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Abstract

In dictionary-learning-based classification methods, a given data point is
classified based on its representation over one or possibly more learned dic-
tionaries. The goal is to find dictionaries that minimize the classification
error. Previous works aimed to train dictionaries with representation and
classification powers by using overcomplete dictionaries and sparse coding.
These approaches are computationally expensive and do not scale readily
to problems with high dimensional data. This paper presents a dictionary-
learning-based classification method with the primary goal of classification
and not representation. We propose to train multiple undercomplete dictio-
naries (one for each class of the problem). Each dictionary approximates the
given test data, and the one with the lowest reconstruction error determines
the class. Singular value decomposition (SVD) is used to obtain a straight-
forward algorithm for the resulted optimization problem. Simulation results
show that our method achieves a higher accuracy compared with a number
of successful sparse representation based classification methods, while having
a significantly lower computational cost.

Keywords: Dictionary learning, supervised classification, undercomplete
dictionary, singular value decomposition (SVD), gradient projection.

1. Introduction

In supervised classification, the goal is to learn the general patterns and
structures of a particular multi-class dataset by using a subset of its labeled
data, called training dataset [1]. The performance of these methods is then
evaluated based on their classification accuracy on a testing dataset [1]. Su-
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pervised classification has applications in a number of domains[1], e.g. text,
audio, image, and video.

A supervised classification problem with C classes can be formulated
as follows [1]: the inputs of the problem are two sets of labeled datasets:
the training and testing datasets. These datasets can be modeled as two
matrices: Y = [y1,y2, . . .yT ] ∈ Rm×T for the training data, and Y′ =
[y′1,y

′
2, . . .y

′
T ′ ] ∈ Rm×T ′

for the testing data, where each yi and y′j for i ∈
{1, 2, . . . , T} and j ∈ {1, 2, . . . , T ′} is a sample data in Rm. The labels of
these datasets can be represented by two vectors: ` = [l1, l2, . . . , lT ]T ∈ RT

and `′ = [l′1, l
′
2, . . . , l

′
T ′ ]T ∈ RT ′

for training and testing datasets, respectively,
in which li and l′j for i ∈ {1, 2, . . . , T} and j ∈ {1, 2, . . . , T ′} are the labels
of yi and y′j, respectively, and their values are from {1, 2, . . . , C}. Based
on the training data Y and its labels, the goal is to create and optimize a
classification method Mθ(y) with a datapoint (y) as input, its estimated
labels as output and the internal parameters vector θ that maximizes

T ′∑
j=1

δ(l′j −Mθ(y′j)), (1)

where δ: R→ R is defined as

δ(x) =

{
1 x = 0,

0 x 6= 0.

One of the approaches used for supervised classification is supervised
classification based on dictionary learning (DL) [2, 3, 4, 5, 6, 7, 8]. In this
approach, a labeled data point is classified based on its representation over
one or possibly more learned dictionaries [2, 3, 4, 5, 6, 7, 8]. The representa-
tion of a datapoint y ∈ Rm over a given dictionary D ∈ Rm×n is

x = argmin
x̂

‖y −Dx̂‖2. (2)

In DL-based supervised classification, the idea is to leverage the information
in x for classification purposes, and D should be learned from the information
in the training dataset and its labels such that the classification accuracy is
maximized [2, 3, 4, 5, 7, 8].

On the other hand, in traditional dictionary learning [9, 10, 11], the goal
is to learn dictionaries that result in a sparse representation of the training
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data. More specifically, one tries to solve

(D,X) = argmin
D̂∈D,X̂∈X

‖Y − D̂X̂‖2F , (3)

where Y ∈ Rm×T is the set of training signals, D , {D ∈ Rm×n : ∀i, ‖di‖22 =
1} where n > m, and X , {X ∈ Rn×T : ∀i, ‖xi‖0 ≤ s}, in which ‖.‖F
denotes Frobenius norm. Although this approach results in dictionaries with
high signal representation ability [9, 10, 11], it is not appropriate for learning
dictionaries to be used in supervised classification. This is because in (3),
the labels of the training data have not been used at all in training the
dictionary. In other words, in learning dictionaries for classification, the
main goal is to learn dictionaries with good discrimination abilities rather
than good representation abilities. So, in learning dictionaries to be used in
DL-based supervised classification [2, 3, 4, 5, 6, 7, 8], the label information
should be incorporated in dictionary learning to find a D that maximizes the
classification accuracy.

There are a number of attempts to incorporate the label information in
dictionary learning and use the resulted dictionaries for supervised classifica-
tion problems [2, 3, 4, 5, 6, 7, 8], which are all based on learning overcomplete
dictionaries with both representation and discrimination power. Most of the
previous attempts [4, 2, 5, 3] have treated the problem as two separate stages.
In the first stage, they optimize a dictionary with representational power
and then train a classifier based on it. Some approaches such as DKSVD
[7], LCKSVD-1 and LCKSVD-2 [8], apply joint learning by using a unify-
ing formulation for simultaneously training an overcomplete dictionary and
a linear classifier. The authors of [12, 13] suggest to simultaneously learn an
analysis dictionary along with a structured synthesis dictionary and a linear
classifier in order to find the sparse representation of data more efficiently.
In [14], a deep DL-method for image representation and classification is in-
troduced. In this work, multiple dictionaries are learned in a multi-layer
manner along with a softmax classifier for extracting hierarchical informa-
tion hidden in data to have models with strong representational and discrim-
inational abilities. In [15], DL and convolutional Neural Networks (CNN)
[16] are integrated to improve representation learning. Another approach [2]
trains multiple overcomplete dictionaries, one for each class of the dataset. It
uses the reconstruction error as the classification criterion. More specifically,
given a test data point y, it solves (2) for every dictionary and calculates
the estimates of the given test data point as yi = Dixi for i = {1, 2, . . . , C},
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where C is the number of classes in the problem. The one with minimum
reconstruction error (i.e. minimum ei , ‖y − yi‖2) determines the label of
the data.

The papers [17, 18, 19, 20] use DL for re-identification purposes. In these
works, the problem is to re-identify a person in an image/video from one
camera to an image/video in another camera. They learn a pair of trans-
forms to match the feature spaces of both inputs and a pair of dictionaries for
coding the features jointly in a formulation for both representation and dis-
crimination. The coded features are then used for re-identifying the person.
In [21, 22], representation learning is used for multi-view data classification.
In [23] the DL is used for classification of multi-spectral images. The authors
of [24] use DL for image annotation. This work proposes a DL algorithm that
simultaneously learns a label embedding transform and an overcomplete dic-
tionary. The annotations are then determined by the sparse representation
of embedded testing data.

In sparse representation-based classification (SRC) [6], an overcomplete
dictionary is directly created from the training samples. It forms a dictio-
nary as D = [D1,D2,D3, . . .DC ] where each Di for i ∈ {1, 2, . . . , C} is a
submatrix consisting of a subset of training samples corresponding to the ith

class. It assumes that a test sample belonging to the ith class is well approx-
imated by the subspace spanned by the columns of Di. By this assumption,
the sparse representation of a test data of the ith class over D is expected to
have significant values corresponding to the atoms of Di and zero or near-
zero values otherwise. Using this assumption, SRC solves (5) for each test
data to find the sparse representation. The sparse representation and the
reconstruction error criterion is then used to classify the test data. Although
SRC performs well for face recognition applications, it has a few practical
drawbacks:

1. To improve the performance of this algorithm, one requires a large
dictionary with a large number of training samples for each class [7].
But a large dictionary degrades the performance of sparse solvers [7]. It
is also computationally expensive due to a large number of parameters
(dictionary atoms).

2. In order to have a good performance, the dictionary atoms must be
selected carefully to make sure the atoms span the subspace of each
class of the dataset fairly well [7].

One of the problems of sparse representation based dictionary learning
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methods for both representation and discrimination is their computational
complexity. In order to find the sparse representation, one has to solve

x̂ = argmin
x
‖x‖0 s.t. y = Dx, (4)

where ‖.‖0 is the `0-norm (i.e. the number of non-zero entries), y ∈ Rm is
the test data and D ∈ Rm×n where n > m is the dictionary. This problem
has a unique solution under some mild conditions [25]. However, it is not
computationally tractable[26]. So, it is usually replaced by [27]

x̂ = argmin
x
‖x‖1 s.t. y = Dx, (5)

and it is shown [28, 29, 30] that its solution is equal to the solution of (4),
provided that it is sparse enough. The problem (5) can be solved in poly-
nomial time [31]. Although finding the solution of (5) is tractable, it is still
highly computationally demanding, especially when the data dimension is
large.

In this paper, inspired by the idea of learning a separate dictionary for
each class of the classification problem [2], and using the reconstruction error
as the classification criterion [2, 6], we propose to learn multiple undercom-
plete dictionaries (one for each class of the dataset) to have an accurate and
computationally efficient DL-based classification method. Our simulation re-
sults demonstrate that our method has a significantly lower computational
cost compared with SRC [6], DKSVD [7], LCKSVD-1 and LCKSVD-2 [8],
while it achieves even higher classification accuracies.

The main contributions of this paper can be viewed in two perspectives.
Firstly, in contrast to previous DL-based supervised classification schemes
that use overcomplete dictionaries (dictionaries with more columns than
rows), our approach is based on undercomplete dictionaries (dictionaries with
fewer columns than rows). To our best knowledge, undercomplete dictionar-
ies have not previously been used for DL-based supervised classification prob-
lem. Undercomplete dictionaries have fewer parameters than overcomplete
dictionaries, making them computationally more efficient. More importantly,
as will be stated in Section 3, finding the representation of a signal over an
undercomplete dictionary is easily computed by a linear operation, while for
overcomplete dictionaries, (4) has to be solved, which is a computationally
demanding task. As a result, our method has a significantly lower training
and classification costs, while achieving even a better accuracy. These prop-
erties make our method suitable for applications where fast classification is
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required, applications where constant learning is required (e.g. when new
training data are acquired in real-time) and applications where computer
storage is a constraint.

Secondly, an algorithm for learning optimal undercomplete dictionaries
from a set of training data is introduced based on singular value decomposi-
tion.

The paper is organized as follows. In Section 2, the main idea is for-
mulated, and then in Section 3 the final algorithm is developed. Finally,
Section 4 is devoted to experimental results. Simulations are performed on a
synthetic data, on MNIST dataset [32], and on Fashion MNIST dataset [33].

2. The Main Idea

Given a set of labeled training data, the goal is to train multiple under-
complete dictionaries (one for each class) to minimize the classification error
based on the minimum reconstruction error criterion. More specifically, with
Y = [y1,y2, . . .yT ] ∈ Rm×T as the training dataset with corresponding la-
bels ` = [l1, l2, . . . , lT ]T ∈ RT , in which each li for i ∈ {1, 2, . . . , T} is from
{1, 2, . . . , C}, the goal is to simply learn a set of undercomplete dictionaries
Dj ∈ Rm×n, (m > n) for j = {1, 2, . . . , C} such that Dj minimizes the repre-
sentation error of the training data of the jth class. Classification criterion is
then the reconstruction error. More precisely, the estimated label of a given
datapoint y is

argmin
j
‖y −Djxj‖2 for j ∈ {1, 2, . . . , C}, (6)

in which xj ∈ Rn is the representation of y over Dj, that is,

xj = argmin
x
‖y −Djx‖2 for j = {1, 2, . . . , C}. (7)

For each class of the training data, the problem can be summarized as
learning an undercomplete dictionary that minimizes the signal reconstruc-
tion error. This problem should be separately solved for each class of the
dataset, resulting in a set of optimal undercomplete dictionaries, one for
each class of the dataset.

Although an approach is already available for learning an undercomplete
dictionary from a set of training signals [34], it has a sparsity constraint on
the signal representation. So, this method does not utilize the full represen-
tational capability of an undercomplete dictionary since it uses only a limited
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number of atoms for representing a signal. In fact, as is presented in the fol-
lowing section, the optimal representation over an undercomplete dictionary
is not necessarily sparse. Thus, the following section provides an approach
for learning undercomplete dictionaries without the sparsity constraint, and
it ends up with an undercomplete dictionary learning algorithm.

3. Learning Undercomplete Dictionary

In this section, an approach for learning an undercomplete dictionary,
for a particular class of the dataset, is presented. Our cost function for this
dictionary learning problem is the total reconstruction error, that is,

Ec =
Tc∑
i=1

‖yc
i − ŷc

i‖2F , (8)

where yc
i is the ith element of Yc = [yc

1,y
c
2, . . .y

c
Tc

] ∈ Rm×Tc , which is the
dataset corresponding to the cth class of the problem where c ∈ {1, 2, . . . , C},
and ŷc

i is the best approximate of yc
i in terms of a linear combination of the

columns of Dc ∈ Rm×n. So, ŷc
i = Dcx

c
i where

xc
i = (DT

c Dc)
−1DT

c yc
i , (9)

provided that the columns of Dc are linearly independent [35] (equivalently,
provided that Dc has non-zero singular values). We assume that this con-
dition holds for Dc through the rest of this section. As (9) shows, xc

i is not
necessarily sparse. By using (9),

‖yc
i − ŷc

i‖22 = ‖yc
i −Dcx

c
i‖22 (10)

= ‖(I−Dc(D
T
c Dc)

−1DT
c )yc

i‖22,

and hence

Ec =
Tc∑
i=1

‖(I−Dc(D
T
c Dc)

−1DT
c )yc

i‖22. (11)

The goal is now finding a Dc that minimizes Ec.
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3.1. Cost function simplification using singular value decomposition

To simplify the cost function in (11), we use singular value decomposition
(SVD) [35]. The SVD of an arbitrary matrix A ∈ Rm×n is given as

A = UΣVT , (12)

where U ∈ Rm×m and V ∈ Rn×n are orthonormal (unitary) matrices, and
Σ ∈ Rm×n is a diagonal matrix with non-negative diagonal values. By using
the SVD of Dc, that is Dc = UcΣcV

T
c , (11) becomes

Ec =
Tc∑
i=1

‖(I−UcΣc(Σ
T
c Σc)

−1ΣT
c UT

c )yc
i‖22

=
Tc∑
i=1

‖(I−UcBcU
T
c )yc

i‖22, (13)

where Bc , Σc(Σ
T
c Σc)

−1ΣT
c . It is easy to see that Bc ∈ Rm×m is of the

form

Bc =

(
In 0n×(m−n)

0(m−n)×n 0(m−n)×(m−n)

)
, (14)

and
B2

c = Bc = BT
c . (15)

As (13) shows, the total reconstruction error (Ec) of an undercomplete dic-
tionary Dc ∈ Rm×n depends only on its right singular matrix Uc. By using
this simplification, the optimization problem can be summarized as

minimize
Uc

{Ec ,
Tc∑
i=1

‖(I−UcBcU
T
c )yc

i‖22}

s.t. UT
c Uc = I

(16)

3.2. Optimization Algorithm

The optimization problem (16) is a constrained non-convex optimization
problem [36]. To solve this problem, we use a Gradient Projection (GP)
approach [37, Chapter 2]. Each iteration of GP consists of two steps: an
iteration of gradient descent, followed by projection onto the feasible region.
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The gradient descent step of our problem requires the derivative of Ec

with respect to Uc. This can be calculated as

dEc

dUc

=
d

dUc

Tc∑
i=1

‖(I−UcBcU
T
c )yc

i‖22, (17)

=
d

dUc

Tc∑
i=1

(yc
i )

T [I− 2UcBcU
T
c + UcB

2
cU

T
c ]yc

i , (18)

=
d

dUc

Tc∑
i=1

‖yc
i‖22 − (yc

i )
TUcBcU

T
c yc

i , (19)

= − d

dUc

(
Tc∑
i=1

(yc
i )

T

n∑
j=1

uj
c(u

j
c)

Tyc
i ), (20)

= −2YcY
T
c C, (21)

where (18) follows from the orthonormality of Uc, and (19) follows from (15).
In (20), uj

c denotes the jth column of Uc. In (21), C , [Un
c | 0m×(m−n)], where

Un
c is the matrix composed of the first n columns of Uc.

The projection step for our problem is the solution of the following prob-
lem: Given an arbitrary square matrix A with singular value decomposition
A = UAΣAVT

A, find Â such that

Â = argmin
Ã

‖A− Ã‖F s.t ÃT Ã = I. (22)

The solution of (22) is Â = UAVT
A [38, p. 327].

3.3. Choosing Σc and VT
c

As (16) shows, the cost function depends only on the right singular matrix
of an undercomplete dictionary. In other words, given a specific orthonormal
matrix Uc ∈ Rm×m, regardless of the choice of a tall diagonal matrix Σc ∈
Rm×n with positive diagonal entries, and an orthonormal matrix Vc ∈ Rn×n,
any undercomplete dictionary formed by Dc = UcΣcV

T
c results in the same

value of the total reconstruction error.
Therefore, solving (16) provides only the right singular matrix of the

optimum undercomplete dictionary. To complete the solution, a diagonal
Σc ∈ Rm×n with positive values along the main diagonal, and an orthonormal
Vc ∈ Rn×n should be chosen. A strategy is to choose them randomly, but
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the structure of the atoms in the final dictionary depends on this choice. A
desired property of a dictionary is to have orthogonal atoms with unit `2-
norms. In the following, Theorem 1 provides an approach to choose Σc such
that the final dictionary has orthogonal atoms with unit `2-norms and shows
that this is independent of Vc. Then, Theorem 2 shows that the choice of Vc

has no impact on the subspace spanned by the atoms of the final dictionary.

Theorem 1. Given an orthonormal matrix U ∈ Rm×m, by choosing a tall
diagonal matrix Σ ∈ Rm×n with 1’s on the main diagonal, and an arbitrary
orthonormal matrix V ∈ Rn×n, the undercomplete dictionary D = UΣVT

has orthogonal atoms with unit `2-norms.

Proof. Given an undercomplete dictionary D ∈ Rm×n, the entries of the
main diagonal of DTD are squares of the `2-norms of the atoms of D, and
off-diagonal values are the inner products of the dictionary atoms. Choosing
Σ ∈ Rm×n as in the theorem results in ΣTΣ = I. So

DTD = (VΣTUT )(UΣVT ) = VΣTΣVT = VVT = I, (23)

which shows that the columns of D are orthogonal, and are of unit `2-norms.

Theorem 2. Given an orthnormal matrix U ∈ Rm×m and choosing a tall
diagonal matrix Σ ∈ Rm×n with non-negative values along the main diagonal,
regardless of the choice of an orthonormal matrix V ∈ Rn×n, the atoms of
the dictionary D = UΣVT span the same subspace.

Proof. The result is simply established by noting that from D = UΣVT ,
every column of D is a linear combination of the columns of UΣ.

Putting all the results of this section together, the final algorithm of
learning an undercomplete dictionary for the cth class of data is obtained as
summarized in Algorithm 1. In Algorithm 1, D0

c is the initial dictionary, i.e.
the starting point of the algorithm, which is chosen randomly, Imn ∈ Rm×n

is a matrix with ones along the main diagonal and zeros elsewhere, in which
n < m is the number of dictionary atoms. This number can be chosen
based on the available computational capability or by fine tunning to obtain
the best classification rate on the testing data. Moreover, µ and N are the
user-selected step-size and the number of iterations of the Gradient Descent
step of the Gradient Projection algorithm, and Ci−1 , [Ui−1

c,n | 0m×(m−n)], in
which Ui−1

c,n is a matrix composed of the first n columns of Ui−1
c .
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Algorithm 1 Undercomplete Dictionary Learning Algorithm.

Inputs:
Yc ∈ Rm×T , µ, n, N

Initialize:
D0

c

Calculations:
U0

c ,Σ
0
c , (V

0
c)

T ← SVD(D0
c)

for i = 1 : N do
Ûi

c ← Ui−1
c + µYcY

T
c Ci−1

Ui
c ← proj(Ûi

c)
end for
Dc ← UN

c Imn(V0
c)

T

return Dc

4. Simulations

In this section, simulation results on a synthetic dataset, the standard
MNIST dataset [32] and the Fashion-MNIST dataset [33] are presented. In
theses simulations, the classification accuracy, the training time, the classifi-
cation time and the mean square error (MSE) are reported. The classification
accuracy measures how well our model predicts the label of the samples in
the testing dataset and is calculated in percent as

Number of samples classifed correctly

Total number of samples
× 100.

The training time is the average required time for a model to be trained, and
the classification time is the average runtime required to classify a single test
data, and they are used as a rough measure of computational complexity.
The MSE assesses the representational ability of the resulted dictionaries.
Given a set of datapoints [y1,y2, . . . ,yT ] and a dictionary D, the MSE is
defined as

1

T

T∑
i=1

‖yi − ŷi‖22,

in which ŷi = D(DTD)−1Dyi is the best approximation of yi in terms of a
linear combination of the columns of D in the `2-norm sense.

The simulations are done using MATLAB R2018b environment on a sys-
tem with Windows 10 operating system with a 4.2 GHz Intel core i7-7700K
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CPU and 16 GB of RAM. Our simulations will demonstrate the perfor-
mance of our method compared with SRC[6], DKSVD[7], LCKSVD-1[8],
LCKSVD-2[8] and structured analysis and discriminative dictionary learn-
ing (ADDL)[13].

4.1. Simulation on Synthetic Data

For the synthetic dataset, a classification problem with ten classes is de-
fined. In order to create the training dataset of the ith class with T samples,
three random matrices Ai ∈ Rm×s, Bi ∈ Rs×T and Ci ∈ Rm×T with inde-
pendent identically distributed (i.i.d) entries drawn from a probability dis-
tribution N (0, 1) are generated. The dataset for the ith class is then created
as

Yi = AiBi + αCi, (24)

in which m and s are fixed to be 100 and 30 for these simulations. Assuming
α to be zero, by creating the dataset in this manner, the datapoints of each
class (i.e. the columns of Yi) lie in a particular s-dimensional subspace of
Rm, and therefore they are theoretically separable. The parameter α is then
used to investigate the effects of noisy training data on our algorithm by
controlling the additive noise variance.

Figure 1 depicts the MSE of the first four undercomplete dictionaries
for the classification problem with synthetic data for various step-sizes µ
(learning rates). The number of training data for each class is 1000, and
each dictionary has 50 atoms, and 20 iterations of the GP is performed. As
Fig. 1 shows, our algorithm is fairly robust to the choice of the step-size. It
converges to a solution with µ = 0.01 and µ = 1 with relatively the same
rate.

Figures 2 and 3 demonstrate the classification accuracy of our method on
synthetic data for different step-sizes and a different number of training data
for a various number of dictionary atoms per class. A set of 1000 test data
(100 for each class) is used to calculate the accuracy in these simulations. As
Fig. 2 shows, our method is again robust to the choice of the step-size.

Figure 4 shows the performance of our method when the given training
data is noisy. This simulation is performed by changing the value of α in
(24). For this simulation, α ∈ {10, 20, 30}. The noise-free case is also added
for comparison. As Fig. 4 shows, our method is fairly robust to the additive
white Gaussian noise.

Figures 5 and 6 depict the performance of our method in comparison with
SRC [6], DKSVD [7], LCKSVD-1, LCKSVD-2 [8] and ADDL[13]. Figure 5

12



0 2 4 6 8 10 12 14 16 18 20

Number of Iterations

42

43

44

45

46

47

48

M
S

E

Dictionary 1 (Class 1)

step-size = 0.01

step-size = 0.1

step-size = 1

0 2 4 6 8 10 12 14 16 18 20

Number of Iterations

42

44

46

48

M
S

E

Dictionary 2 (Class 2)

step-size = 0.01

step-size = 0.1

step-size = 1

0 2 4 6 8 10 12 14 16 18 20

Number of Iterations

42

43

44

45

46

47

48

M
S

E

Dictionary 3 (Class 3)

step-size = 0.01

step-size = 0.1

step-size = 1

0 2 4 6 8 10 12 14 16 18 20

Number of Iterations

40

42

44

46

48

M
S

E

Dictionary 4 (Class 4)

step-size = 0.01

step-size = 0.1

step-size = 1

Figure 1: MSE for the first four undercomplete dictionaries for classification
problem with synthetic data of Section 4.1 for various step-sizes. The number of

training samples is 1000 for each class, the number of the atoms of each
dictionary is 50. The GP’s step-size is 0.1.
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Figure 2: Classification Accuracy for various step-sizes and various number of
dictionary atoms per class. The number of training samples is 1000 for each class,

the number of testing samples is 100 for each class. The GP’s step-size is 0.1
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Figure 3: Classification Accuracy for various number of training data and various
number of dictionary atoms per class. The number of training samples

∈ [5, 10, 15, 20, 25, 30] for each class, the number of testing samples is 100 for each
class. The GP’s step-size is 0.1.
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Figure 4: Classification Accuracy for various number of dictionary atoms per
class with noisy training data. The noise is additive white Gaussian. The

number of training samples is 1000 for each class and the number of testing
samples is 100 for each class. The GP’s step-size is 0.1

15



demonstrates the classification accuracy of our method in comparison with
these methods for various dictionary sizes. As discussed, the dictionary in
SRC, DKSVD, LCKSVD-1 and LCKSVD-2 is overcomplete. Therefore, there
is a lower limit for the number of atoms in each submatrix Di. Our method
does not have such a lower limitation. As Fig. 5 shows, our method has bet-
ter accuracy with much fewer dictionary atoms. Figure 6 depicts the average
time required to classify a single test data, which shows that our method
is faster by around 4 orders of magnitude than SRC and by more than 1
order of magnitude than DKSVD, LCKSVD-1 and LCKSVD-2. The main
reason for this difference is that in our method, finding the representation of
the test data is achieved by projection matrix multiplication, while in SRC,
solving an `1-norm minimization problem as (5) is required. This operation
is highly more time consuming than a single matrix multiplication. DKSVD,
LCKSVD-1 and LCKSVD-2 are faster than SRC because they use orthogo-
nal matching pursuit (OMP) [39] for finding the sparse representation of a
signal, but they are still slower than our proposed method. As Fig. 6 shows,
the classification time of our method and ADDL are very close. However our
method has a significantly higher classification rate according to Fig. 5 An-
other observation from Fig. 6 is that the rate of problem complexity growth
with respect to the number of parameters of our method is less than SRC,
DKSVD, LCKSVD-1 and LCKSVD-2. Figure 7 depicts the required training
time of our method compared with DKSVD, LCKSVD-1 and LCKSVD-2,
and ADDL. Each method is trained on the training dataset until conver-
gence (which was 10 iterations for DKSVD, LCKSVD-1, LCKSVD-2 and
our method).

4.2. Simulation on MNIST and Fashion-MNIST datasets

In this part, simulation results of our method on the MNIST [32] and
Fashion-MNIS datasets are presented. MNIST is a dataset of handwritten
digits (0-9) and Fashion-MNIST is a dataset of fashion objects in ten cat-
egories. Each dataset consists of 60000 training samples and 10000 testing
samples. Each sample is a 28× 28 image. Figures 8 and 9 show 16 samples
of each dataset. Figures 10 and 11 demonstrate the classification accuracy
of our method compared with SRC, DKSVD, LCKSVD-1, LCKSVD-2 and
ADDL for various number of dictionary atoms per class for MNIST and
Fashion-MNIST datasets, respectively. For these simulations, each image
sample in each dataset is transformed to a vector by placing its columns
sequentially. The classification accuracy for these simulations is obtained
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Figure 5: Classification Accuracy of our method in comparison with SRC,
DKSVD, LCKSVD-1, LCKSVD-2, and ADDL for various number of dictionary

atoms per class. The number of training samples is 1000 for each class. The
number of testing samples is 100 for each class. The step-size of GP is 0.1.
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Figure 6: Required time to classify a single test data for various number of
dictionary atoms per class in logarithmic scale. The number of training samples
is 1000 for each class, and the number of testing samples is 100 for each class.

The step-size of GP is 0.1.
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Figure 7: Required training time for various number of dictionary atoms per class
in logarithmic scale. The number of training samples is 1000 for each class, and
the number of testing samples is 100 for each class. The step-size of GP is 0.1.

by evaluating 200 randomly selected samples from the testing data of each
dataset. In these simulations, the step-size of GP is 0.1 and each method is
trained until convergence. Figures 10 and 11 depict the classification accu-
racy of our method compared with SRC, DKSVD, LCKSVD-1, LCKSVD-2
and ADDL. They also show that the methods based on overcomplete dic-
tionaries require a minimum number of atoms for each class to ensure that
their resulted dictionary is overcomplete, while our method does not have
such a limitation and can operate with very small number of atoms starting
from one. These simulations also demonstrate that increasing the number
of dictionary atoms does not always increase the classification performance.
This is because a more complex model (i.e. with more trainable parameters)
is more vulnerable to overfitting [16], that is, although it would fit to the
training data better, it may fail to generalize to the testing data.

Figures 12 and 13 depict the classification time of our method compared
with SRC, DKSVD, LCKSVD-1, LCKSVD-2 and ADDL for MNIST and
Fashion-MNIST datasets, respectively, and Figures 14 and 15 demonstrate
the required training time of our method compared with DKSVD, LCKSVD-
1, LCKSVD-2 and ADDL on both datasets (note that SRC has no training).
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Figure 8: 16 samples of the MNIST dataset.

Figure 9: 16 samples of the Fashion-MNIST dataset.
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Figure 10: Classification Accuracy of our method in comparison with SRC,
DKSVD, LCKSVD-1, LCKSVD-2 and ADDL on MNIST dataset for various

number of dictionary atoms per class. The number of testing samples is 200. The
step-size of GP is 0.1.
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Figure 11: Classification Accuracy of our method in comparison with SRC,
DKSVD, LCKSVD-1, LCKSVD-2 and ADDL on Fashion-MNIST dataset for

various number of dictionary atoms per class. The number of testing samples is
200. The step-size of GP is 0.1.
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Figure 12: Classification time of our method in comparison with SRC, DKSVD,
LCKSVD-1, LCKSVD-2 and ADDL on MNIST dataset for various number of

dictionary atoms per class. The number of testing samples is 200. The step-size
of GP is 0.1.

As these figures show, our method has a significantly lower computational
cost in both training and classification phases compared with SRC, DKSVD,
LCKSVD-1 and LCKSVD-2. The reasons for this is that our method is based
on undercomplete dictionaries rathar than overcomplete dictionaries, thus
there are less parameters involved in computations. Furthermore, finding the
representation of data over an undercomplete dictionary is readily achieved
by a matrix multiplication, while in the sparse representation based methods,
problem (4) should be solved, which is computationally demanding. For these
reasons, our method has a highly less computational volume in both training
and testing phases. As the Figs. 12, 14, 13 and 15 show, ADDL is slightly
faster in training and testing time compared with our method. However, the
simulations show that our method outperforms ADDL in classification rate
on both synthetic and MNIST datasets.

5. Conclusions

DL-based classification methods with both representation and classifica-
tion goals suffer from the computational complexity. In this paper, a DL-
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Figure 13: Classification time of our method in comparison with SRC, DKSVD,
LCKSVD-1, LCKSVD-2 and ADDL on Fashion-MNIST dataset for various

number of dictionary atoms per class. The number of testing samples is 200. The
step-size of GP is 0.1.
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Figure 14: Training time of our method in comparison with DKSVD,
LCKSVD-1, LCKSVD-2 and ADDL on MNIST dataset for various number of

dictionary atoms per class. The number of testing samples is 200. The step-size
of GP is 0.1.
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Figure 15: Training time of our method in comparison with DKSVD,
LCKSVD-1, LCKSVD-2 and ADDL on Fashion-MNIST dataset for various

number of dictionary atoms per class. The number of testing samples is 200. The
step-size of GP is 0.1.

based classification method was introduced, which is based on undercomplete
dictionaries and has the sole purpose of classification. We used singular value
decomposition to provide an algorithm for the resulted optimization prob-
lem. Simulation results demonstrated that our method has a significantly
lower computational cost compared with a number of related methods, while
achieving even better classification accuracies.
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