to be filled during the atom updating procedure.

6

Algorithm 4 Batch-FISTA(Y,D,X(0),λ)

1: Require: Y, D, X(0) ∈ RK×L, λ
2: Initialization: Z(0) = X(0), c ≤ 1/(2λmax(D

TD)), A =
DTD, B = DTY, θ0 = 1

3: for k = 0, 1, 2 . . . do
4: X(k+1) = Sc.λ(Z

(k) − cAZ(k) + cB)
5: θk+1 = (1 +

√
1 + 4θ2k)/2

6: βk = (θk − 1)/θk+1

7: Z(k+1) = X(k+1) + βk(X
(k+1) −X(k))

8: end for

performance, both in convergence rate and quality of the
results.

For the sparse approximation stage any sparse coding al-
gorithm can be used. However, the relaxation-based methods
have a better performance compared to greedy ones (to see
this, we conduct an experiment in the next section). Among
the relaxation-based methods, the soft-thresholding ones are
probably more attractive, for both their simplicity and good
performance. These methods target the following problem

min
D∈D,X

1

2
∥Y −DX∥2F + λs∥X∥1, (13)

where λs is a regularization constant. Here, we use the
Fast Iterative Shrinkage-Thresholding (FISTA) algorithm [40]
whose global convergence rate is much better than the ordinary
IST algorithms, while preserving their simplicity. The batch-
mode version of FISTA is shown in Algorithm 4, in which,
λmax(X) denotes the largest eigenvalue of X. For initialization
of the coefficient matrix in each alternation, we use its final
estimate at the previous alternation. Once the support of each
column of the coefficient matrix is found, we project the
associated training signal onto the subspace spanned by the
corresponding atoms of the dictionary. This process is called
debiasing, and it is known to improve the results [41].

In order to update the dictionary in the second stage, we
follow the same approach as in OS-DL algorithm. In other
words, the problem of updating each atom together with its
profile amounts to solve (7). Algorithm 5 gives a description
of APrU-DL algorithm.

IV. SIMULATIONS

We evaluate the efficiency of our proposed algorithms with
two sets of experiments. The first set of experiments is on
synthetic data, where we aim to evaluate the capability of
our algorithms in recovery of a known dictionary. To this
aim, we generate a set of training signals, each as a linear
combination using a different set of atoms from an underlying
dictionary. We then give these training signals (after adding
a certain amount of Gaussian noise) to each algorithm and
compare the output dictionary to the original one. In this way, a
dictionary learning algorithm should have the ability to extract
the common features of the set of signals, which are actually
the generative atoms. The second set of experiments is on
an autoregressive (AR) signal, where there is no underlying
dictionary, and we just evaluate the capability of the algorithms

Algorithm 5 APrU-DL
1: Task: Learning a dictionary for Y
2: Initialization: D = D(0) and X = X(0)

3: Repeat:
4: Sparse Approximation: X =Batch-FISTA(Y,D,X, λs)
5: Dictionary Update: set E = Y −DX
6: for a = 1, . . . , A do
7: for i = 1, . . . ,K do
8: Ei = E+ dix

T
[i]

9: x[i] = Sλ(E
T
i di)

10: di = Eix[i]

11: di = di/∥di∥2
12: E = Ei − dix

T
[i]

13: end for
14: end for
15: Until convergence

in learning a good (i.e., sparsifying) dictionary, or extracting
a set of good features. We consider an AR(1) signal as in
[32], and generate the training signals by chopping this signal
into a number of blocks. We compare the performance of our
proposed algorithms to those of K-SVD and AK-SVD2,3. As
it was said in Section III-A, for PAU-DL: A = 3, B = 1, and
for AK-SVD: A = 1, B = 3.

Our simulations were performed in MATLAB R2010b en-
vironment on a system with 3.8 GHz CPU and 8 GB RAM,
under Microsoft Windows 7 operating system. As a rough
measure of complexity, we will mention the run times of the
algorithms.

A. Synthetic Data

We generated a dictionary by normalizing a random matrix
of size 20 × 50, with zero-mean and unit-variance indepen-
dent and identically distributed (i.i.d.) Gaussian entries. A
collection of 2000 training signals {yi}2000i=1 were produced,
each as a linear combination of s different columns of the
dictionary, with zero-mean and unit-variance i.i.d. Gaussian
coefficients in uniformly random and independent positions.
We varied s from 3 to 6. We then added white Gaussian
noise with Signal to Noise Ratio (SNR) levels of 10, 20,
30, and 100 dB. The exact value of s was given to PAU-
DL, K-SVD, AK-SVD, and APrU-DL (with OMP). For OS-
DL we used a fixed value of λ = 0.3. For APrU-DL (with
FISTA) we used λ = 0.3 and λs = 0.6. We applied all
algorithms onto these noisy training signals, and compared
the resulting recovered dictionaries to the generating one as
follows. Assume that di is a generating atom and d̄i is the
atom in the recovered dictionary that best matches di among
the others. We say that the recovery is successful if |dT

i d̄i|
is above 0.99 [27]. The percentage of the correct recovery

2As pointed out in the previous works, e.g., [32], the performances of
MOD and K-SVD are very similar in these experiments. So, we omitted MOD
from the simulations.

3For K-SVD, AK-SVD and OMP we have used K-SVD-Box v10 and
OMP-Box v10 available at http://www.cs.technion.ac.il/∼ronrubin/software.
html

7

was used as the measure of successfully reconstructing the
generating dictionary. We performed 100 alternations between
sparse approximation and dictionary update stages for all
algorithms. The initial dictionary was made by randomly
choosing different columns of the training set followed by
a normalization. We repeated each experiment (corresponding
to a certain value of s and a certain noise level) 50 times and
reported the averaged results.

The average percentage of successfully recovering the un-
derlying atoms is shown in Table I. The average execution
times of the algorithms for this experiment is shown in Fig. 2.
To see the convergence behaviour of K-SVD, AK-SVD, PAU-
DL, and APrU-DL, the improvement of recovery ratio along
the alternation number is shown in Fig. 3. As we saw in our
simulations, the results of AK-SVD were very close to those
of K-SVD (as can be seen from Fig. 3). So, AK-SVD has
been omitted from Table I. Also, the average execution time
of AK-SVD is nearly the same as PAU-DL. The convergence
behaviour of OS-DL and APrU-DL with OMP are shown in
Fig. 4, where the results of APrU-DL with FISTA are also
shown for comparison. With these results in mind, we deduce
the following observations:

• PAU-DL has a better successful recovery results com-
pared to both AK-SVD and K-SVD in average. This is
especially observable at s = 5 and s = 6. The average
execution time of PAU-DL is also much smaller than that
of K-SVD.

• APrU-DL has the best results in average. Also, the results
of APrU-DL with FISTA are better than those with OMP.
However, the average runtime of FISTA is higher than
that of OMP4.

• OS-DL outperforms PAU-DL and K-SVD, both in con-
vergence rate and the final success rate (this is especially
observable at low SNRs and s = 5 and s = 6). This
shows the promising performance of one-stage dictionary
learning.

• The convergence rate of PAU-DL is better than K-SVD
and AK-SVD, while that of APrU-DL is the best. The
convergence behaviour of APrU-DL and OS-DL is ap-
proximately the same for different values of s, while those
of the other three algorithms deteriorate by increasing s.

B. AR(1) signal

In this experiment, we consider an AR(1) signal (according
to [32]), which is generated as v(k) = 0.95v(k − 1) + e(k),
where e(k) is a zero-mean and unit-variance Gaussian noise.
A collection of L = 2000 training signals were made by
chopping this signal into vectors of length n = 20. Number
of atoms was set to m = 40. As in [32], we computed
SNR as SNR = 10 log ∥Y∥2F⧸∥Y −DX∥2F . For the sparse
approximation stage of APrU-DL we have used OMP to have
an exact control on the cardinality of the representations. A
number of s = 5 atoms were used to approximate each

4Note that the average execution times for all algorithms have been
calculated for 100 alternations. As can be seen from Fig. 3, APrU-DL has
converged in about 20 alternations. So, considering the convergence times,
APrU-DL is fast enough compared to K-SVD.

TABLE I
PERCENTAGE OF SUCCESSFUL RECOVERY.

SNR (dB) Algorithms s = 3 s = 4 s = 5 s = 6

10

K-SVD 88.06 87.20 17.80 0
PAU-DL 88.80 88.67 45.60 0
OS-DL 92.27 91.47 90.80 74.67

APrU-DL 94.13 96 90.67 77.87

20

K-SVD 93.61 94.13 88.80 9.34
PAU-DL 94.13 94.20 92.20 58.13
OS-DL 93.60 92.53 93.87 91.83

APrU-DL 95.47 96.53 96.93 96.67

30

K-SVD 94.33 95.87 90.73 18.24
PAU-DL 94.60 96.13 95.60 82.80
OS-DL 93.87 93.20 91.84 91.86

APrU-DL 96.53 96.80 97.87 97.07

100

K-SVD 95.20 94.70 94.80 17.87
PAU-DL 95.40 94.73 95.60 77.47
OS-DL 93.20 94.40 95.07 93.20

APrU-DL 95.33 96.93 97.07 97.47

3 4 5 6
0

5

10

15

20

25

30

Number of non−zero coefficients (s)

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

)

K−SVD

PAU−DL

OS−DL

APrU−DL with OMP

APrU−DL with FISTA

Fig. 2. Average execution times (in second) versus number of nonzero
coefficients.

training vector in the sparse approximation stage of PAU-
DL, AK-SVD, K-SVD, and APrU-DL. In order to compute
SNR in OS-DL, after each update of the dictionary the sparse
approximations of the signals have been computed using OMP.
For both APrU-DL and OS-DL a value of λ = 0.05 found to
yield promising results. For all algorithms 100 alternations
were done.

SNR versus alternation number (averaged over 50 trials)
is plotted in Fig. 5. Again, the result of AK-SVD was very
similar to that of K-SVD, and thus has been omitted from the
figure. This figure shows that the SNR is improved during the
learning process for all algorithms. The final values of SNR
as well as the average execution times of the algorithms are
reported in Table II. Based on these results, we deduce the
following observations:

• PAU-DL has reached a higher SNR value compared to
K-SVD, while its average execution time is much less
than that of K-SVD.

• OS-DL outperforms PAU-DL. This observation again
indicates the promising performance of one-stage dictio-
nary learning algorithms.

• APrU-DL has the best results, in the sense of the final
value of SNR and the rate of convergence.

As a conclusion, taking into account the performance and the
execution time, PAU-DL seems to be the best compromise.

8

0

20

40

60

80

100

S
u

c
c
e

s
s
fu

l
re

c
o

v
e

ry
 (

%
)

s=3

0

20

40

60

80

100
s=4

0 20 40 60 80 100
0

20

40

60

80

100

Alternation number (k)

S
u

c
c
e

s
s
fu

l
re

c
o

v
e

ry
 (

%
) s=5

0 20 40 60 80 100
0

20

40

60

80

100

Alternation number (k)

s=6

K−SVD

AK−SVD

PAU−DL

APrU−DL

K−SVD

AK−SVD

PAU−DL

APrU−DL

Fig. 3. Convergence behaviour of K-SVD, AK-SVD, PAU-DL, and APrU-DL
(with FISTA) in reconstruction of a known dictionary. Each figure corresponds
to a certain amount of sparsity (number of nonzero coefficients). Noise level
is SNR = 30 dB.

0

20

40

60

80

100

S
u

c
c
e

s
s
fu

l
re

c
o

v
e

ry
 (

%
) s=3

0

20

40

60

80

100
s=4

0 20 40 60 80 100
0

20

40

60

80

100

Alternation number (k)

S
u

c
c
e

s
s
fu

l
re

c
o

v
e

ry
 (

%
) s=5

0 20 40 60 80 100
0

20

40

60

80

100

Alternation number (k)

s=6

with OMP

with FISTA

OS−DL

with OMP

with FISTA

OS−DL

with OMP

with FISTA

OS−DL

with OMP

with FISTA

OS−DL

Fig. 4. Convergence behaviour of OS-DL and APrU-DL with (Batch) OMP
and (Batch) FISTA as the sparse approximation stage. The setup is the same
as in Fig. 3.

V. CONCLUSION

In this paper, we addressed the dictionary update stage in a
general dictionary learning problem. We especially considered
the atom-by-atom dictionary update procedure. We introduced
the idea of parallel atom-updating and based on this, we
derived PAU-DL, an efficient alternative for the well-known
K-SVD algorithm which provides atom sequential updating,
i.e., fully updating of one atom before moving to the next
one. Conversely, the main idea of parallel atom-updating is
to update the atoms in parallel. In this way, before moving to
update each atom, previous atoms have been partially updated.
So, we have more reliable updates of the previous atoms to
be used for updating the next atom. We then proposed a
novel dictionary learning algorithm which we called OS-DL.
This algorithm sequentially updates each atom along with the
whole entries of its corresponding row vector in the coefficient
matrix. OS-DL differs from the existing dictionary learning
algorithms in the sense that it does not perform the first stage,
i.e., the sparse approximation stage. This is because, here, we
constrain the sparsity criterion on the rows of the coefficient
matrix, not on its columns. To have a better control on the
sparsity level of the representations, we then proposed the
two-stage counterpart of OS-DL, which is obtained by adding
the sparse approximation stage to OS-DL. In this way, as it
was seen in Section IV, the convergence rate of OS-DL is
increased. Our simulations on recovery of a known dictionary,
as well as designing a sparsifying dictionary for an AR(1)

0 10 20 30 40 50 60 70 80 90 100
14.5

15

15.5

16

16.5

17

17.5

18

Alternation number (k)

S
N

R
 (

d
B

)

K−SVD

PAU−DL

OS−DL

APrU−DL

Fig. 5. SNR in dB is plotted versus the alternation number during the learning
process.

TABLE II
FINAL SNR IN DB AND AVERAGE EXECUTION TIMES (AET) IN SECONDS,

FOR VARIOUS ALGORITHMS.

Algorithm K-SVD PAU-DL OS-DL APrU-DL
SNR(dB) 17.03 17.16 17.59 17.67
AET(s) 14.57 2.53 12.93 21

signal indicate that our algorithms outperform K-SVD.

REFERENCES

[1] M. Elad, Sparse and Redundant Representations, Springer, 2010.
[2] S. Mallat and Z. Zhang, “Matching pursuits with time-frequency

dictionaries,” IEEE Trans. on Signal Proc., vol. 41, no. 12, pp. 3397–
3415, 1993.

[3] S. S. Chen, D. D. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Rev., vol. 43, pp. 129–159, 2001.

[4] D. L. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse
overcomplete representations in the presence of noise,” IEEE Trans.
Info. Theory, vol. 52, no. 1, pp. 6–18, 2006.

[5] M. Babaie-Zadeh and C. Jutten, “On the stable recovery of the sparsest
overcomplete representations in presence of noise,” IEEE Transactions
on Signal Processing, vol. 58, no. 10, pp. 5396–5400, 2010.

[6] J. A. Tropp and S. J. Wright, “Computational methods for sparse
solution of linear inverse problems,” Proceedings of the IEEE, vol.
98, no. 6, pp. 948–958, 2010.

[7] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: recursive function approximation with applications to wavelet
decomposition,” in In Proc. Asilomar Conf. Signal Syst. Comput., 1993.

[8] D. L. Donoho, Y. Tsaig, I. Drori, and J. L. Starck, “Sparse solution of
underdetermined systems of linear equations by stagewise orthogonal
matching pursuit,” IEEE Trans. on Information Theory, vol. 58, no. 2,
pp. 1094–1121, 2012.

[9] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery from
in-complete and inaccurate samples,” Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301–321, 2009.

[10] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing
signal reconstruction,” IEEE Trans. on Information Theory, vol. 55, no.
5, pp. 2230–2249, 2009.

[11] I. Daubechies, M. Defrise, and C. De-Mol, “An iterative thresholding
algorithm for linear inverse problems with a sparsity constraint,” Comm.
Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, 2004.

[12] M. Elad, B. Matalon, J. Shtok, and M. Zibulevsky, “A wide-angle view
at iterated shrinkage algorithms,” in in Proc. SPIE (Wavelet XII), 2007,
pp. 26–29.

[13] S. Becker, J. Bobin, and E. J. Candès, “NESTA: a fast and accurate first-
order method for sparse recovery,” SIAM Journal on Imaging Sciences,
vol. 4, no. 1, pp. 1–39, 2011.

[14] T. Blumensath, “Accelerated iterative hard threshoding,” Signal
Processing, vol. 92, no. 3, pp. 752–756, 2012.

[15] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for
compressive sensing,” in IEEE ICASSP, 2008.

[16] H. Mohimani, M. Babaie-Zadeh, and Ch. Jutten, “A fast approach for
overcomplete sparse decomposition based on smoothed ℓ0 norm,” IEEE
Trans. on Signal Processing, vol. 57, pp. 289–301, 2009.

9

[17] S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior
point method for large-scale ℓ1-regularized least squares,” IEEE Journal
of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 606–617, 2007.

[18] M. Elad, M. A. T. Figueiredo, and Y. Ma, “On the role of sparse
and redundant representations in image processing,” Proceedings of the
IEEE, vol. 98, no. 6, pp. 972–982, 2010.

[19] P. Bofill and M. Zibulevsky, “Underdetermined blind source separation
using sparse representations,” Signal Processing, vol. 81, pp. 2353–2362,
2001.

[20] D. L. Donoho, “Compressed sensing,” IEEE Trans. on Information
Theory, vol. 52, no. 4, pp. 1289–1306, April 2006.

[21] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Proc. Magazine,
vol. 24, no. 4, pp. 118–121, 2007.

[22] E. J. Candès and T. Tao, “Decoding by linear programming,” IEEE
Transactions on Information Theory, vol. 51, no. 12, pp. 4203–4215,
2005.

[23] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.
Royal. Statist. Soc B., vol. 58, no. 1, pp. 267–288, 1996.

[24] M. Elad and M. Aharon, “Image denoising via sparse and redundant
representations over learned dictionaries,” IEEE Trans. on Image
Processing, vol. 15, no. 12, pp. 3736 – 3745, 2006.

[25] O. Bryt and M. Elad, “Compression of facial images using the K-SVD
algorithm,” Journal of Visual Communication and Image Representation,
vol. 19, no. 4, pp. 270–283, 2008.

[26] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp.
791–804, 2012.

[27] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[28] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression,
Springer, 1992.

[29] K. Engan, S. O. Aase, and J. Hakon Husoy, “Method of optimal
directions for frame design,” in Proceedings of IEEE ICASSP, 1999,
vol. 5.

[30] M. Yaghoobi, T. Blumensath, and M. E. Davies, “Dictionary learning
for sparse approximations with the majorization method,” IEEE Trans.
on Signal Processing, vol. 57, no. 6, pp. 2178 – 2191, 2009.

[31] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” Journal of Machine Learning Research,
vol. 11, pp. 19–60, 2010.

[32] K. Skretting and K. Engan, “Recursive least squares dictionary learning
algorithm,” IEEE Trans. on Signal Processing, vol. 58, pp. 2121 – 2130,
2010.

[33] K. Labusch, E. Barth, and T. Martinetz, “Robust and fast learning of
sparse codes with stochastic gradient descent,” IEEE Journal of Selected
Topics in Signal Processing, vol. 5, no. 5, pp. 1048–1060, 2011.

[34] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Math. Statist.
Probabil., 1967, vol. I, pp. 281–296.

[35] R. Rubinstein, M. Zibulevsky, and M. Elad, “Efficient implementation of
the K-SVD algorithm using batch orthogonal matching pursuit,” Tech.
Rep., Technion University, 2008.

[36] C. D. Sigg, T. Dikk, and J. M. Buhmann, “Learning dictionaries with
bounded self-coherence,” IEEE Signal Processing Letters, vol. 19, no.
12, pp. 861–864, 2012.

[37] W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimization
(SimCO) for dictionary update and learning,” IEEE Trans. on Signal
Proc., vol. 60, no. 12, pp. 6340–6353, 2012.

[38] M. Elad, “Why simple shrinkage is still relevant for redundant repre-
sentations?,” IEEE Trans. on Information Theory,, vol. 52, no. 12, pp.
5559–5569, 2006.

[39] J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, “Pathwise
coordinate optimization,” Annals of Applied Statistics, vol. 1, no. 2,
pp. 302–332, 2007.

[40] A. Beck and M. Teboulle, “Fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[41] M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradient
projection for sparse reconstruction: Application to compressed sensing
and other inverse problems,” IEEE Journal of Selected Topics in Signal
Processing, vol. 1, no. 4, pp. 586–597, 2007.

Mostafa Sadeghi received the B.S. degree in electri-
cal engineering from Ferdowsi University of Mash-
had, Mashhad, Iran in 2010, and the M.S degree
in electrical engineering from Sharif University of
Technology, Tehran, Iran, in 2012. He is now work-
ing toward his Ph.D. degree in the electrical engi-
neering department, Sharif University of Technol-
ogy.

His main research areas are Sparse Signal Pro-
cessing, Dictionary Learning for Sparse Represen-
tation, Statistical Signal Processing, and Machine

Learning for Signal Processing.

Massoud Babaie-Zadeh (M04-SM09) received the
B.S. degree in electrical engineering from Isfahan
University of Technology, Isfahan, Iran in 1994,
and the M.S degree in electrical engineering from
Sharif University of Technology, Tehran, Iran, in
1996, and the Ph.D. degree in Signal Processing
from Institute National Polytechnique of Grenoble
(INPG), Grenoble, France, in 2002.

Since 2003, he has been a faculty member of
the Electrical Engineering Department of Sharif
University of Technology, Tehran, IRAN, firstly as

an assistant professor and since 2008 as an associate professor. His main
research areas are Blind Source Separation (BSS) and Independent Component
Analysis (ICA), Sparse Signal Processing, and Statistical Signal Processing.

Dr. Babaie-Zadeh received the best Ph.D. thesis award of INPG for his
Ph.D. dissertation.

Christian Jutten (AM92-M03-SM06-F08) received
Ph.D. and Doctor es Sciences degrees in signal
processing from Grenoble Institute of Technology
(GIT), France, in 1981 and 1987, respectively. From
1982, he was an Associate Professor at GIT), before
being Full Professor at University Joseph Fourier
of Grenoble, in 1989. For 30 years, his research
interests have been machine learning and source sep-
aration, including theory (separability, source separa-
tion in nonlinear mixtures, sparsity, multimodality)
and applications (brain and hyperspectral imaging,

chemical sensor array, speech). He is author or coauthor of more than 75
papers in international journals, 4 books, 24 keynote plenary talks, and 170
communications in international conferences.

He has been visiting professor at Swiss Federal Polytechnic Institute
(Lausanne, Switzerland, 1989), at Riken labs (Japan, 1996) and at Campinas
University (Brazil, 2010). He was director or deputy director of his lab
from 1993 to 2010, especially head of the signal processing department
(120 people) and deputy director of GIPSA-lab (300 people) from 2007 to
2010). He was a scientific advisor for signal and images processing at the
French Ministry of Research (19961998) and for the French National Research
Center (20032006). Since May 2012, he is deputy director at the Institute for
Information Sciences at French National Center of Research (CNRS) in charge
of signal and image processing.

Christian Jutten was organization or program chairs of many international
conferences, especially of the 1st International Conference on Blind Signal
Separation and Independent Component Analysis in 1999. He has been a
member of a few IEEE Technical Committees, and currently in SP Theory
and Methods of the IEEE Signal Processing society. He received best paper
awards of EURASIP (1992) and of IEEE GRSS (2012), and Medal Blondel
(1997) from the French Electrical Engineering society for his contributions
in source separation and independent component analysis. He is IEEE fellow
(2008) and EURASIP fellow (2013). He is a Senior Member of the Institut
Universitaire de France since 2008, with renewal in 2013. He is the recipient
of a 2012 ERC Advanced Grant for a project on challenges in extraction and
separation of sources (CHESS).

