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Graph signal separation based on smoothness or
sparsity in the frequency domain

Sara Mohammadi, Massoud Babaie-Zadeh, Dorina Thanou

Abstract—In this paper, we study the problem of demixing
an observed signal, which is the summation of a set of signals
that live on a multi-layer graph, by proposing several methods
to decompose the observed signal into structured components.
For this purpose, we build on two of the most widely-used graph
signal models’ assumptions, namely smoothness and sparsity in
the graph spectral domain. We firstly show that a vector can be
uniquely decomposed as the summation of a set of smooth graph
signals, up to the indeterminacy of their DC values. So, if the
original signals are known to be smooth, it is expected that with
such a decomposition all of the original signals are retrieved.
From the blind source separation (BSS) point of view, this is like
the separation of a set of graph signals from a single mixture,
contrary to traditional BSS in which at least two observed
mixtures are typically required. Then, the approach is generalized
to a wider family of graph signals, which are not necessarily
smooth, but exhibit some sparse frequency characteristics in the
graph spectral domain. Numerical simulations confirm the good
performance of our approach in separating a mixture of graph
signals.

Index Terms—graph signal separation, blind source separation,
graph signal processing, multi-layer graphs.

I. INTRODUCTION

IN COMPLEX structures, such as social and sensor net-
works, relationship between the data can be described by

a graph. In the emerging field of graph signal processing
(GSP) [1], [2], graphs are used as prior information to mitigate
data analysis, and many classical digital signal processing
concepts have been generalized to graph signals [1], [2].
In more complicated structures like transportation [3] and
biological [4], [5] networks, multiple types of relationships
can exist between data samples. In these cases, multi-layer
graphs that consist of several graph layers with the same nodes
but different connectivity patterns are appropriate tools for
encoding various forms of relations [6].

On the other hand, blind source separation (BSS) [7] is a
field in signal processing in which the goal is to retrieve a set
of source signals from a set of their mixtures without having
any information about the mixing process or the original
sources (hence the term ‘blind’). BSS problems have various
applications in different domains, e.g. image processing and
communications [7]. In BSS, the number of observed (mixed)
signals is typically more than one, and in many papers, the
number of observed signals is assumed to be greater than or
equal to the number of sources.
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Since the emergence of GSP, some researchers have tried
to extend BSS methods to graph signals. In [8], [9], [10],
[11], [12], [13] a second order BSS approach (based on joint
diagonalization of graph autocovariance or autocorrelation
matrices) is generalized to graph signals. In their approach, as
in many traditional BSS papers, the number of the observed
signals is assumed to be equal to the number of sources.

In this work, we consider the following graph signal sepa-
ration problem: Let x1, . . . ,xK ∈ RN be graph signals over
separate layers of a known K-layer graph and x ,

∑K
i=1 xi.

Graph layers shown by G1, . . . ,GK are known, undirected, and
connected graphs that have the same nodes but are different in
their connectivity patterns. The layer signals xi, i = 1, . . . ,K
are not known, and only their summation, i.e. x, is observed.
The goal is then to retrieve x1, . . . ,xK from the observed
signal x, probably by having extra assumptions on xi’s, for
example, their smoothness or their sparsity in the frequency
domain. This problem is actually a BSS problem of graph
signals from only one observed mixture.

To further clarify the problem, consider the following il-
lustrative example. Suppose that the number of infections of
an epidemic disease such as COVID-19 in N cities is known
and is denoted by x ∈ RN . These cities lay on K different
known transportation networks (flights, trains, etc), each of
which has N nodes and can be considered as a layer of a multi-
layer graph. The number of infections over different cities that
spread through the transportation network i can be considered
as an (unknown) graph signal xi residing on the nodes of i-th
graph layer. The total observed number of infections, x, can
then be attributed to the sum of infections captured at each
graph layer, i.e., x1, . . . ,xK . These layer graph signals are
unknown, and only the total number of infections in each city,
x, is observed. The goal is then to retrieve the original graph
signals x1, . . . ,xK from x, and understand the contribution of
each transportation network to the total number of infections.
In this problem, the unknown layer signals (xi’s) can be
assumed to be smooth on their layer graph, because if two
cities are heavily connected on a transportation network, it is
expected that the infections due to this transportation network
in these two cities are relatively close.

In this paper, we firstly show that, under some mild as-
sumptions and indeterminacies, x can be uniquely decomposed
into the summation of a set of smooth graph layer signals xi.
So, if the original layer signals xi are known to be smooth
graph signals, it is expected that with such a decomposition, all
of the original signal components are retrieved. Note that no
statistical independence between the components is assumed;
only their smoothness is exploited. Moreover, in the second
part of the paper, even the smoothness assumption is relaxed
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and replaced either with the assumption that the frequency
supports, i.e. the indices of non-zero frequency components,
of the graph signals are known a priori, or with the assumption
that all graph signals are sparse in the frequency domain with
nearly similar frequency supports.

From the BSS point of view, this consists in separating a set
of source signals by having only one mixture of them. Note
that our approach (and the uniqueness of decomposing a signal
into a set of smooth signals) has no counterpart in traditional
digital signal processing. Actually, although traditional digital
signals are special cases of graph signals, our approach cannot
be used for the separation of traditional digital signals from
only one mixture, because traditional digital signals reside all
on the same graph. However, here we are implicitly exploiting
the difference of graphs on which the underlying smooth
signals reside.

Up to our best knowledge, there is only one paper [14]
that addresses the demixing of multiple graph signals from
only one mixture, but for very specific source signals: In our
work, the graph layer signals are assumed to be smooth or
sparse in the frequency domain, while the main assumption
of [14] is that each graph layer signal is the result of the
diffusion of an originally sparse input through that layer via
an unknown linear graph filter with a known order. Then, the
authors of [14] propose an approach to separate the individual
graph signals by estimating their unknown input supports and
the coefficients of the diffusing graph filters.

The rest of the paper is organized as follows. In Section II,
a few necessary preliminaries from GSP are very briefly
reviewed. Section III is devoted to the proposed approach for
separating smooth graph signal from noiseless and noisy mix-
tures. Some enhancements for retrieving spectrally constrained
graph signals are then proposed in Section IV. Finally, in
Section V, numerical results are provided.

II. GSP BACKGROUND

In this section, some GSP concepts are very briefly re-
viewed from [1]. An undirected weighted graph is defined
by G = (V, E ,W), where V and E ⊆ V × V represent the
set of N nodes, and the set of edges, respectively. Moreover,
W ∈ RN×N is a weighted symmetric adjacency matrix show-
ing the weights between each pair of nodes. Diagonal entries
of W are all equal to zero (i.e. there is no self loop). The graph
Laplacian matrix is defined as L , D−W, where the degree
matrix D is diagonal, and dii =

∑N
j=1 wij , ∀i = 1, . . . , N . It

is proved that L is a positive semidefinite matrix. The eigen-
value decomposition of the Laplacian matrix is represented
as L = VΛVT , where V = [v1, . . . ,vN ] is an orthonormal
matrix including eigenvectors, and Λ is a diagonal matrix of
nonnegative eigenvalues, 0 = λ1 ≤ . . . ≤ λN . Note λ1 = 0
and its corresponding eigenvector is a constant vector (i.e.
the all-one vector normalized to unit-norm). Moreover, for a
connected graph, only λ1 is equal to zero.

A graph signal x, is a real vector whose i-th entry, xi, shows
a value residing on the i-th node of G. In GSP, the concept
of classical Fourier transform is extended to Graph Fourier
Transform (GFT). For a graph signal x, GFT and its inverse
are defined as x̂ , VTx and x , Vx̂, respectively.

The variation of a signal on a graph, also known as
smoothness of a graph signal x, is measured by the following
graph Laplacian quadratic form

xT Lx =
1

2

∑
i,j

wij(xi − xj)2 =

N∑
i=1

λix̂
2
i , (1)

where x̂i’s are the graph Fourier coefficients of x (i.e. the
entries of x̂). The first equality in (1) shows that for smoother
graph signals, the value of xT Lx is smaller.

In this paper, the average of a graph signal x is denoted by
x̄, so, for a graph signal with N nodes, x̄ , 1

N

∑N
i=1 xi.

Note also that x̄ = 1√
N
x̂1, where x̂1 is the first graph

Fourier coefficient of x. In this paper, both x̄ and x̂1 are
interchangeably referred to as the “DC of x”.

A multi-layer graph consists of multiple graph layers that
show different relations between data samples [6]. In this
paper, the i-th graph layer of a K-layer graph is represented
by a weighted and undirected graph Gi = (V, Ei,Wi), ∀i =
1, . . . ,K, where V is the vertex set including N nodes and
is the same for all graph layers, and Ei and Wi indicate the
edge set and the weighted symmetric adjacency matrix of the
i-th graph layer, respectively. In this setting, the graph signal
over the i-th graph layer is denoted by xi, and x̄i shows its
DC value.

III. DECOMPOSING AN OBSERVED SIGNAL INTO THE
SUMMATION OF SMOOTH GRAPH SIGNALS

In this section, we make the assumption that the observed
signal x is generated from the summation of K graph signals,
each of which is a smooth signal on a layer of a multi-layer
graph. Our goal is then to recover the graph signals x1, . . . ,xK

from the observed signal x, by exploiting the smoothness of
each unknown signal component on the corresponding layer.
In the following, two different cases are addressed separately:
exact decomposition, which is suitable for decomposing a
noiseless mixture of graph signals, and approximate decom-
position, which is suitable for decomposing a noisy mixture
of graph signals.

A. Exact decomposition

Let Li be the Laplacian matrix of Gi, and so xT
i Lixi

measures the smoothness of xi on Gi. The goal of the exact
decomposition is to decompose x as x = x1 + · · ·+ xK such
that all xi’s are smooth on their layers in the multi-layer graph.
To do this, the following quadratic programming problem is
proposed

minimize
{xi}Ki=1

K∑
i=1

xT
i Lixi s.t. x =

K∑
i=1

xi. (2)

In the following theorem, we show that, under some specific
constraints, the above problem has a unique solution.

Theorem 1. If all graph layers {Gi}Ki=1 are connected graphs,
problem (2) has a unique solution up to DC values of xi’s.

Proof: See Appendix A.
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The above theorem states that in (2) the DC values of xi’s
are free parameters as long as

∑K
i=1 x̄i = x̄. Hence, in order

to get a unique solution, we ignore the DC values of xi’s by
assuming that they are equal to zero, and remove the DC of
x by defining z , x− x̄1. In this way, the following modified
form of (2) has a unique solution:

minimize
{xi}Ki=1

K∑
i=1

xT
i Lixi s.t.

{
z =

∑K
i=1 xi ,

x̄i = 0 , ∀i = 1, . . . ,K.
(3)

B. Approximate decomposition

Next, we relax the exact decomposition assumption, with
an approximate decomposition x ≈

∑K
i=1 xi. So, (2) is

reformulated as

minimize
{xi}Ki=1

‖x−
K∑
i=1

xi‖22 +

K∑
i=1

γix
T
i Lixi , (4)

where γi’s are regularization parameters determining the rel-
ative cost of the approximation and the smoothness of the
resulting graph signals.

Theorem 2. If all graph layers {Gi}Ki=1 are connected graphs,
then problem (4) has a unique solution up to DC values of xi’s.

Proof: See Appendix B.

Therefore, similar to (3), problem (4) is modified as follows,
which has a unique solution:

minimize
{xi}Ki=1

‖z−
K∑
i=1

xi‖22 +

K∑
i=1

γix
T
i Lixi

s.t. x̄i = 0 , ∀i = 1, . . . ,K.

(5)

Note that optimization problems (3) and (5) are Quadratic
Programming (QP) problems, so they can easily be solved by
using convex optimization tools [15].

C. Discussions and modifications

To gain a better insight into the approaches of Sections III-A
and III-B, we firstly state (3) in the frequency domain. The
GFT of xi, ∀i = 1, . . . ,K is x̂i = VT

i xi, where Vi =
[vi1, . . . ,viN ] is the matrix of the eigenvectors of Li, and
ViV

T
i = I. So, replacing xi in (3) with Vix̂i results in

minimize
{x̂i}Ki=1

K∑
i=1

N∑
j=2

λij x̂
2
ij s.t.

{
z =

∑K
i=1 Vix̂i ,

x̂i1 = 0 , ∀i = 1, . . . ,K,

(6)
where x̂i = [x̂i1, . . . , x̂iN ]T and λij is the j-th eigenvalue of
the Li.

The above equation reveals a drawback of the decom-
position approach of (3), which happens when the range
and/or distribution of eigenvalues of different Li’s are highly
different. For example, suppose that there are two graphs: For
G1, λ2 = 5.0, λ3 = 10.0 and for G2, λ2 = 1.0, λ3 = 1.5.
Since the third eigenvalue of G2 is less than the second
eigenvalue of G1, (6) prefers to put more energy on the third
frequency component of G2 rather than putting it on the second

frequency (smoothest) component of G1, which is probably
not what is sought in many applications. This will actually be
verified in the simulation results of Section V-B.

To overcome this drawback, an idea is that instead of λij’s
in (6), some other weights are used in such a way that the
algorithm has the tendency to use lower frequency components
of all graphs. Replacing λij , ∀i = 1, . . . ,K in (6) with wj

leads to

minimize
{x̂i}Ki=1

N∑
j=2

wj

K∑
i=1

x̂2ij s.t.

{
z =

∑K
i=1 Vix̂i ,

x̂i1 = 0 , ∀i = 1, . . . ,K,

(7)
where wj , ∀j = 2, . . . , N are user-provided weight param-
eters such that 0 < w2 < w3 < . . . < wN . Note that wj

represents the relative cost of assigning the signal to the j-
th frequency of all graphs, independently from the values of
λij . So, (7) has the tendency to firstly use lower frequency
components of all graphs, before using higher frequencies,
independently of the spectrum of the graphs.

Theorem 3. Problem (7) has a unique solution.

Proof: See Appendix C.

Remark: An exactly similar modification can be proposed
for (5). However, to avoid repetition it is not explained here.

IV. DECOMPOSING AN OBSERVED SIGNAL INTO THE
SUMMATION OF SPECTRALLY CONSTRAINED GRAPH

SIGNALS

Smoothness of a graph signal means that Fourier coeffi-
cients of the signal corresponding to lower frequencies have
significantly higher values than other Fourier coefficients. The
decomposition approach of the previous section can be easily
extended to the case where the graph signals have only a few
non-zero Fourier coefficients but not necessarily corresponding
to lower frequencies (so not necessarily smooth). In this
section, this extension is done for two cases: where the location
of the non-zero coefficients (i.e. the frequency support) is a
priori known, and where it is not known.

A. Known frequency support

When the frequency support of the graph signals are
known, (7) can directly be used with the difference that instead
of w2 < w3 < . . . < wN , the values of wj’s should be set such
that they are smaller for the frequency components which are
known to be non-zero, and highly larger for other frequency
components.

B. Unknown frequency support

When the frequency support of the graph signals is not a
priori known, the decomposition x =

∑K
i=1 xi can be done in

a way that the total number of frequency components that are
jointly equal to zero is maximized. In other words, by defining
the matrix X̂ , [x̂1, . . . , x̂K ], the goal is that as many as
possible rows of X̂ are equal to zero. So, if x̂T

[j] stands for the
j-th row of X̂, the `0 pseudo-norm (i.e. the number of non-zero
entries) of the vector x̂`2 , [‖x̂[1]‖2, ‖x̂[2]‖2, . . . , ‖x̂[N ]‖2]T
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is to be minimized, which leads to the following optimization
problem:

minimize
{x̂i}Ki=1

‖x̂`2‖0 s.t.

{
z =

∑K
i=1 Vix̂i ,

x̂i1 = 0, ∀i = 1, . . . ,K.
(8)

We define x̂B , [x̂T
[1], . . . , x̂

T
[N ]]

T and VB , [V[1], . . . ,V[N ]],
where the subscript “B” stands for “Block”, V[j] ,
[v1j , . . . ,vKj ] and vij is the j-th eigenvector of Li, so the
first condition of (8) simplifies to

z =

K∑
i=1

Vix̂i =

N∑
j=1

V[j]x̂[j] = VBx̂B. (9)

x̂B is called a block k-sparse vector if ‖x̂`2‖0 ≤ k. We assume
that x̂∗B is a block k-sparse vector that satisfies the above
equality1. This answer is unique if and only if VBc 6= 0 for
every block 2k-sparse vector c 6= 0 [16, Proposition 1]. Under
this condition, the solution to the problem (8) is unique.

Since problem (8) is not convex, finding its optimal solution
is difficult, and would requires a combinatorial search. There-
fore, instead of minimizing the `0 of x̂`2 , as in the compressed
sensing literature [17], its `1 is going to be minimized, which
results in the convex problem:

minimize
{x̂i}Ki=1

‖x̂`2‖1 s.t.

{
z = VBx̂B ,

x̂i1 = 0, ∀i = 1, . . . ,K.
(10)

The uniqueness of the solution of (10) has been established
in [16] under some constraints (refer to [16, Theorem 1]).

Remark 1: The advantage of problem (10) over (7) is that
problem (10) has no weight parameters to be set manually.
However, usage of this problem is only for the case that the
graph signals are sufficiently sparse in the frequency domain
with nearly similar frequency supports.

Remark 2: Exactly similar extensions can be proposed
for (5). However, to avoid repetition they are not explained
here.

V. SIMULATION RESULTS

In this section, the performance of the proposed methods
is assessed on seven different scenarios. In all experiments,
the Graph Signal Processing Toolbox (GSPBox) implemented
in Python (PyGSP) [18] is used to create different graphs.
Moreover, CVXPY [19], [20] is utilized to solve all the
optimization problems.

A. Experiment 1: Evaluating the performance of (3) for
graphs with similar distribution of eigenvalues

In this experiment, the performance of (3) is checked over
random connected sensor graphs [21]. The reason for using
sensor graphs is that they roughly have similar distribution of
eigenvalues. To create smooth signals on these graphs, xi’s
are set equal to a linear combination of the second and third
eigenvectors of Li with coefficients chosen randomly from 0 to

1Note that ‖x̂`2‖0 ≤ k is a stronger assumption than k-sparsity of each
graph signal in the frequency domain. Thus, minimizing the number of non-
zero rows of X̂ can result in sparser graph signals in the frequency domain.

1 (with a uniform distribution). Then, each xi is normalized to
have entries between -1 and 1, and x is set equal to

∑K
i=1 xi.

Finally, this generated signal is given to (3) to perform graph
signal separation, and to hopefully recover the original xi’s.

As a measure of quality of the recovery of each original
signal, we use signal-to-noise ratio (SNR) in dB defined as
SNRi , 10 log10

(
‖xi‖22/‖xi − xesti‖22

)
, ∀i = 1, . . . ,K,

where xesti is the estimated graph signal over the i-th graph.
Moreover, SNRav , 1

K

∑K
i=1 SNRi is used as the measure

of quality of the whole recovery. Furthermore, to report the
qualities, the whole simulation is repeated 200 times, and the
values of resulting SNRi’s and SNRav’s are averaged across all
simulations (denoted by SNRi and SNRav). In each simulation,
new sets of graphs and graph signals are created.

Table I shows SNRi’s averaged over 200 different experi-
ments, with K = 5 and different numbers of nodes denoted by
N . As indicated by the high SNR value for each component,
by solving (3), we are able to recover the original signals to
a large extent.

TABLE I: Performance (in dB) of (3) over K = 5 random
sensor graphs, averaged over 200 simulations.

N SNR1 SNR2 SNR3 SNR4 SNR5 SNRav
100 14.96 14.90 14.64 14.93 15.07 14.90
250 21.99 22.03 22.42 22.03 22.15 22.12
450 27.25 26.86 26.94 27.20 27.25 27.10

B. Experiment 2: Evaluating the performance of (3) for
graphs with different distribution of eigenvalues

In this experiment, the performance of (3) is assessed over
different graph types (families) in order to create graphs with
different distribution of eigenvalues. To generate a synthetic
signal x, five random connected graphs are created. The
type of each graph is selected randomly from the following
graph generative models: Barabasi–Albert [22], random reg-
ular [23], sensor, community [24], Erdos Renyi [25]. Then,
xi ,∀i = 1, . . . , 5 and x are created similar to Experiment 1.
Finally, the generated signal is given to (3) to perform graph
signal separation. Table II shows averaged results over 200
different simulations for signals with different numbers of
nodes (N ). In each simulation, new sets of graphs and graph
signals are created.

TABLE II: Performance (in dB) of (3) over K = 5 different
graph types, averaged over 200 simulations.

N SNR1 SNR2 SNR3 SNR4 SNR5 SNRav
100 7.08 7.91 7.18 7.47 6.81 7.29
250 8.54 9.35 8.76 8.77 8.11 8.71
450 10.27 11.73 11.00 10.91 10.08 10.80

Comparing the results of Tables I and II shows that in this
case (different graph types), the performance of (3) has been
decreased.

C. Experiment 3: Evaluating the performance of (7) for
smooth graph signals

In this experiment, the performance of (7) is evaluated
for smooth graph signals with different numbers of non-
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Fig. 1: Performance of methods (7) for noiseless smooth graph
signals with respect to the number of non-zero frequency
components.

zero frequency components. To generate a synthetic signal
x, similar to Experiment 2, five random connected graphs
with N = 250 nodes are created. Each xi, ∀i = 1, . . . , 5
with j non-zero frequency components is set equal to the
random linear combination of the first j eigenvectors of its
Laplacian matrix, without considering the constant eigenvec-
tor. Then, each xi is normalized to have entries between -1
and 1, and x is defined as

∑5
i=1 xi. For different numbers of

non-zero frequency components (j), (7) is used to perform
graph signal separation on x. In (7), wi is set equal to
(i − 2) × s + 1, ∀i = 2, . . . , N , where s indicates the step
size. Figure 1 shows SNRav for different values of s versus the
number of non-zero frequency components (j) averaged over
20 simulations. In each simulation and for each value of j, a
new set of graphs is created. As the values of SNRav in this
figure indicate, when the goal is to find smooth graph signals,
the performance declines rapidly by increasing the number of
non-zero frequency components.

By setting j = 2, for different values of N , the performance
of (7) with s = 40 is tested. Table III shows the results
averaged over 200 simulations. Comparing Tables II and III
shows the superiority of the performance of (7) over (3), when
the graph types are different.

TABLE III: Performance (in dB) of (7) with s = 40 over
K = 5 different graph types, averaged over 200 simulations.

N SNR1 SNR2 SNR3 SNR4 SNR5 SNRav
100 19.11 19.38 18.89 18.99 18.52 18.98
250 25.52 26.06 25.59 25.43 25.05 25.53
450 29.69 30.37 29.87 29.67 29.08 29.74

D. Experiment 4: Evaluating the performances of (7) and (10)
for spectrally constrained graph signals

In this experiment, the performances of (7) and (10) are
evaluated for spectrally constrained graph signals with differ-
ent numbers of non-zero frequency components. To generate
a synthetic signal x, similar to Experiment 2, five random
connected graphs with N = 250 nodes are created. Each graph
Gi is then used to generate a graph signal xi, with j non-
zero frequency components, as a linear combination of the
j eigenvectors of the corresponding Laplacian matrix, with
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Fig. 2: Performance of methods (7) and (10) for noiseless
spectrally constrained graph signals with respect to the number
of non-zero frequency components.

random weights. These eigenvectors are selected randomly in
each simulation, without considering the constant eigenvector.
However, we impose that the selection of the precise indices
is the same across all graphs (e.g. if the second eigenvector
is selected, it is selected for all graphs, and hence, all graphs
have the same frequency band). Then, each xi is normalized to
have entries between -1 and 1, and x is set equal to

∑5
i=1 xi.

For different numbers of non-zero frequency components (j),
(7) and (10) are used independently to perform graph signal
separation on x. In (7), the weights corresponding to the j
known frequency components are set equal to 1, and the rest
are set equal to 10000. Figure 2 shows SNRav versus the
number of non-zero frequency components (j) averaged over
20 simulations. In each simulation and for each value of j,
a new set of graphs is created, and new random columns of
eigenvector matrices are selected. As the values of SNRav in
this figure indicate, both approaches have been quite successful
in recovering the original signals. Moreover, Fig. 2b indicates
that by increasing j, a phase transition occurs, that is, the
performance declines abruptly when the number of non-zero
components passes a threshold. This bears some similarities
with a well-known phenomenon from the compressed sensing
literature [17]: the uniqueness of the sparse solution of an
underdetermined system of linear equations and the equiva-
lence of minimizing `0 and `1 norms break out beyond certain
sparsities.
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Fig. 3: Average quality of the resulted signals from the
approximate decomposition with respect to the quality of the
corrupted signal.

E. Experiment 5: Robustness against noise

In this experiment, the robustness of the algorithms against
noise is studied. Since enhancements of the noise robust
approach (5) (as had been done for (3) to propose (7) and (10))
have not been explicitly stated in the paper, only the perfor-
mances of (3) and (5) are going to be compared here. To
generate a synthetic signal x, four different connected sensor
graphs with N = 250 nodes are constructed (note that the
reason for choosing this graph type is to avoid the mentioned
problem in Experiment 2). Then, after initializing x similar
to Experiment 1, we corrupt the signal by adding some white
Gaussian noise n ∼ N (0, σ2I), where I is an identity matrix,
and σ2 is the variance of the additive noise. For the corrupted
signal, both (3) and (5) are utilized independently to perform
graph signal separation. In (5), {γi}4i=1 are set equal to 2, and
the SNRinput and the Smoothnessav are computed as follows:
SNRinput , 10 log10

(
‖x − n‖22/‖n‖22

)
and Smoothnessav ,

1/4
∑4

i=1 xT
estiLixesti .

The whole simulation is repeated 20 times. In all simula-
tions, graphs and xi’s are kept the same, but different noise
signals are added to x. Average values over all simulations
are denoted by SNRinput and Smoothnessav. Figs. 3 and 4
show simulation results for different values of SNRinput. As
seen in Fig. 3, for very noisy inputs (i.e. smaller values of
SNRinput), the performance of (5) is better than (3), as was ex-
pected. In Fig. 4, the dashed line indicates Smoothnessinput ,
1/4

∑4
i=1 xT

i Lixi. We observe that the Smoothnessav resulting
from (5) is around the correct value of Smoothnessinput,
while (3), being forced to satisfy the exact equality x =∑K

i=1 xi, cannot find smooth enough signals.

F. Experiment 6: A proof of concept with real data

As a proof of concept, in this experiment, the performance
of (7) is validated on a single-observation source separation
problem that is generated by mixing two natural images with
naively constructed graphs. Firstly, two 64 by 64 pixel gray-
scale images are selected. They are scaled between 0 and
255 and reshaped to 4096-vectors, x1 and x2. Then, for each
image, a graph with 4096 vertices is created by connecting
each pixel to its eight neighbors, where the weight between
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Fig. 4: Average smoothness value of the resulted signals from
the approximate decomposition with respect to the quality of
the corrupted signal.

each pair of neighboring nodes is set equal to wijk , 1/(|xki−
xkj |+0.001), k = 1, 2, in which xki is the i-th entry of the k-
th graph signal (xk, k = 1, 2), and wijk is the weight between
nodes (pixels) i and j of the k-th graph. With this choice of
graph, the signals over graphs are relatively smooth signals,
although not exactly band-limited (for example, Fig. 5 shows
the first 500 frequency components of a 64 by 64 pixel image).
Then, x is created as

∑2
i=1 xi. The goal of this experiment is

to separate two smooth graph signals, and verify whether or
not they are close to the original underlying signals. Note that
this is only a proof of concept, because firstly in practice we
often do not have access to the graphs G1 and G2, and secondly
although x1 and x2 are relatively smooth on these artificially
constructed graphs, they are not exactly band-limited. Since x1

and x2 are not exactly sparse in the frequency domain, we do
not use (10) for the decomposition, and use only (7). Moreover,
as in Experiment 3, wi in (7) is set equal to (i− 2)× s+ 1,
with s = 40.

Table IV shows the results for two different sets of images.
The SNRi is defined as SNRi , 10 log10

(
‖zi‖22/‖zi −

xesti‖22
)
, ∀i = 1, 2, where zi , xi − x̄i1. Moreover, Fig. 6

depicts the two sets of tested images, and their reconstruction.
Note that to visualize the mixed image, x/2 is actually plotted
(to have pixel values between 0 and 255). We note that since
the estimated signals have zero DC values, in order to bring
back pixel values to the range 0 to 255, the constant 127 is

0 5 · 10−2 0.1 0.15 0.2 0.25
−2,000

−1,500

−1,000

−500

0

500

1,000

1,500

2,000

λ

x̂
(λ

)

Fig. 5: First 500 frequency components of a 64 by 64 pixel
image.
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Set 1

Original (1) Original (2) Mixed Estimated (1) Estimated (2)

Set 2

Fig. 6: Graph signal separation results for two different sets of images.

TABLE IV: Performance (in dB) of (7) for two different sets
of images.

SNR1 SNR2

Set 1 9.62 9.67
Set 2 9.07 13.87

added to them, and then the values above 255 and under 0 are
cropped.

As it is seen both in Table IV and Fig. 6, the algorithm
has been successful in recovering the two mixed images. It is
observed that the quality of the recovery is satisfactory, despite
the fact that the original signals are not exactly band-limited.

G. Experiment 7: Comparison with the method of [14]

In this experiment, the performance of (7) and the method
of [14] are compared2 in separating two mixed natural images
(as in the previous experiment). Firstly, two 16 × 16 pixel
gray-scale images3 are selected, and graphs, graph signals
(x1,x2), and x are created similar to Experiment 6. Then,
the images are separated once using (7), and once using the
method of [14]. When using (7), the parameters are chosen as
the previous experiment. In [14], the assumption is that xi’s are
diffused graph signals passed through unknown linear graph
filters Hi =

∑L−1
l=0 hilS

l
i, and the degree of filters (L − 1)

is known. To do the separation, we set Si = Wi, and check
the results for different values of L. The best value of SNRs
which is for L = 2 is reported in Table V.

The resulting separated images of the two methods are
scaled 4 times and shown in Fig 7. Note that to visualize
the separated graph signals derived by the method of [14], the
values above 255 and under 0 are cropped. Based on this figure
and Table V, the performance of (7) is highly better than that
of [14] in separating mixed images. This was actually expected
because the method of [14] assumes a very specific model for
the source graph signals, which does not hold here.

2The source code of the method of [14] has been taken from http://github.
com/iglesias/gsp bss.

3In this experiment, we had to use images smaller than the previous
experiment because the method of [14] did not converge for the graphs as
large as the previous experiment.

TABLE V: Performance (in dB) of two demixing methods.

SNR1 SNR2

Solved by (7) 9.89 9.54
Solved by [14] 4.89 4.40

Solved by (7)

Estimated (1) Estimated (2)

Solved by [14]

Fig. 7: Graph signal separation results for two demixing
methods.

VI. CONCLUSION

In this paper, an approach was proposed to decompose a
single signal into the summation of K smooth graph signals
residing on different layers of a known multi-layer graph. It
was shown that up to the indeterminacy of the DC values
of signals, this approach provides a unique solution, both for
noiseless and noisy signals. Moreover, for noiseless data, two
modified methods were proposed to generalize the smoothness
assumption to sparsity in the frequency domain; one for the
case the frequency supports are a priori known, and one for
the case they are not known. These generalizations can be
extended to noisy data, in exactly similar manner. Simulation
results confirmed on the effectiveness of these methods.

It is worth mentioning that in the BSS point of view, the
recoverability of the sources remains ad-hoc in this paper
(as in many original BSS papers, e.g. [26], [27]): it is true
that the decomposition is unique, but can the output signals
be rigorously proved to be exactly the original sources?

http://github.com/iglesias/gsp_bss
http://github.com/iglesias/gsp_bss
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And under what conditions? Or if they are not exactly the
original sources, how far are they from the original sources?
In practice, if the original graph signals are known to be
smooth, one may hope that they are not too far from the unique
smoothest ones given by Theorems 1 through 3, and hence,
one may hope that the sources estimated by the approaches
of this paper are at least good approximations of the original
sources. These questions need more investigations and would
be a subject for future research.

APPENDIX A
PROOF OF THEOREM (1)

We firstly show that the solution of (2) is not generally
unique. Then, we prove that different solutions differ only in
their DC values.

A. Uniqueness
Since x is equal to the summation of K graph signals, xK =

x−
∑K−1

i=1 xi holds. Therefore, (2) simplifies to

minimize
{xi}K−1

i=1

K−1∑
i=1

xT
i Lixi + (x−

K−1∑
i=1

xi)
T LK(x−

K−1∑
i=1

xi)︸ ︷︷ ︸
f(x1,...,xK−1)

.

(11)
Define x̃ = [xT

1 , . . . ,x
T
K−1]T . The quadratic problem (11)

is convex, so by putting ∂f/∂x̃ equal to zero, {xi}Ki=1 is
computed.

∂f

∂x̃
= 2


(L1 + LK)x1 + LKx2 + . . .+ LKxK−1 − LKx
LKx1 + (L2 + LK)x2 + . . .+ LKxK−1 − LKx

...
LKx1 + . . .+ (LK−1 + LK)xK−1 − LKx

 ,

∂2f

∂x̃2
= 2


L1 + LK LK . . . LK

LK L2 + LK . . . LK

...
...

. . .
...

LK LK . . . LK−1 + LK

 .
(12)

Define H = ∂2f/∂x̃2. So, ∂f/∂x̃ = 0 leads to

Hx̃ = 2
[
(LKx)T (LKx)T . . . (LKx)T

]T
. (13)

Uniqueness of x̃ depends on det(H). Since the optimization
problem in (11) is convex, det(H) ≥ 0, but not necessarily
det(H) > 0. We show that actually det(H) = 0 by finding a
leading principal submatrix of H with a zero determinant. For
this purpose, define Γ as the 2N -th order leading principal
submatrix of H, so

Γ =

[
L1 + LK LK

LK L2 + LK

]
. (14)

Since v1 (the all-one vector normalized to unit norm) is the
common eigenvector of L1, L2 and LK corresponding to zero
eigenvalue, [

L1 + LK LK

LK L2 + LK

] [
v1

v1

]
= 0, (15)

where 0 stands for the all-zero vector. The latter implies
that det(Γ) = 0 ⇒ det(H) = 0. Thus, H is singular, and
problem (2) has several solutions.

B. The difference of solutions

Suppose both x1, . . . ,xK and x′1, . . . ,x
′
K are solutions

of (2). So, based on (13),

L1x1 = L2x2 = . . . = LK−1xK−1 = LK(x−
K−1∑
i=1

xi), (16)

L1x
′
1 = L2x

′
2 = . . . = LK−1x

′
K−1 = LK(x−

K−1∑
i=1

x′i). (17)

Define ei , xi − x′i, ∀i = 1, . . . ,K. Therefore, subtract-
ing (17) form (16) results in

L1e1 = L2e2 = . . . = LK−1eK−1 = LK(0−
K−1∑
i=1

ei). (18)

Since (16) is the necessary and sufficient condition for
x1, . . . ,xK to be a solution of (2) for an arbitrary x, (18)
shows that e1, . . . , eK is a solution of (2) for decomposing
an all-zero vector. Hence, e1, . . . , eK are the solution of the
optimization problem

minimize
{ei}Ki=1

K∑
i=1

eTi Liei s.t.
K∑
i=1

ei = 0. (19)

The cost function of the above optimization problem is always
non-negative, and e′i , 0,∀i makes it zero and satisfies the
constraint as well. So, e′i = 0,∀i is a solution of the above
problem. Since the cost function of the above problem cannot
be negative, every other solution of (19) should make the cost
function zero, too. Since eTi Liei ≥ 0, ∀i = 1, . . . ,K, every
solution of (19) should satisfy{

eTi Liei = 0 ∀i = 1, . . . ,K∑K
i=1 ei = 0

. (20)

Substituting the eigenvalue decomposition of Li into eTi Liei =
0 leads to

eTi ViΛiV
T
i ei = yTi Λiyi =

N∑
j=1

λijy
2
ij = 0, (21)

where yi = VT
i ei. Since all the graphs are connected, only

λi1 = 0. So, (21) holds, if

yij =

{
0 ∀j = 2, . . . , N

αi j = 1
, (22)

where αi is an arbitrary value. Noting that the eigenvector
corresponding to λi1 is proportional to an all-one vector, ei is
found as

ei = Viyi =

N∑
j=1

vijyij = αi1, (23)

where 1 is an all-one vector, and Vi = [vi1, . . . ,viN ]. So,

xi = x′i + αi1, ∀i = 1, . . . ,K, (24)

which means that different solutions of (2) are only different
in their DC values. �
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APPENDIX B
PROOF OF THEOREM (2)

It is firstly shown that the solution of (4) is not generally
unique, and, then, it is proved that different solutions differ
only in their DC values.

A. Uniqueness

To find {xi}Ki=1, ∂g/∂x̌ should be set equal to zero,
where g(x1, . . . ,xK) is the objective function of (4), and
x̌ = [xT

1 , . . . ,x
T
K ]T .

∂g

∂x̌
= 2


(I + γ1L1)x1 + x2 + . . .+ xK − x
x1 + (I + γ2L2)x2 + . . .+ xK − x

...
x1 + x2 + . . .+ (I + γKLK)xK − x

 ,

∂2g

∂x̌2
= 2


I + γ1L1 I . . . I

I I + γ2L2 . . . I
...

...
. . .

...
I I . . . I + γKLK

 .
(25)

Define, H = ∂2g/∂x̌2. So, ∂g/∂x̌ = 0 leads to

Hx̌ = 2
[
xT xT . . . xT

]T
. (26)

Similar to Appendix A-A, define ∆ as the 2N -th order leading
principal submatrix of H as follows, to show that there exists
a leading principal submatrix of H with zero determinant:

∆ =

[
I + γ1L1 I

I I + γ2L2

]
. (27)

Since γ1L1, γ2L2 ≥ 0, (I+γ1L1) and (I+γ2L2) are invertible.
Based on Equation (0.8.5.1) of [28] for the determinant of 2-
by-2 block matrices, we have that

det(∆) = det(I+γ1L1)det((I+γ2L2)−(I+γ1L1)−1) . (28)

The smallest eigenvalue of (I+γ1L1) and (I+γ2L2) are equal
to one and both correspond to the constant eigenvector, v1.
Since (I + γ1L1) is invertible, its eigenvalues are the inverses
of the eigenvalues of (I+γ1L1)−1 with the same eigenvectors.
Therefore, the largest eigenvalue of (I + γ1L1)−1 is equal to
one, and the following equality holds:

((I + γ2L2)− (I + γ1L1)−1)v1 = 0 . (29)

Hence, det((I+γ2L2)− (I+γ1L1)−1) = 0⇒ det(∆) = 0⇒
det(H) = 0. Thus, H is singular, and the solution of (4) is
not unique.

B. The difference of solutions

Suppose both x1, . . . ,xK and x′1, . . . ,x
′
K are solutions

of (4). Hence, based on (26),

γ1L1x1 = γ2L2x2 = . . . = γKLKxK = x−
K∑
i=1

xi, (30)

γ1L1x
′
1 = γ2L2x

′
2 = . . . = γKLKx′K = x−

K∑
i=1

x′i. (31)

Define ei , xi − x′i, ∀i = 1, . . . ,K. Therefore, subtract-
ing (31) form (30) leads to

γ1L1e1 = γ2L2e2 = . . . = γKLKeK = 0−
K−1∑
i=1

ei, (32)

which means that similar to (30), an all-zero vector should
be decomposed into the summation of e1, . . . , eK . Hence,
ei, ∀i = 1, . . . ,K can be calculated through the quadratic
problem

minimize
{ei}Ki=1

‖
K∑
i=1

ei‖22 +

K∑
i=1

γieTi Liei . (33)

The cost function of the above optimization problem is always
non-negative, and vanishes for e′i , 0,∀i. Hence, e′i = 0,∀i
is a solution of (33), and taking into account the convexity of
the problem, every other local solution of it should make the
cost function zero as well. Therefore, noting that the individual
term of the above cost function are all non-negative, we have{

eTi Liei = 0 ∀i = 1, . . . ,K∑K
i=1 ei = 0

, (34)

which is similar to (20). The rest of the proof is like Ap-
pendix A-B, and so different solutions of (4) are different only
in their DC values. �

APPENDIX C
PROOF OF THEOREM (3)

Since x̂i1 = 0,∀i = 1, . . . ,K, (7) simplifies to

minimize
{x̂′i}Ki=1

N∑
j=2

wj

K∑
i=1

x̂2ij s.t. z =

K∑
i=1

V′ix̂
′
i , (35)

where V′i = [vi2, . . . ,viN ] and x̂′i = [x̂i2, . . . , x̂iN ]T . Con-
sider the objective function of (35) as f(x̂′1, . . . , x̂

′
K), and

define x̂′ = [(x̂′1)T , . . . , (x̂′K)T ]T , then

H =
∂2f

∂x̂′2
= 2


diag(w) 0 . . . 0

0 diag(w) . . . 0
...

...
. . .

...
0 0 . . . diag(w)

 , (36)

where w = [w2, . . . , wN ]T , and diag(.) returns a diagonal
matrix. Since wi > 0,∀i = 2, . . . , N , for m/2 < argmin(w),
H ≥ mI, which means that f is strongly convex. Based
on [29], as f is a continuous and strongly convex function
which is minimized over a closed convex set, it has a unique
minimizer. �
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