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An improved GraDe method for blind separation of

graph signals
Mohammad Sadeghi, Massoud Babaie-Zadeh, Senior Member, IEEE

Abstract—For blind source separation (BSS) of Gaussian graph
signals, an algorithm called GraDe (graph decorrelation) has
been introduced in [1], [2]. In the current paper, it is shown
that GraDe does not achieve a good performance for some
types of graphs. This is attributed to the estimation of covari-
ance/autocovariance matrices using signal samples, which may
not be reliable. To address this weakness, an improvement based
on the spectral representation of the signals is proposed, focusing
on removing the impact of the outlier eigenvalues. Numerical
simulations show that the proposed method outperforms the
original GraDe algorithm.

Index Terms—Graph Signal Processing, Graph Decorralation,
Blind Source Separation

I. INTRODUCTION

G
RAPHS are mathematical tools that can be used to

model the relationship of data in complicated data struc-

tures. Examples include social networks, brain connections

and sensor networks [3]. In order to deal with this type of

data structures, graph signal processing (GSP) [4] tools have

been developed, in which many ideas from classical signal

processing, e.g. filtering, frequency analysis and sampling,

are extended to graph signals [4]. In GSP frameworks, data

elements are entries associated with graph nodes, and edges

specify the dependence of these entries. In some cases, the

structure of the graph is a priori known, but in some others,

it should be learned from a data set that lies on the graph.

On the other hand, a subject in traditional signal processing

is blind source separation (BSS) [5]. In linear BSS, there

are a set of observed signals that are linear mixtures of

some statistically independent source signals, where neither

the source signals nor the mixing system is known (hence

the term “Blind”), and the goal is to retrieve the source

signals only from these observed mixed signals. When the

sources are not Gaussian, instantaneous independence of the

separated signals or maximizing their non-Gaussianity are

used to separate the sources [5]. However, when the sources

are Gaussian, utilization of these properties does not yield

to source separation, and temporal properties have also to be

exploited. For example, in [6] the time coherence of the source

signals has been used.

BSS of traditional signals can be extended to graph signals.

It is applicable when there are some source signals that lie

on one or several graphs, and not the exact sources but
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some mixtures of them are available. For example, in gene

expression analysis, regulatory network and gene expression

data (as the graph and the graph signals) can be the inputs

of a graph source separation algorithm to extract the sources,

which are interpreted as distinct biological processes [1], [7].

As another example, classical BSS has been already used for

the analysis of functional magnetic resonance imaging (fMRI)

data (see e.g. [8], [9]). By exploiting the brain connectivity

network (see e.g. [10], [11]), the problem can be changed to

a graph source separation framework.

The idea of using graph information in BSS of graph

signals, up to our best knowledge, has been introduced in [1],

in which, a graph decorrelation (GraDe) algorithm has been

developed. For this purpose, the concepts of auto-correlation

and cross-correlation in time series have been extended to

graph signals. Then, since the cross-correlation between the

latent sources on the graph is assumed to be zero, GraDe

tries to find an unmixing system that decorrelates the output

signals. In [2], GraDe has been generalized to the case in

which each source lies on a different graph. In addition, when

sources are non-Gaussian, GraDe has been combined with

other BSS algorithms like JADE [12] and FastICA [13], [14],

which exploit the non-Gaussianity of the sources for their

separation, and the resulting algorithms are called Graph Jade

and Graph FastICA [2]. Moreover, the Cramér-Rao bound

for the estimation of mixing and unmixing matrices has been

derived when the sources are Gaussian graph moving average

(GMA) signals [2]. In [15] a method has been proposed to

jointly learn the underlying graphs and separate the graph

signals, when the structure of the graphs is not a priori known.

Unlike GraDe, this method uses many graph signals of every

source, because learning graphs requires a data set of graph

signals.

To our knowledge, GraDe is the only algorithm that can be

used to separate Gaussian signals based on the information

given by graph. In this paper, we take a precise look at GraDe

and show that it contains a weakness, which results in poor

separation in some cases. This weakness mathematically arises

from the use of sample covariance/autocovariance matrices

of the graph signals as estimations for their expected values,

which may not necessarily be reliable. Then, based on the

spectral domain representation of the graph signals, we pro-

pose a new separation method, which improves GraDe when

the sources are Gaussian GMA signals. The proposed method

uses the spectral representation of the graph signals, aiming

to eliminate the impact of the outlier eigenvalues.

The paper is organized as follows. In Section II, GraDe

algorithm is reviewed from a critical point of view and a

Massoud
Text Box
Pre-Print version



2

numerical example is given to illustrate the weakness of this

algorithm. In Section III, two solutions to improve GraDe are

proposed. Section IV is devoted to numerical study of our

method and its comparison with GraDe.

II. A CRITICAL REVIEW ON GRADE

In this section, we review GraDe and illustrate how it es-

timates the covariance/autocovariance matrices of the sources

using the sample signals. We show that this estimation is not

reliable in the general case of graph structures and signals.

Then, we provide a numerical example to confirm the limita-

tions attributed to GraDe.

A. Graph decorrelation

Here, the assumptions about the sources and the mixing

model are the same as in [2]. A weighted graph G =
(N , E ,W) is defined with a set of N nodes (N ), a set of edges

E ⊆N ×N indicating the connections between the nodes, and

a set of weights (W) corresponding to the edges. The weights

are non-negative numbers. The graph can be represented by an

N ×N matrix W known as the adjacency matrix. The ij-th

entry of the adjacency matrix represents the weight between

the nodes i and j. If there is no edge between these nodes,

the entry is zero. For simplicity, the graphs are assumed to be

undirected with no self-loops. Therefore, the adjacency matrix

is symmetric, and its diagonal entries are zero. A graph signal

is a real vector x ∈ R
N , where the i-th entry, xi, represents a

value assigned to the i-th node of G.

Consider a graph G with N nodes and an adjacency matrix

W. Let z1, z2, . . . , zP ∈ R
N represent P (unknown) source

signals that lie on the graph G. This implies that the i-th entry

of zp corresponds to the i-th node of G for p = 1, 2, . . . , P .

The graph provides prior knowledge regarding the structure of

the signals and captures the relationships between the entries

of each source signal. It is important to note that each signal

is assumed to be a realization of a random vector, where

the entries are not necessarily identically distributed. The

probability distribution of the entries of the source signals

may vary depending on the graph structure and the underlying

signal-graph model, such as the Gaussian GMA model that

will be explained in Section II-B. Furthermore, the sources

are assumed to be independent of each other, which is a key

assumption in the context of BSS that enables their separation.

Let Z = [z1, z2, ..., zP ]
T

be the matrix of the P aforemen-

tioned latent sources. Thus, Z is a random matrix where each

row represents an independent source signal associated with

the graph, and the i-th column of Z corresponds to the vector

of values of the sources at the i-th node of the graph. It is

assumed that the sources have zero mean (E{zp} = 0), and

that E{‖zp‖2} = N for p = 1, 2, ..., P . Therefore, due to

the independence of the sources, the covariance matrix of the

sources, S0(Z) , N−1
E
{
ZZT

}
, is an identity matrix. As

introduced in [1], corresponding to the time shift in temporal

signals, the graph shift of the graph signal zp is defined as

Wzp. This transformation shifts the entries of the graph signal

along the direction specified by the edges of the graph. Using

this definition, ZWk = {zT1 Wk, zT2 W
k, ..., zTPW

k} is the

matrix of the k-shifted version of the sources for a positive

integer k, and the k-th autocovariance matrix of the sources

is defined as

Sk(Z,W) , N−1
E
{
ZWkZT

}
. (1)

We refer to the matrices Ŝ0(Z) , N−1(ZZT ) and

Ŝk(Z,W) , (N)−1(ZWkZT ) as the sample covariance ma-

trix and the k-th sample autocovariance matrix, respectively.

It is assumed that the observed signals are a linear mixture

of the latent sources. The matrix of observed signals X ∈
R

P×N can be modeled as the product of the source matrix

and an invertible unknown mixing matrix Ω ∈ R
P×P :

X = ΩZ. (2)

This implies that each row of X is a linear combination of

the sources with coefficients specified by the corresponding

row of Ω. The goal of source separation is to estimate the

latent sources given the observations and the underlying graph

structure. In GraDe, a minimum of P observed signals is

required to perform the source separation [2]. If the number

of observations exceeds the number of sources, a dimension

reduction technique like principal component analysis (PCA)

can be used to reduce the dimension of the observed signals

to P (see e.g., [5]). Therefore, we assume that Ω is a square

matrix.

In most BSS algorithms, the first step involves whiten-

ing the observed data [5]. This is achieved through a lin-

ear transformation of the data by a matrix H, such that

the transformed data has unit covariance [5]. Specifically,

the whitened data X̃ is obtained as X̃ = HX, satisfying

N−1
E{X̃X̃T } = IP , where IP is the P × P identity

matrix. The inverse square root of the covariance matrix,

(S0(X))−1/2 = (N−1
EXXT )−1/2 = (ΩΩT )−1/2, can be

used as a whitening matrix. This choice can be justified as

N−1
E

{
(ΩΩT )−1/2XXT (ΩΩT )−T/2

}

=N−1(ΩΩT )−1/2ΩE{ZZT }ΩT (ΩΩT )−1/2

=N−1(ΩΩT )−1/2Ω(NIP )Ω
T (ΩΩT )−1/2

=IP .

(3)

Note that the square root of a positive semidefinite matrix

like ΩΩT is not unique, so a candidate can be obtained, e.g.

by Cholesky decomposition [16]. In GraDe, such an inverse

square root of the sample covariance matrix, (Ŝ0(X))−1/2,

is used as the whitening matrix [2]. Therefore, the whitened

observation matrix is obtained as

X̃ = (Ŝ0(X))−1/2X. (4)

In other words, in GraDe, Ŝ0(X) is considered as an esti-

mate for S0(X) = ΩΩT . Similarly, N−1XXT is considered

as an estimate for N−1
E{XXT }. However, one may wonder

whether N−1XXT is a good estimate for its expected value.

The answer is generally no. Let us represent the observation

matrix by its column vectors: X = [χ1,χ2, ...,χN ]. The

entries of the random vector χn ∈ R
P are each a linear com-

bination of the values of the latent sources on the n-th node of

the graph, for n = 1, 2, ..., N . As mentioned earlier, a source
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signal can have different probability distributions on different

nodes of the graph. Moreover, the values of the sources on

different nodes are not statistically independent (actually the

graph structure is intended to represent their dependence).

Therefore, the random vectors χ1,χ2, ...,χN generally have

different probability distributions and are not independent of

each other. By expressing the sample covariance matrix of the

observations as

N−1XXT = N−1
N∑

n=1

χnχ
T
n , (5)

we observe that it represents an average of random matrices,

with each matrix corresponding to a node of the graph. These

matrices possess distinct probability distributions and are not

independent of each other. On the other hand, the sample

covariance matrix N−1
E{XXT } represents the average of

their expected values. Therefore, for no reason, the sample

covariance matrix can be considered a good estimate for the

covariance matrix of the observed data in general. This is the

first weakness that we attribute to GraDe.

It is worth noting that traditional BSS methods also estimate

the covariance matrix based on time samples of the signals, but

they make certain assumptions about the sources to ensure the

validity of this estimation. For example, in [6], it is assumed

that the sources are either deterministic autocovariance-ergodic

sequences or jointly stationary processes with diagonal autoco-

variance matrices. Similarly, the JADE algorithm [12] assumes

jointly stationary processes and consistent estimation of the

covariance matrix of the observed signals. However, applying

the same assumptions to graph signals limits the generality of

graph structures. For instance, the assumption that the sources

have the same probability distributions on different nodes of

the graph is similar to the stationarity assumption in time

signals. Nevertheless, this assumption may not hold for many

graph structures and graph signals.

If the whitening process is performed well and U∗ is a

matrix such that U∗X̃ = Z, it follows that U∗ must be

an orthogonal matrix. This is because both Z and X̃ have

identity covariance matrices. As explained in [2], the next

step in GraDe is to find an orthogonal matrix U such that

each row of UX̃ is uncorrelated with all other rows of its

graph shifted versions, UX̃Wk. To achieve this decorrelation,

the GraDe algorithm aims to make the sample covariance

matrices Ŝk(UX̃,W) = N−1(UX̃WkX̃TUT ) as diagonal

as possible, where k = 1, 2, ...,K . The objective function to

be maximized is defined as

K∑

k=1

∥∥∥diag(Ŝk(UX̃,W))
∥∥∥
2

2
=

K∑

k=1

∥∥∥diag(UŜk(X̃,W)UT )
∥∥∥
2

2
,

(6)

where the diag operator returns the vector composed of the

diagonal entries of its argument. Maximizing this objective

function leads to the diagonalization of the sample autoco-

variance matrices. This is because multiplying a matrix by an

orthogonal matrix does not alter its Frobenius norm. Thus,

maximizing the sum of squares of the diagonal entries of the

sample autocovariance matrices with respect to the orthogonal

matrix U corresponds to minimizing the sum of squares of the

off-diagonal entries.

Since the sources are assumed to be mutually independent

and have zero means, for two distinct sources zi and zj , we

have E{zTi zj} = 0 and E{zTi Wkzj} = E{zTi }Wk
E{zj} =

0. Note that E{zTi Wkzj} is the element in the i-th row and

j-th column of the matrix E{ZWkZT }. Consequently, the off-

diagonal entries of the k-th autocovariance matrix Sk(Z,W)
are zero, making it diagonal. If U∗ is an orthogonal matrix

such that U∗X̃ = Z, then the matrix Sk(U∗X̃,W) will be di-

agonal. However, GraDe aims to find an orthogonal matrix U

that makes the sample autocovariance matrices Ŝk(UX̃,W)
as diagonal as possible, rather than their expected values.

In this case, Ŝk(UX̃,W) is considered as an estimate for

Sk(U∗X̃,W). This estimation may not be valid in general, for

the same reasons mentioned earlier regarding the estimation

of the covariance matrix from the samples in the whitening

process. Consequently, the matrices Ŝk(U∗X̃,W) may not

be close to diagonal, and seeking an orthogonal matrix U that

maximizes the diagonality of the matrices Ŝk(UX̃,W) may

not yield an accurate estimation of U∗.

Note that the weaknesses mentioned about GraDe are for

the general case. It is possible that for some specific graph

structures and related graph signals the estimations that are

made in this method are fine and the separation is performed

well.

B. A numerical example

In the previous section, it is explained that GraDe uses

the sample covariance and autocovariance matrices ZZT and

ZWkZT as an estimate for their expected values E{ZZT }
and E{ZWkZT }. Here a numerical example is provided to

illustrate how inaccurate these estimations can be. In this

example, the graph is generated by Barabási-Albert (BA)

model [17] with total N = 5000 nodes, beginning with

m0 = 100 initial nodes and connecting every new node to

m = 40 existing nodes. Weights take only 1 and 0 values. It

is assumed that there are P = 4 independent sources that are

created by Gaussian GMA model. This model is widely used

in [1], [2] and [15] to generate graph signals. In this model,

the sources can be written as

zp = yp +

L∑

l=1

θl,pW
lyp, p = 1, ..., P, (7)

where yp is a vector of Gaussian independent and identically

distributed (i.i.d.) random variables with zero mean and unit

variance. The p-th source zp is equal to the sum of yp and its

graph shifted versions multiplied by the weighting coefficients

θ1,p, ..., θL,p. L indicates the order of GMA model. The vector

yp is generated independently for p = 1, 2, ..., P , and hence

the sources are independent. In our simulation, Gaussian GMA

model of order 3, i.e. GMA(3), is used to generate the sources,

and for all of them the coefficients are θ1 = 0.05, θ2 = 0.0015
and θ3 = 10−5. These coefficients are chosen such that the

mean of the variances of the entries of the shifted and scaled

versions of yp are in the same scale as of yp. The source

matrix Z = [z1, z2, z3, z4]
T

is generated this way. Fig. 1
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10−4ZZT =




1.04 −0.44 0.38 0.99
−0.44 1.36 −0.55 −1.42
0.38 −0.55 1.18 1.19
0.99 −1.42 1.19 3.85




(a)

10−6ZWZT =




0.48 −0.63 0.53 1.40
−0.63 0.98 −0.78 −2.06
0.53 −0.78 0.70 1.72
1.40 −2.06 1.72 4.60




(b)

Fig. 1. Sample covariance and autocovariance matrices for one realization of
4 sources by BA graph and GMA(3) model (a) ZZ

T /104 (b) ZWZ
T /106

shows the values of ZZT and ZWZT for one realization of

the sources. It is seen that these matrices are not diagonal,

and their values change in each realization of the sources, but

obviously their expected values are diagonal, because of the

independence of the sources. It illustrates the inaccuracy of

the estimation of the covariance and autocovariance matrices

using the samples.

Suppose now that each source has been independently

generated M times. The goal is to obtain the average of

the sample covariance and autocovariance matrices of these

independent set of sources to evaluate how their diagonality

changes as M increases. Averaged sample covariance and

autocovariance matrices can be written as

C0
M =

1

MN

M∑

m=1

ZmZT
m , C1

M =
1

MN

M∑

m=1

ZmWZT
m, (8)

where Zm denotes the matrix of the m-th realization of

the sources. A metric is required in order to measure the

diagonality of these matrices. For this purpose, a modified

Frobenius measure, as defined in [18], is employed. For a

square matrix A this measure is defined as

D(A) =
1

2

∥∥∥(Diag(A))−1/2A(Diag(A))−1/2 − I

∥∥∥
2

F
, (9)

where Diag(A) represents a diagonal matrix with the diagonal

elements identical to those of A. When A is a diagonal matrix,

D(A) will be zero. Conversely, larger values of the diagonality

measure indicate that the sum of squared off-diagonal entries

of the normalized version of A is significant.

Fig. 2 illustrates that the averaged matrices C0
M and C1

M

become more diagonal as M increases. That is because they

become more close to the covariance and autocovariance

matrices E{ZZT } and E{ZWkZT }. This example shows that

having only one version of the graph sources, as is used in

GraDe, may not be enough for the estimation of the covariance

and autocovariance matrices.

III. SOLUTIONS TO THE DRAWBACKS OF GRADE

In this section, two approaches to improve GraDe are

discussed. The first one changes the assumptions about the

sources and requires more data. The second one is a proposed

method based on the spectral domain representation of the

signals, and its assumptions are the same as of GraDe.

100 101 102 103 104
10−4

10−3

10−2

10−1

100

101

M

d
ia

g
o

n
al

it
y

(D
(.
))

C0
M

C1
M

Fig. 2. Diagonality of averaged sample covariance and autocovariance
matrices according to number of averaged matrices, M .

A. Averaging over independent realizations of the graph sig-

nals

Assume that not a single realization of the latent sources,

but rather M independent realizations of them are available.

So, there will exist M observation matrices each of which is

a mixture of one realization of the latent sources, that is,

Xm = ΩZm m = 1, 2, ...,M. (10)

The matrices X1,X2, ...,Xm are independent of each other,

and have the same probability distributions. So the average

of the sample covariance matrices (M−1N−1
∑M

m=1 XmXT
m)

can be used as an estimate for the covariance matrix

N−1
E{XXT } in the whitening process. Then after the

whitening, the average of the sample autocovariance matrices

(M−1N−1
∑M

m=1 X̃mWkX̃T
m) can be used as an estimate for

the autocovariance matrices N−1
E{X̃WkX̃t}. As the number

of the averaged matrices in averaging process increases, the

estimations becomes more accurate. In [15] the same approach

is taken and it is assumed that several independent realizations

of the signals are available, in which every realization is called

a window, and the averaging is performed over these windows.

Assuming that there exist several realizations of data, limits

the applicability of the method. In addition, assuming that

independent realizations of the sources are mixed by the same

mixing matrix is not probably realistic in some applications.

For example, in the brain mapping with fMRI, every measured

signal at each time course is a new linear mixture of the source

signals [8]. So recording more measurements does not lead to

the model presented in (10), but rather leads to the model in

(2) with a tall mixing matrix, which is an overdetermined BSS

problem.

B. Proposed method based on the spectral representation

In the second approach, only a single realization of the

sources will be used to separate them, as in GraDe. As

mentioned in Section II-A, the weakness of GraDe is that the

sample covariance and autocovariance matrices may not be a

good estimate for their expected values, so they may not be

even nearly diagonal. If a transformation is performed on the



5

signals such that the sample covariance and autocovariance

matrices of the transformed sources are more diagonal, we

will show that the transformed signals can be used to yield

a better separation result. Here the goal is to find such a

transformation, and the spectral representation of the signals

makes the problem more clear.
1) Spectral representation of GMA signals: In this ap-

proach, the sources are assumed to be Gaussian GMA signals

with unknown coefficients, and are generated as specified

in (7). The adjacency matrix W is symmetric, so its eigen

decomposition can be written as

W = VDVT , (11)

where V is the matrix of the eigenvectors of W and is

orthonormal, and D is a diagonal matrix whose diagonal

entries are the corresponding eigenvalues. By plugging (11)

into (7),

zp = V(IN +

L∑

l=1

θl,pD
l)VTyp = VD(p)ŷp, (12)

for p = 1, ..., P . The vector ŷp = VTyp is the graph Fourier

transform of yp and

D(p) , IN +

L∑

l=1

θl,pD
l (13)

is a diagonal matrix corresponding to the p-th source. The

entries of ŷp are i.i.d. random variables, because they are

jointly Gaussian and have the identity covariance matrix

(E{ŷpŷ
T
p } = VTV = IN ). For different i and j, the vectors

ŷi and ŷj are independent of each other. By using (12), the

ij-th entry of the sample covariance matrix N−1ZZT can be

written as

N−1
[
ZZT

]
ij
= N−1zTi zj = N−1ŷT

i D
(i)D(j)ŷj

= N−1
N∑

t=1

D
(i)
tt D

(j)
tt ŷi,tŷj,t, i, j ∈ {1, ..., P}, (14)

where D
(i)
tt denotes the t-th diagonal entry of D(i) and ŷi,t

denotes the t-th entry of the vector ŷi. In the same manner,

the ij-th entry of the sample autocovariance matrices can be

written as

N−1
[
ZWkZT

]
ij
= N−1zTi W

kzj = N−1ŷT
i D

(i)DkD(j)ŷj

= N−1
N∑

t=1

D
(i)
tt D

k
ttD

(j)
tt ŷi,tŷj,t, i, j ∈ {1, ..., P}. (15)

It can be seen that each entry of the sample covariance and

autocovariance matrices can be written as the weighted sum

of N i.i.d. random variables. Now, the goal is to find out how

the diagonality of the matrices is related to the weights of

these i.i.d. random variables. First, the mean and variance of

the entries of these matrices are derived. The random variables

ŷi,t have standard normal distributions and are independent of

each other, so the mean and variance of the i-th diagonal entry

of the sample autocovariance matrices can be obtained as

E{N−1
[
ZWkZT

]
ii
} = N−1

N∑

t=1

D
(i)
tt D

k
ttD

(i)
tt , (16)

Var{N−1
[
ZWkZT

]
ii
} = 2N−2

N∑

t=1

(D
(i)
tt D

k
ttD

(i)
tt )

2, (17)

and for each off-diagonal entry of the sample autocovariance

matrix (i 6= j), the mean and variance can be obtained as

E{N−1
(
ZWkZT

)
ij
} = 0, (18)

Var{N−1
(
ZWkZT

)
ij
} = N−2

N∑

t=1

(D
(i)
tt D

k
ttD

(j)
tt )2. (19)

The same expressions can be obtained for the mean and

variance of the entries of the covariance matrix by putting

k = 0.

2) Diagonality of sample matrices: According to (16)

and (18), the diagonal entries of covariance/autocovariance

matrices have a non-zero mean, whereas the off-diagonal

entries have a zero mean. Consequently, the expected value of

these random matrices is completely diagonal. However, the

diagonality of individual samples of these random matrices is

to be examined. The diagonality measure (9) for the sample

autocovariance matrices can be expressed in an alternative

form as

D(N−1ZWkZT ) =

P∑

i=1

i−1∑

j=1

(zTi W
kzj)

2

(zTi W
kzi)(zTj W

kzj)
. (20)

We define a matrix to be “nearly diagonal” if its diagonality

measure is less than a specified threshold, say D∗. The proba-

bility that a sample autocovariance/covariance matrix is nearly

diagonal depends on the probability distribution of the entries

of the corresponding random matrix. However, by considering

that the expectations of the numerators in the summation (20)

represent the variance of the off-diagonal entries, and the

expectations of the denominators correspond to the product

of the means of the two corresponding diagonal entries, it

can be intuitively inferred that as the standard deviations of

the off-diagonal entries decrease relative to the mean of the

corresponding diagonal entries, the probability of the sample

matrix being nearly diagonal increases. Thus, we will use this

ratio to clarify the proposed method in the remainder of this

section. The relationship between the expected value of the

diagonality measure in equation (20) and the ratio of moments

(the standard deviations of the off-diagonal entries to the mean

of the corresponding diagonal entries) will be numerically

examined in Section IV-B.

3) The effect of eigenvalues on diagonality: To illustrate

the impact of eigenvalues on the diagonality of sample covari-

ance/autocovariance matrices, we consider two simple cases.

In the first case, it is assumed that the eigenvalues are equal,

resulting in equal diagonal entries for matrices D and D(p)

(p = 1, ..., P ). Referring to equations (16) and (19), the mean

of the p-th diagonal entry of the k-th autocovariance matrix

becomes D
(p)
11 D

k
11D

(p)
11 , while the variance of the ij-th off-

diagonal entry becomes N−1(D
(i)
11D

k
11D

(j)
11 )

2. Consequently,

the ratio of the standard deviation of the off-diagonal entries

to the mean of the diagonal entries in this case is on the order

of O(N−1/2).
In the second case, it is assumed that only one eigenvalue

(say the first one) has a non-zero value. According to (13), in
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this scenario, only the first diagonal entry of D(p) is non-zero,

while the remaining diagonal entries are zero. Hence, in (16)

and (19), the first term of the summations has a non-zero value.

The mean of the p-th diagonal entry of the k-th autocovariance

matrix becomes N−1D
(p)
11 D

k
11D

(p)
11 , and the variance of the ij-

th off-diagonal entry is N−2(D
(i)
11D

k
11D

(j)
11 )

2, with a standard

deviation of N−1D
(i)
11D

k
11D

(j)
11 . In this case, the ratio of the

standard deviation of the off-diagonal entries to the mean of

the diagonal entries is on the order of O(1). By comparing

these two cases, it is observed that the mentioned ratio in the

first case is lower than that in the second case by approxi-

mately N−1/2. As explained above, this difference implies a

higher probability for the sample covariance/autocovariance

matrices in the second case to be nearly diagonal. It is

important to note that these are simplified cases that do not

occur in real graphs, but they serve to illustrate the impact of

the eigenvalues on the diagonality of the sample matrices.

4) Outliers in eigenvalues: Here, we aim to derive a lower

bound for the ratio of the standard deviation of the off-diagonal

entries to the mean of the diagonal entries by assuming the

presence of a subset of eigenvalues with significantly large

magnitudes compared to the remaining eigenvalues. Let N
denote the set of indices for all N eigenvalues, and L represent

the set of indices for the T largest eigenvalues. Based on (13),

each weight in the summations (16) and (19) is a polynomial

function of an eigenvalue, with the degree of the polynomial

depending on the order of the GMA model and k. Hence,

a large magnitude of an eigenvalue can result in a large

magnitude of the corresponding weight in the summations.

To formulate this, let us assume that in the summation

corresponding to the mean of each diagonal element in (16),

we have∣∣∣∣∣
∑

t∈L

D
(i)
tt D

k
ttD

(i)
tt

∣∣∣∣∣ ≥ Γ
∣∣∣D(i)

nnD
k
nnD

(i)
nn

∣∣∣ , ∀n ∈ N\L, (21)

where Γ≫ 1 is the largest value for which the above inequal-

ity holds, indicating the difference in magnitude between the

weights in L and the remaining weights.

Under this assumption, we can bound the ratio of the

standard deviation of the ij-th off-diagonal element to the

mean of the p-th diagonal element as

N−1

√∑N
t=1(D

(i)
tt D

k
ttD

(j)
tt )2

N−1
∑N

t=1 D
(p)
tt Dk

ttD
(p)
tt

≥

√∑
t∈L(D

(i)
tt D

k
ttD

(j)
tt )2

|∑t∈L D
(p)
tt Dk

ttD
(p)
tt |+

∑
t∈N\L |D

(p)
tt Dk

ttD
(p)
tt |

≥

√∑
t∈L(D

(i)
tt D

k
ttD

(j)
tt )2

|∑t∈L D
(p)
tt Dk

ttD
(p)
tt |+ N−T

Γ |
∑

t∈LD
(p)
tt Dk

ttD
(p)
tt |

=
1

1 + N−T
Γ

√∑
t∈L(D

(i)
tt D

k
ttD

(j)
tt )2

|∑t∈L D
(p)
tt Dk

ttD
(p)
tt |

=
1

1 + N−T
Γ

O(T−1).

(22)

If Γ is sufficiently large compared to N −T , the lower bound

becomes O(T−1), indicating that it depends on the cardinality

of L while the contribution of the remaining eigenvalues is

limited. Thus, if there exists a set of outliers among the

eigenvalues with a small cardinality (T ) and significantly

larger magnitudes compared to the remaining eigenvalues

(resulting in a large Γ), according to the lower bound, they will

restrict the ratio of the standard deviation of the off-diagonal

entries to the mean of the diagonal entries to be O(T−1).

5) Eigenvalue distribution of real graphs: Figure 3 illus-

trates the absolute magnitude of the eigenvalues (sorted in

decreasing order) of the adjacency matrix for five different

graph models. All graphs have N = 5000 nodes, and the

parameters used to generate the graphs will be described in

Section IV. From the plot, it is observed that the Barabási-

Albert and Erdös-Rényi [19] graphs exhibit one eigenvalue

that is significantly larger than the others. In the random sensor

[20] and geometric graph models, a few eigenvalues with large

magnitudes dominate the remaining eigenvalues. Similarly, in

the stochastic block graph model [21], three eigenvalues have

greater magnitudes compared to the others.

These observations align with previous studies in the liter-

ature on spectra of random graphs. For instance, in [22] and

[23], it is demonstrated that for an Erdös-Rényi graph with an

average degree of d = pN and the eigenvalues λ1 ≥ ... ≥ λN ,

the largest eigenvalue λ1 satisfies λ1 ≥ d, while the magnitude

of the second-largest eigenvalue, λ = max(λ2, |λN |), scales as

O(
√
d). This indicates a significant gap between the magnitude

of the largest eigenvalue and the remaining eigenvalues. In

a stochastic block graph with M blocks, [24] shows that

the M largest eigenvalues are extremal and distinct from

the rest of the eigenvalues in terms of magnitude, while the

remaining eigenvalues form a continuous part in the spectrum

of the adjacency matrix. Additionally, numerical experiments

conducted in [25] demonstrate that in Barabási-Albert graphs,

the largest eigenvalue λ1 scales with N as λ1 ∼ N1/4,

and the difference between the magnitudes of the two largest

eigenvalues scales as ∼ N−0.43.

6) Improved separation method: As explained above, these

eigenvalues with significantly large magnitudes can act as

the outliers and reduce the diagonality of the sample covari-

ance/autocovariance matrices. An idea that comes to mind is to

omit the terms corresponding with the extremely large eigen-

values in the summations (14) and (15) to make the resulting

matrices more diagonal. This idea can be formulated in a gen-

eral form. We define the weighted sample covariance matrix

of the sources as N−1ZVQ(0)VTZT and the k-th weighted

sample autocovariance matrix as N−1ZVQ(k)VTZT , where

V is the matrix of the eigenvectors and Q(k) is the diagonal

matrix of the weights for k = 0, 1, ...,K . If we put Q(0) = IN
and Q(k) = Dk, then these matrices will be the same as the

sample covariance and autocovariance matrices that are used

in GraDe. Same as (14), the ij-th entry of the weighted sample

covariance/autocovariance matrices can be written as

N−1
[
ZVQ(k)VTZT

]

ij
= N−1zTi VQ(k)VT zj

= N−1
N∑

t=1

D
(i)
tt D

(j)
tt Q

(k)
tt ŷi,tŷj,t, i, j ∈ {1, ..., P}. (23)
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(a) (b) (c)

(d) (e)

Fig. 3. Amplitude of the eigenvalues of the adjacency matrices of graph models sorted from large to small. (a) Barabási-Albert (b) Erdös-Rényi (c) random
sensor (d) geometric (e) stochastic block

If the weight Q
(k)
tt is set to zero, then the effect of the t-

th eigenvalue is eliminated in the summation. Let L be the

set of the indexes of the eigenvalues whose effects are to be

eliminated, because they have large magnitudes and act as

outliers. For example, for the graph corresponding to Fig. 3e,

L contains the indexes of the first three large eigenvalues.

Then, for k = 0, 1, ...,K , the weights are set as

Q
(k)
tt =

{
0 if t ∈ L
Dk

tt otherwise
. (24)

Note that this formulation allows for the selection of vari-

ous weight distributions. However, here our objective is to

eliminate the effect of the outlier eigenvalues. Therefore, in

(24), the remaining weights, except for those corresponding

to the outlier eigenvalues, remain the same as in the basic

GraDe. It is now expected that N−1ZVQ(0)VTZT and

N−1ZVQ(k)VTZT are more diagonal than N−1ZZT and

N−1ZWkZT .

If the matrices N−1ZVQ(k)VTZT are nearly diagonal for

k = 0, 1, ...,K and are almost equal to some diagonal matrices

Λk, by assuming model (2) for the mixing system, we have

N−1XVQ(k)VTXT ≈ ΩΛkΩ
T , k = 0, 1, ...,K. (25)

By defining Ω′ , ΩΛ
1/2
0 and H ,

(
Ω′Ω′T

)−1/2
, we have

N−1HXVQ(0)VTXTHT ≈ IP ,

N−1HXVQ(1)VTXTHT ≈ HΩ′Λ′
1Ω

′THT ,

...

N−1HXVQ(K)VTXTHT ≈ HΩ′Λ′
KΩ′THT ,

(26)

where Λ′
k = ΛkΛ

−1
0 for k = 1, ...,K . It is noted that the

matrices Λ′
k are also diagonal for k = 1, ...,K , and moreover,

the matrix U , HΩ′ is orthogonal, because according to the

definition of H we have UUT = IP . The matrix H is not

available and an estimate of it is required. According to the

first approximate equality of (25), it can be seen that Ĥ ,

(N−1XVQ(0)VTXT )−1/2 can be used as an estimate for

H. We define X̃ , ĤX, so we can write

N−1X̃VQ(0)VT X̃T ≈ IP ,

N−1X̃VQ(1)VT X̃T ≈ UΛ′
1U

T ,

...

N−1X̃VQ(K)VT X̃T ≈ UΛ′
KUT .

(27)

Let Sk , N−1X̃VQ(k)VT X̃T . Finding the orthogonal matrix

U to make the matrices UTSkU as diagonal as possible for

k = 1, ...,K is a joint diagonalization (JD) problem. We use

S̃k ,
Sk

‖Sk‖F
(28)

as the normalized version of Sk, where ‖.‖F denotes the

Frobenius norm. So the objective function to be maximized

can be defined as

f(U) =

K∑

k=1

∥∥∥diag(UT S̃kU)
∥∥∥
2

2
. (29)

The method in [26] performs the joint diagonalization based on

the Givens rotations, and minimizing its criterion is equivalent

to maximizing the objective function f(U). This JD algorithm

is used to find an orthogonal matrix Û, which is an estimate
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for U. Then, according to the definition of U, Ω′ and X̃, the

matrix Ẑ = Û−1X̃ is an estimate for Λ
−1/2
0 Z, which is an

scaled version of the graph source signals.

The final proposed graph source separation algorithm

(called improved GraDe) is summarized in Alg. 1.

Algorithm 1 Improved GraDe

Input: Adjacency matrix W, Observation matrix X, K .

Output: Estimate of graph source signals Ẑ.

1: Obtain eigenvalues of W, put the indices of the

“outlier” eigenvalues in L.

2: Specify Q(k) for k = 0, ...,K , for example use (24).

3: Ĥ← (N−1XVQ(0)VTXT )−1/2 , X̃← ĤX

4: Sk ← N−1X̃VQ(k)VT X̃T for k = 1, ...,K
5: S̃k ← Sk/ ‖Sk‖F for k = 1, ...,K
6: Use joint diagonalization algorithm in [26] to obtain

orthogonal matrix Û, which maximizes (29).

7: Ẑ← Û−1X̃

IV. NUMERICAL RESULTS

In this section, the proposed method is first compared

with the original GraDe algorithm. Subsequently, a numerical

analysis is conducted on the diagonality measure in Equation

20 and its relationship with the ratio of moments of the

autocovariance matrices.

A. Comparison with GraDe

Five different graph models are used to evaluate the pro-

posed method in Section III-B, Barabási-Albert, Erdös-Rényi,

random sensor, geometric and stochastic block1. Each result

reported in this section is average of 100 repetitions, in

each of which graphs and signals are generated anew. In

the first simulation all the graphs have N = 5000 nodes.

To generate Barabási-Albert graph m0 = 100 initial nodes

are used, in which each of initial nodes is connected to at

least m = 40 other nodes, and every new node is connected

to exactly m = 40 existing nodes. In Erdös-Rényi graph

the probability of the existence of the edge between two

nodes is set to 0.01. To generate geometric graph, a unit

square is considered and the location of every node is chosen

randomly inside the square. Nodes whose Euclidean distance

is less than the neighborhood radius of 0.1 are then connected.

Stochastic block model consists of three blocks, in which the

probability of edge existence between the nodes of each block

is considered 0.05, and this probability between the nodes of

two different blocks is considered 0.005. It is assumed that

there are P = 4 Gaussian GMA(2) sources. For p = 1, ..., P ,

the first parameter is set as θ1,p = 0.2pǫ1 to make this

parameter different for every source, and the second parameter

θ2,p is chosen randomly between 0 and 0.5ǫ2 at each repetition.

ǫ1 and ǫ2 are the normalization coefficients that depend on the

graph adjacency matrix. According to (7), the parameter ǫk is

chosen such that E{
∥∥ǫkWkyp

∥∥2} is equal to E{‖yp‖2} = N .

So by using (11) we have ǫk = (N/diag(D2k))1/2. At each

1The simulations in this section are done in Matlab-R2017b on a Windows 7
operating system, with a 2.2 GHz Core i7 processor and 8 GB DDR3 memory.
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Fig. 4. Averaged signal to distortion ratio of P = 4 separated signals for
five different graph models and two separation algorithm: proposed method
and GraDe. Sources are Gaussian GMA(2) with N = 5000 nodes.
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Fig. 5. Comparing the separation quality between GraDe and the proposed
method for different number of nodes with P = 4 Gaussian GMA(2) sources
on Barabási-Albert graph.

TABLE I
REQUIRED TIME FOR A SINGLE RUN OF TWO ALGORITHMS

N Proposed Method GraDe

500 0.049s 0.004s

1000 0.2543s 0.005s

2500 2.803s 0.009s

5000 22.316s 0.037s

repetition the entries of the mixing matrix Ω are generated

from a standard normal distribution. According to the Fig. 3,

which shows the magnitude of the eigenvalues of five men-

tioned graphs, for Barabási-Albert and Erdös-Rényi graph the

index of the first large eigenvalue is put in L, and for stochastic

block graph the indexes of the first three large eigenvalues

is put in L. For sensor network and geometric graphs the

optimum number of ignored eigenvalues is obtained from the

results of the simulations. For geometric graph the first 250

and for sensor network graph the first 400 large eigenvalues

are ignored by putting their indexes in L.

In order to measure the quality of the separated sig-

nals, signal to distortion ratio is defined as SDR =
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1/P
∑P

p=1 10 log(‖zp‖
2
/ ‖zp − αpx̂p‖2), where zp is the p-

th latent source and x̂p is the separated signal corresponding

to the p-th source. αp is a coefficient that compensates the

scale difference between the source and the separated signal

and is calculated as αp = zTp zp/z
T
p x̂p. In each simulation,

SDR is averaged over 100 repetitions. The results of the

proposed method is compared with GraDe for mentioned

graph models in Fig. 4. In both algorithms, only K = 1
sample autocovariance matrix is used for the diagonalization.

For most graph models, the proposed method yields better

SDR than GraDe, that is because the matrices used in the

joint diagonalization process of the proposed method are more

diagonal than of GraDe. In Erdös-Rényi graph, the entries

of the eigenvector corresponding to the first large eigenvalue

are almost equal, so ignoring the first large eigenvalue is

equivalent to removing the DC component of the signals,

which is performed in GraDe as the first stage. So for Erdös-

Rényi graph, the two methods are equivalent, and result in the

same SDR for the separated signals. In the second simulation,

Barabási-Albert graph is used and the sources and the mixing

matrix and the graph is generated as in the first simulation, and

the number of the graph nodes varies from 500 to 5000. As

showed in Fig. 5 by increasing the number of nodes, the SDR

of the separated signals decreases in GraDe and increases in

proposed method.

Table I presents a comparison of the time required for a

single run of two algorithms for different numbers of nodes.

The reported times are obtained by averaging over 100 runs

of the algorithms. Note that only the separation time is

considered, excluding the time for graph and signal generation.

The increased time required for the proposed method can be

attributed to the need to calculate the eigen decomposition of

the adjacency matrix, which is not required in GraDe.

B. Examining the diagonality measure

The diagonality measure, as defined in (20), quantifies the

sum of squares of off-diagonal elements, each normalized by

dividing by the corresponding diagonal elements. However, in

order to present the concept of the proposed method, we opted

for an indirect measure: the ratio of the standard deviation of

the off-diagonal entries to the mean of the diagonal entries.

To explore the relationship between the diagonality measure

and the ratio of the moments, two numerical experiments

are conducted. These experiments involve averaging over

1000 Monte Carlo realizations to obtain the expectation and

the standard deviation of the diagonality measure, and the

moments of the autocovariance matrix entries. In the first

experiment, geometric graphs with varying neighborhood radii

ranging from 0.01 to 0.7 are utilized. The number of the

graph nodes is set to N = 5000 and the generation pro-

cess for these geometric graphs remains consistent with the

previous experiments. The reason for employing geometric

graphs with different neighborhood radii is to yield distinct

values for the diagonality measure, as will be demonstrated

in the forthcoming results. For each graph, P = 4 Gaussian

GMA(2) sources are generated. The first parameter of the

model is set as θ1,p = 0.2pǫ1 for p = 1, ..., P , and the
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Fig. 6. The expected value of the diagonality measure of the first order
autocovariance matrix shows a direct relationship with the ratio of the standard
deviation of the off-diagonal entries to the mean of the corresponding diagonal
entries. Geometric graph with varying neighborhood radius are employed.

second parameter is set as θ2,p = 0.5ǫ2. The expectation and

the standard deviation of the diagonality measure of the first

order autocovariance matrix (D(ZWZT )) and the moments

of the entries of the autocovariance matrix are plotted against

the neighborhood radius in Fig. 6. The standard deviation of

the ij-th off-diagonal entry is denoted by σij , and the mean

of the i-th diagonal entry is represented as mii. An increase

in the neighborhood radius results in an augmentation of the

expectation of the diagonality measure. This is accompanied

by an increase in the ratio of the standard deviation of

the off-diagonal elements to the mean of the corresponding

diagonal elements, illustrating a direct relationship between

the diagonality measure and the mentioned ratio of moments.

In the second experiment, to generate varying values of

the diagonality measure for the autocovariance matrix, we

artificially create the graph adjacency matrix. The eigenvectors

of the adjacency matrix are chosen to be the same as those of

a geometric graph with a neighborhood radius of 0.1, and the

eigenvalues are determined as

Dtt = exp(−t/ρ) , t = 1, 2, ..., N. (30)

The parameter ρ controls the decay rate of the eigenvalues.

Smaller values of ρ lead to a faster decay of the eigen-

values, making the initial eigenvalues more significant in

terms of magnitude compared to the rest. So, as argued in

Section III-B4, a smaller value of ρ results in a larger ratio of

the standard deviation of the off-diagonal entries to the mean

of the corresponding diagonal entries. This is confirmed by

the numerical results presented in Fig. 7. Furthermore, it is

obvious that the expected value of the diagonality measure

shows a direct relationships with the ratio of the moments.

V. CONCLUSION

In this paper, we first reviewed GraDe algorithm from a

critical viewpoint, then we discussed two solutions to improve

GraDe. The second one, which is the proposed one, is a

method based on the spectral representation of the graph

signals, and is more practical than the first one, because it does
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Fig. 7. The standard deviation and the expected value of the diagonality
measure of the first order autocovariance matrix, and the ratio of moments of
the autocovariance matrix entries plotted against the decay parameter of the
eigenvalues of the adjacency matrix.

not require additional data. Numerical simulations demonstrate

that the proposed method achieves better performance in the

separation of the mixed Gaussian GMA sources.
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[3] I. Jabłoński, “Graph signal processing in applications to sensor networks,
smart grids, and smart cities,” IEEE Sensors J., vol. 17, no. 23, pp.
7659–7666, Dec. 2017.

[4] A. Ortega, “Graph signal processing: Overview, challenges, and appli-
cations,” Proc. IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[5] P. Comon and C. Jutten, Handbook of Blind Source Separation: Inde-

pendent component analysis and applications. Academic press, 2010.

[6] A. Belouchrani, K. Abed-Meraim, J. . Cardoso, and E. Moulines, “A
blind source separation technique using second-order statistics,” IEEE

Trans. Signal Process., vol. 45, no. 2, pp. 434–444, Feb. 1997.
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