
1

Dictionary Learning for Sparse Representation:
A Novel Approach

Mostafa Sadeghi∗, Massoud Babaie-Zadeh, Senior Member, IEEE, Christian Jutten, Fellow, IEEE

Abstract—A dictionary learning problem is a matrix factoriza-
tion in which the goal is to factorize a training data matrix, Y,
as the product of a dictionary, D, and a sparse coefficient matrix,
X, as follows, Y ≃ DX. Current dictionary learning algorithms
minimize the representation error subject to a constraint on D
(usually having unit column-norms) and sparseness of X. The
resulting problem is not convex with respect to the pair (D,X).
In this letter, we derive a first order series expansion formula
for the factorization, DX. The resulting objective function is
jointly convex with respect to D and X. We simply solve the
resulting problem using alternating minimization and apply some
of the previously suggested algorithms onto our new problem.
Simulation results on recovery of a known dictionary and
dictionary learning for natural image patches show that our
new problem considerably improves performance with a little
additional computational load.

Index Terms—Dictionary learning, sparse representation, K-
SVD, MOD.

I. INTRODUCTION

SPARSE and redundant representation modeling has been
shown to be a powerful and efficient tool for signal

analysis and processing [1]. The goal is to represent a given
signal as a linear combination of some given basis functions
in such a way that most of the representation’s coefficients
be equal to zero or have a small magnitude. More precisely,
consider the signal y ∈ Rn and the basis functions D =
[d1,d2, . . . ,dK ] ∈ Rn×K . In this context, D is called a
dictionary and each of its columns is called an atom. It is
typically assumed that the dictionary is overcomplete, i.e.
K > n. A sparse coding algorithm then seeks the sparsest
representation, x ∈ RK , such that y ≃ Dx. This model has
received a lot of attention during the last decade, and a lot
of work has been done to theoretically and experimentally
investigate the efficiency of this model in different signal
processing areas [1].

One crucial problem in a sparse representation-based ap-
plication is how to choose the dictionary. There are many
pre-specified dictionaries, e.g. Fourier, Gabor, Discrete Cosine
Transform (DCT), and wavelet [2]. Though being simple and
having fast computations, these non-adaptive dictionaries are

M. Sadeghi and M. Babaie-Zadeh are with the Electrical Engineer-
ing Department, Sharif University of Technology, Tehran, Iran (e-mail:
m.saadeghii@gmail.com; mbzadeh@yahoo.com).

C. Jutten is with the GIPSA-Lab, Department of Images and Signals,
University of Grenoble and Institut Universitaire de France, France (e-mail:
Christian.Jutten@inpg.fr).

This work has been partially funded by Iran National Science Foundation
(INSF) under contract number 91004600, and EU project 2012-ERC-AdG-
320684 CHESS.

not able to efficiently (sparsely) represent a given class of
signals.

To address this problem, dictionary learning has been
widely investigated during the last decade [2], [3]. In this
approach, a dictionary is learned from some training signals
belonging to the signal class of interest. It has been experi-
mentally shown that these adaptive dictionaries outperform the
non-adaptive ones in many signal processing applications, e.g.
image compression and enhancement, and classification tasks
[1], [4].

A dictionary learning algorithm uses a training data matrix,
Y = {yi}Li=1, containing L signals from the particular class
of signals at hand, and finds a dictionary, D, in such a way
that all training signals have a sufficiently sparse representation
in it. More precisely, a typical dictionary learning algorithm
solves the following problem:

min
D∈D,X∈X

∥Y −DX∥2F , (1)

where ∥.∥F is the Frobenius norm, and D and X are ad-
missible sets of the dictionary and the coefficient matrix,
respectively. D is usually defined as the set of all dictionaries
with unit column-norms. X constrains the coefficient matrix
to have sparse columns.

Note that the above problem is not convex with respect to
the pair (D,X). Most dictionary learning algorithms attack
this problem by iteratively performing a two-stage procedure:
Starting with an initial dictionary, the following two stages are
repeated several times,

1) Sparse representation:

X(k+1) = argmin
X∈X

∥Y −D(k)X∥2F , (2)

2) Dictionary update:

D(k+1) = argmin
D∈D

∥Y −DX(k+1)∥2F . (3)

Stage 1 is simply an ordinary sparse coding problem, in which
the sparse representations of all training signals are computed
using the current dictionary. Many sparse coding algorithms
have been proposed that can be used to perform this stage
[5]. The main difference between many dictionary learning
algorithms is stage 2, in which the dictionary is updated to
reduce the representation error of stage 1.

Method of Optimal Directions (MOD) [6] is one of the
simplest dictionary learning algorithms which firstly finds
the unconstrained minimum of ∥Y − DX(k+1)∥2F and then
projects the solution onto the set D. This leads to the following



2

closed-form expression1:

D(k+1) = YXT (XXT )−1, (4)

followed by normalizing the columns of D.
K-Singular Value Decomposition (K-SVD) [7] is another

well-known algorithm, which has been very successful. In its
dictionary update stage, only one atom is updated at a time.
Moreover, while updating each atom, the non-zero entries in
the associated row vector of X are also updated. This leads to a
matrix rank-1 approximation problem which is then solved via
performing a Singular Value Decomposition (SVD) operation.

In [8] the idea of fixing the support of X and updating
its non-zero entries, along with atoms updating, has been
extended to a more general case in which more than one atom
along with the non-zero entries in their associated row vectors
in X are updated at a time. In a similar work, [9] has derived
an MOD-like algorithm that uses this idea. More precisely, the
following problem has been proposed to be solved at stage 2
(see (3)):

min
D∈D,X

∥Y −DX∥2F subject to S(X) = S(X(k+1)), (5)

where S(X) denotes the support of X, i.e. the positions of its
non-zero entries. To solve this problem, [9] proposed to use
alternating minimization over D and X. Minimizing (5) over
D with a fixed X results in (4). Minimization of (5) over X
with a fixed D decouples for each column of X and results
in the following problems:

∀i : xi = argmin
x

∥yi −Dx∥22 subject to S(x) = S(x(k+1)
i ).

(6)
By defining ωi = {j : xi(j) ̸= 0}, (6) leads to the following
solutions:

∀i : xi(ωi)← (DT
i Di)

−1DT
i yi, (7)

where Di consists of those columns of D that have been
used in the representation of yi. Performing a few (e.g. 3)
alternations between (4) and (7) gives a good result [9]. We
henceforth refer to this algorithm as the Multiple Dictionary
Update (MDU) algorithm.

In [10] a sequential algorithm, named as Sequential General-
ization of K-means (SGK), has been proposed. This algorithm
updates atoms of the dictionary sequentially, but unlike K-
SVD and MDU, keeps the non-zero entries of the coefficient
matrix intact. As explained in [10], “though K-SVD is se-
quential like K-means, it fails to simplify to K-means by
destroying the structure in the sparse coefficients”. This is due
to performing SVD in K-SVD, which (unlike K-means) forces
the atom-norms to be 1 and that the resulting coefficients are
not necessarily 0 or 1 [10]. These problems, however, do not
exist in SGK [10].

In this letter, we derive a new method for dictionary
learning. The idea is to use a first order series expansion
instead of the term DX. In this way, we obtain a new objective
function that unlike the commonly used one, i.e. (1), is jointly
convex with respect to D and X. We simply solve the resulting

1We have dropped the superscript of X(k+1) for simplicity.

problem using alternating minimization. We then apply MOD,
MDU, and SGK onto our new problem. Experimental results
on both synthetic and real data show that using our new prob-
lem results in a considerable improvement over the previous
one, i.e. (1), with a little additional computational load.

The rest of the paper is organized as follows. In Section II
we describe our proposed method in details. Then Section III
presents the results of our simulations.

II. THE PROPOSED METHOD

In this section, we derive a first order series expansion for
the matrix-valued function F (D,X) = DX about a point
(D0,X0), and using it, we obtain a new dictionary learning
problem. We then apply some of the previously suggested
algorithms onto our new problem.

A. The new problem

Let write D and X as follows:{
D = D0 + (D−D0)
X = X0 + (X−X0)

, (8)

where (D − D0) and (X − X0) are small in the sense of
Frobenius norm. We then substitute the above expressions into
the function F (D,X). Doing so we derive,

F (D,X) = D0X0 +D0(X−X0) + (D−D0)X0

+ (D−D0)(X−X0) (9)

Neglecting the last term, whose Frobenius norm is upper-
bounded by a small value2, we obtain the following first order
approximation for F (D,X):

F̃ (D,X) = DX0 +D0X−D0X0. (10)

Now, we use the above approximation instead of DX in (1).
We then derive the following new dictionary learning problem:

min
D∈D,X∈X

∥Y +D0X0 −DX0 −D0X∥2F . (11)

Note that unlike (1), the objective function of the above
problem is jointly convex with respect to D and X.

In order for (11) to be a convex problem, in addition to
its objective function, the constraint sets have to be convex,
too. An example of such convex constraint sets would be
D =

{
D : ∀i, ∥di∥22 ≤ 1

}
and X = {X : ∀i, ∥xi∥1 ≤ τ}.

To make sure that the approximation used in (9) remains valid,
one may add the term λ1∥D−D0∥2F + λ2∥X−X0∥2F to the
objective function of (11).

In this paper, to solve (11), we simply use alternating min-
imization. Moreover, at each alternation, we use the updated
versions of D and X found at the previous alternation instead
of D0 and X0. In other words, our problem becomes as
follows3: {

D(k+1),X(k+1)
}
=

2According to the submultiplicativity property of the Frobenius norm [11],
we have ∥(D−D0)(X−X0)∥F ≤ ∥D−D0∥F ∥X−X0∥F .

3Note the similarity of (12) and Newton’s algorithm for minimization
(neglecting the constraints): The cost function has been approximated by a
quadratic term at the vicinity of the previous iteration.



3

argmin
D∈D,X∈X

∥Y +D(k)X(k) −DX(k) −D(k)X∥2F . (12)

In order to minimize (12) over X, we set D = D(k) in the
objective function. In this way, (12) reduces to the stage 1
of the general dictionary learning problem, i.e. (2). Thus, our
algorithm like most dictionary learning algorithms does not
affect the sparse representation stage and any sparse coding
algorithm can be used to perform this stage.

Stage 2, after substitution of X ← X(k+1) and setting
Z = Y +D(k)X(k) −D(k)X(k+1), reduces to the following
problem:

D(k+1) = argmin
D∈D

∥Z−DX(k)∥2F . (13)

B. The new MOD, MDU, and SGK
In what follows, we apply MOD, MDU, and SGK algo-

rithms onto the above problem.
Solving (13) using MOD results in the following update

formula for D, in which we have dropped the superscript of
X(k) for simplicity:

D(k+1) = ZXT (XXT )−1, (14)

followed by normalizing the columns of D(k+1).
To solve (13) using the MDU method, the dictionary update

formula is exactly (14) but the update formula for the non-zero
entries of X remains4 as (7).

To apply the SGK method, problem (13) has to be solved
sequentially for each column of D. To update the ith column,
di, the following problem has to be solved:

d
(k+1)
i = argmin

d
∥Ei − dx

(k)
[i] ∥

2
F subject to ∥d∥2 = 1, (15)

where Ei = Z −
∑

j ̸=i djx[j] is the error matrix when di

is removed, and x[i] denotes the ith row of X. Problem (15)
results in

d
(k+1)
i = Ei(x

(k)
[i] )

T (16)

followed by a normalization. Note that in order to update each
atom, the updated versions of other atoms are used to compute
its associated error matrix.

III. SIMULATIONS

We compare the performance of our proposed problem and
the previous one by performing two sets of experiments. The
first experiment is the recovery of a known dictionary. The
second experiment is on real data where the goal is to learn
an overcomplete dictionary for natural image patches. For all
algorithms, Orthogonal Matching Pursuit (OMP) [12] has been
used as the sparse coding algorithm5.

Our simulations were performed in MATLAB R2010b en-
vironment on a system with 2.13 GHz CPU and 2 GB RAM,
under Microsoft Windows 7 operating system. As a rough
measure of complexity, we will mention the run times of the
algorithms.

4Note that we must use yi’s in (7) not zi’s. This is because the coefficient
matrix of “Y” has been derived in the sparse representation stage not Z.

5For OMP, we have used the OMP-Box v10 available at http://www.
cs.technion.ac.il/∼ronrubin/software.html. For the simulation performed in
Subsection III-B we have used the complementary materials of [9] available
at http://www.ieeexplore.ieee.org.

A. Recovery of a known dictionary

Similar to [7], [10] we generated a random dictionary of size
20 × 50, with zero mean and unit variance independent and
identically distributed (i.i.d.) Gaussian entries, followed by a
column normalization. We then generated a collection of 1500
training signals, each as a linear combination of s = 3, 4, 5
different atoms, with i.i.d. coefficients. White Gaussian noise
with Signal to Noise Ratio (SNR) levels of 10, 20, 30, and
100 dB were added to these signals. For all algorithms, the
exact value of s was given to OMP. Similar to [10], number
of alternations between the two dictionary learning stages was
set according to ≃ 5s2. We applied all algorithms onto these
noisy training signals, and compared the resulting recovered
dictionaries to the generating dictionary in the same way as in
[7]. It should be mentioned that as we saw in our simulations,
using X(k+1), the most recent update of X, in (13) instead of
X(k) results in a better performance for this experiment. So,
we used this alternative.

The final percentage of successful recovery (averaged over
30 trials), is shown in Table I (only the results of MOD,
MDU, and New MOD have been reported here). To see
the convergence behaviour of the algorithms, the successful
recovery rate versus alternation number, for SNR = 30 dB, is
shown in Fig. 1. The average running times of the algorithms
are also shown in Table II.

With these results in mind, we conclude that our proposed
problem results in much better convergence rate with only a
little increase in the running time.

B. Dictionary learning for natural image patches

Similar to [9], we used a collection of seventeen well-known
standard images, including Barbara, Cameraman, Jetplane,
Lena, Mandril, and Peppers. A collection of 25,000, 8 × 8
patches from these images were extracted, 20,000 of which
were used for training and the remaining 5,000 were used
to test the reconstruction accuracy of the trained dictionary.
The mean were subtracted from all image patches. These
image patches were converted to column vectors of dimension
n = 64. Number of atoms in the dictionary was set to
K = 3 × 64 and s = round(n/10) atoms were used
to approximate each patch. As in [9], the dictionary was
initialized with samples from the training signals. Root Mean
Square Error (RMSE), defined as ∥Y −DX∥F /(n · L), was
used to evaluate the reconstruction performance of the trained
dictionaries.

The representation’s RMSEs versus alternation number, for
training and testing data are shown in Fig. 2. The average
running times, with those of our proposed problem in paren-
thesise, are as follows, MOD: 219.80 (223.68), MDU: 564.90
(577.57), and SGK: 781.88 (794.75) seconds.

These results again emphasize on the advantage of our new
problem over the previous one. This is very noticeable for
“New SGK” that has achieved the best performance.

IV. CONCLUSION

In this letter we introduced a new problem for dictionary
learning. Our idea is to use a first order series expansion



4

TABLE I
PERCENTAGE OF SUCCESSFUL RECOVERY.

SNR (dB) Algorithm s = 3 s = 4 s = 5

10
MOD 85.40 77.27 7.73
MDU 87.93 77.80 23.60

New MOD 89.40 83.73 28.33

20
MOD 91.47 91.80 87.87
MDU 91.93 90.40 91.73

New MOD 94.07 94.13 93.07

30
MOD 88.87 92.20 91.60
MDU 92.07 90.87 92.73

New MOD 92.67 93.60 95.53

100
MOD 90.60 91.67 90.93
MDU 91.73 93.00 93.27

New MOD 94.00 94.87 93.80

TABLE II
AVERAGE RUNNING TIMES (IN SECOND). THOSE OF OUR PROPOSED

PROBLEM ARE REPORTED IN PARENTHESES.

Algorithm s = 3 s = 4 s = 5

MOD 2.12 (2.16) 5.42 (5.52) 10.31 (10.51)
MDU 19.47 (19.93) 41.40 (42.08) 70.32 (71.61)
SGK 3.83 (3.88) 8.91 (9.00) 15.73 (15.82)

instead of the dictionary-coefficient matrix product. We then
solved the resulting problem using a simple alternating mini-
mization algorithm. We experimentally showed that our pro-
posed method considerably outperforms the previous one with
a little additional cost. Applying other previously suggested
dictionary learning algorithms to our proposed problem re-
mains as our future works.

REFERENCES

[1] M. Elad, Sparse and Redundant Representations, Springer, 2010.
[2] R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse

representation modeling,” Proceedings of the IEEE, vol. 98, no. 6, pp.
1045–1057, 2010.

[3] I. Tosic and P. Frossard, “Dictionary learning: What is the right
representation for my signal?,” IEEE Signal Processing Magazine, vol.
28, no. 2, pp. 27–38, 2011.

[4] J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 34, no. 4, pp.
791–804, 2012.

[5] J. A. Tropp and S. J. Wright, “Computational methods for sparse
solution of linear inverse problems,” Proceedings of the IEEE, vol.
98, no. 6, pp. 948–958, 2010.

[6] K. Engan, S. O. Aase, and J. Hakon Husoy, “Method of optimal
directions for frame design,” in Proceedings of IEEE ICASSP, 1999,
vol. 5.

[7] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,” IEEE
Trans. on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[8] W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimization
(SimCO) for dictionary update and learning,” IEEE Trans. on Signal
Proc., vol. 60, no. 12, pp. 6340–6353, 2012.

[9] L. N. Smith and M. Elad, “Improving dictionary learning: Multiple
dictionary updates and coefficient reuse,” IEEE Signal Proc. Letters,
vol. 20, no. 1, pp. 79–82, 2013.

[10] S. K. Sahoo and A. Makur, “Dictionary training for sparse representation
as generalization of K-Means clustering,” IEEE Signal Proc. Letters, vol.
20, no. 6, pp. 587–590, 2013.

[11] G. H. Golub and C. F. Van Loan, Matrix computations (3rd ed.), Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[12] J. A. Tropp and A. Gilbert, “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Trans. Info. Theory, vol. 53, no.
12, pp. 4655–4666, 2007.

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

90

100

Alternation number (k)

S
u

c
c
e

s
s
fu

l 
re

c
o

v
e

ry
 (

%
)

 

 

MOD

MDU

SGK

New MOD

New MDU

New SGK

(a) s = 3

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Alternation number (k)

S
u

c
c
e

s
s
fu

l 
re

c
o

v
e

ry
 (

%
)

 

 

MOD

MDU

SGK

New MOD

New MDU

New SGK

(b) s = 4

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

100

Alternation number (k)

S
u

c
c
e

s
s
fu

l 
re

c
o

v
e

ry
 (

%
)

 

 

MOD

MDU

SGK

New MOD

New MDU

New SGK

(c) s = 5

Fig. 1. Percentage of successful recovery versus alternation number for all
algorithms at SNR = 30 dB.

0 10 20 30 40 50
8

8.5

9

9.5

10

10.5

11

11.5

12

12.5

13
Representation RMSE− Training Data

Alternation number (k)

R
M

S
E

 

 

0 10 20 30 40 50
8.5

9

9.5

10

10.5

11

11.5
Representation RMSE− Testing Data

Alternation number (k)

 

 

MOD/SGK
MDU

New MOD
New MDU
New SGK

MOD/SGK
MDU

New MOD
New MDU
New SGK

Fig. 2. RMSEs of the representations versus alternation number for training
(left) and testing (right) data.


