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Abstract

A significant challenge in spectrum sensing is to lessen the signal to noise ratio needed to detect the presence of
primary users while the noise level may also be unknown. To meet this challenge, multi-antenna based techniques
possess a greater efficiency compared to other algorithms. In a typical compact multi-antenna system, due to small
interelement spacing, mutual coupling between thermal noises of adjacent receivers is significant. In this paper,
unlike most of the spectrum sensing algorithms which assume spatially uncorrelated noise, the noises on the adjacent
antennas can have arbitrary correlations. Also, in contrast to some other algorithms, no prior assumption is made
on the temporal properties of the signals. We exploit low-rank/sparse matrix decomposition algorithms to obtain
an estimate of noise and received source covariance matrices. Given these estimates, a Semi-Constant False Alarm
Rate (S-CFAR) detector, in which the probability of false alarm is constant over the scaling of the noise covariance
matrix, to examine the presence of primary users is proposed. In order to analyze the efficiency of our algorithm, we
derive approximate probability of detection. Numerical simulations show that the proposed algorithm consistently
and considerably outperforms state-of-the-art multi-antenna based spectrum sensing algorithms.

Keywords: Spectrum Sensing, Semi-Constant False Alarm Rate (S-CFAR), Cognitive Radio (CR), Generalized
Likelihood Ratio Test (GLRT), Low-Rank/Sparse Matrix Decomposition, Spatial Correlation

1. Introduction

Cognitive radio (CR) [1], a novel technique emerged in the last decade, is intended to improve utilization of the
radio spectrum. In CR networks, in addition to the typical primary users, working under licensed frequency bands,
there are secondary unlicensed users who seek to opportunistically exploit the same spectrum resources when the
primary users do not transmit any data. The key function for the secondary users is the ability to detect the occupancy
of spectrum resources, which is known as spectrum sensing. To create the least possible interference to the primary
users, a spectrum sensing algorithm should be able to detect the presence of primary signals, even in very low signal
to noise ratios (SNR).

So far, there are many different algorithms proposed for spectrum sensing, namely energy detection [2–4], the
Matched Filtering (MF) [4], cyclostationary detection [5, 6], and multi-antenna assisted detection [7–9], each of
which has advantages and disadvantages. Matched filtering and cyclostationary detection need some prior knowledge
about primary signal’s modulation properties such as pulse shaping, carrier frequencies, timing, etc. However, in
practice, they may not be available for secondary users. Energy detection, on the other hand, is a basic method that
unlike the aforementioned methods is independent of signal properties, that makes it a desirable spectrum-sensing
approach for CR. The main drawback of this approach is its reliance on an accurate noise power estimation, which
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makes it less practical, since noise power usually fluctuates under circumstance changes such as aging of devices,
humidity, and temperature.

Multi-antenna approaches generally do not need any priori assumptions about primary signal properties. Specially,
methods based on the eigenvalues of the received sample covariance matrix have been center of interest in the last
few years, since they outperform the popular energy detection methods [7]. For instance, the maximum-to-minimum
ratio eigenvalue (MME) detector employs the ratio of the maximum eigenvalue to the minimum eigenvalue of the
covariance matrix of the received signal [8]. Better detection statistics, like scaled largest eigenvalue (SLE), are
obtained by deriving Generalized Likelihood Ratio Test (GLRT) for spatially uncorrelated noises with equal power in
[10], [11]. Furthermore, in [12], authors derive the asymptotic GLRT for spatially uncorrelated noises with equal or
different unknown power spectral densities.

Current demands for compact multi-antenna receivers lead to appearance of antenna arryas with interelement
spacing much smaller than half a wavelength. As a side effect, neglecting the mutual coupling between closely spaced
antennas seems to be no longer practical (cf. [13–15]). Mutual coupling can cause strong correlation between noises
of neighboring antennas [16]. However, there are a few algorithms that handle spatially correlated noise environments
which also make additional assumptions on the temporal properties of the signals. For instance, [17] assumes that
the temporal correlation of the primary user’s signal is known up to a scalar factor, and [18] exploits cyclostationary
features of the primary user’s signal.

In this paper, without making any assumption on the temporal properties of the primary users’ signals, we propose
a novel detection algorithm for an unknown spatially correlated noise environment where there are arbitrary correla-
tions between the noise of adjacent sensors. This method is efficient for custom spatial correlations between noises as
far as the noise spatial covariance matrix is sparse, meaning that the number of nonzero entries is much smaller than
the total number of entries. For example, in sparse arrays of sensors, consisting of several largely spaced subarrays,
due to the inter-subarray noise coupling, the noise covariance matrix may have a block diagonal structure [19, 20],
which is, in effect, an sparse matrix.

This detection scheme has two steps. First, using a low-rank/sparse decomposition algorithm [21], the received
signal sample covariance matrix is decomposed to the source and noise covariance matrices. Next, detection is per-
formed using a heuristic detection statistics obtained from the decomposed matrices. Based on this detection statistics,
we derive a semi-constant false alarm rate detector and approximate its probability of detection and false alarm. Ac-
cording to experimental results in a correlated noise environment, the proposed detector performs significantly better
than usual GLRT detectors of [10], [12] which are designed for uncorrelated noise case. Specially, the gap between the
performance of the proposed method and other detectors increases when the estimation of covariance matrix becomes
more accurate; i.e., when the number of samples increases.

Spatially colored noise has been considered as a more practical assumption in other communications and signal
processing problems too. For example, in [22], the effects of spatially correlated noise in the performance of direction-
of-arrival estimation methods were investigated, in [23], based on this assumption, the outage probability of an optimal
diversity receiver was studied, and, in [24], channel capacity of the multiple-input multiple-output (MIMO) system in
the presence of spatially colored noise was derived.

This paper is organized as follows. After presenting the problem setting in Section 2, the proposed detection
method is introduced in Section 3. Section 4 is devoted to the performance analysis of our algorithm. Section 5
provides some numerical simulations showing efficiency of the proposed method, and Section 6 concludes the paper.

2. System Model

We consider the problem of detecting the presence of primary users based on the signals received by an array of
M sensors in a cognitive radio node. Each sensor collects N samples during the sensing time. Using these observed
samples, the secondary user decides between two hypotheses H0, H1 denoting the absence and the presence of the
primary signal, respectively.

Let y(t)= (y1(t), · · · , yM(t))T ∈ CM×1 represent the vector of received samples at time instant t, where yi(t) is the
sample of the i-th sensor. Furthermore, assume s(t) = (s1(t), · · · , sK(t))T ∈ CK×1 is the vector of transmitted signals
from the sources at time t, in which K < M denotes the number of active users. Assuming that the channel is flat
fading and the propagation time of the received signals across the array is much smaller than the inverse of the signals
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bandwidth, the received signals can be modeled asH0 : y(t) = w(t), t = 1, · · · ,N
H1 : y(t) = Hs(t) + w(t), t = 1, · · · ,N

, (1)

where w(t) = (w1(t), · · · ,wM(t))T ∈ CM×1 is the vector of noise at different sensors at time instant t and H ∈ CM×K

is the channel matrix. Consequently, if the signals and noises are uncorrelated and zero-mean wide-sense stationary
processes, we have H0 : Ry = Rw

H1 : Ry = Rx + Rw
, (2)

where Rx = HRsHH and Ry,Rs,Rw are the covariance matrices of received signals, transmitted signals, and noises,
respectively. Let R̂y ≜ 1

N
∑N

t=1 y(t)yH(t), R̂s ≜ 1
N

∑N
t=1 s(t)sH(t), R̂w ≜ 1

N
∑N

t=1 w(t)wH(t) be the sample covariance
matrices for y, s, w, respectively. Similarly, R̂y = R̂w and R̂y = R̂x + R̂w under H0 and H1 hypotheses, respectively,
in which R̂x = HR̂sHH . Assuming w is zero mean Gaussian with covariance matrix Rw, the sample covariance matrix
R̂w would have central Wishart distribution with N degrees of freedom [25]. Define Q = R̂w − Rw as the disturbance
of sample covariance matrix due to finite samples, N. Obviously, as N → ∞, Q→ 0.

In most of previous work, it is assumed that Rw is diagonal; that is, noise is spatially white [7, 8]. In this paper, a
more general and practical assumption is made on correlation between the noises. Mutual coupling between antennas
of an array is usually a source of this correlation [26] which is a function of interelement spacing. Roughly speaking,
the larger the distance between elements, the less mutual coupling, and, consequently, the less correlation between
thermal noises. In this fashion, we consider an antenna array whose adjacent sensors have correlated noises, while the
noises on non-adjacent sensors are uncorrelated or weakly correlated due to their longer distances. Therefore, Rw has
many zero elements, and, hence, is a sparse matrix with large values on or close to the diagonal. Furthermore, it is
easy to show that rank(Rx) ≤ K, so if K ≪ M , Rx is a low-rank matrix. In this paper, we consider the case where Rw
is unknown with some non-zero off-diagonal entries.

3. The proposed method

A common solution for obtaining an asymptotically optimal detection statistics is to implement the GLRT [27].
However, for the spatially correlated noise case, the GLRT criterion leads to solving a non-convex optimization
problem that, in general, cannot be easily solved (See Appendix A). To overcome this difficulty, we use a different
approach to solve the detection problem. Prior to stating our method, we first make the following assumptions that
will be used in the sequel.

Assumption 1. For the detection problem given in (1) and simplified in (2), it is assumed that

(i) The number of sources is unknown and much smaller than the number of sensors; i.e., K ≪ M. Furthermore,
the sources can be correlated or even coherent.

(ii) The noises on the sensors are zero-mean Gaussian with cross-correlations on a few sensors. In other words, Rw
is non-zero on the diagonal and a few off-diagonal entries. Hence, Rw is a sparse matrix, and we assume that
its support, the set of non-zero entries, is known. In practice, using the information from the array geometry,
we can assume that the noises on the adjacent sensors are correlated, while others are uncorrelated.

(iii) The signals s(t) and noises w(t) are uncorrelated and zero-mean.

Taking the above assumptions into account, underH1 hypothesis, the covariance matrix of the received signals is
formed as the sum of a low-rank matrix Rx and a sparse matrix Rw. Consequently, we can exploit low-rank/sparse
matrix decomposition algorithms [21] to decompose Rx and Rw from the Ry matrix. Since we know the support of
Rw, this assumption reduces the decomposition problem to a matrix completion problem [28]. In matrix completion
problem, the goal is to recover a low-rank matrix by observing a set of its entries. Using Ry, we wish to recover the
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low-rank matrix Rx, whose entries are equal to Ry outside of the support of Rw. Let Ω be the set of all (i, j) entries
with [Rw]i j = 0. Mathematically speaking, the rank minimization problem is formulated as

min
X

rank(X) s.t. PΩ(X) = PΩ(Ry), (3)

where PΩ is the projection onto the set Ω; that is,

[PΩ(X)]i j =

 [X]i j (i, j) ∈ Ω
0 o.w.

.

In general, the rank minimization problem (3) is NP-hard and nonconvex [29]. A well-known convex relaxation for
this problem is replacing the rank(X) with the nuclear norm, ∥X∥∗ =

∑M
i=1 σi(X), leading to [30]:

min
X
∥X∥∗ s.t. PΩ(X) = PΩ(Ry). (4)

Under some mild conditions, problems (3) and (4) will meet the same solutions with overwhelming probability [30].1

However, in practice, only an estimation of Ry, i.e. R̂y, is available, where R̂y = Ry + Q, and Q is the disturbance
term due to the finite number of samples. To alleviate the effect of finite number of samples, we use the following
program:

R̃x = arg min
X

{
µ∥X∥∗ + ∥PΩ(X) − PΩ(R̂y)∥F

∣∣∣ X ⪰ 0
}
, (5)

in which X ⪰ 0 indicates that X is a positive semidefinite matrix, ∥ · ∥F denotes the Frobenius norm, and µ > 0
is a regularization parameter. The decomposed noise covariance matrix R̃w is then obtained by R̃w = R̂y − R̃x.
Notice that in (5), contrary to the common formulation (the regular LASSO approach [31]), the data fidelity term
(∥PΩ(X) − PΩ(R̂y)∥F) is not squared. This allows us to select the regularization parameter, similar to the square-
root LASSO approach [32], independent from the scaling of the covariance of Q. Although the square-root LASSO
approach has a slightly lower performance than the regular LASSO [32, 33], having a fixed regularization parameter
makes the matrix decomposition step less vulnerable to the disturbance term Q. As a result, the decomposition step
becomes less dependent on the SNR value, which is desirable for our spectrum sensing algorithm, as the SNR value
is assumed to be unknown. The optimization problem (5) can be converted to a semidefinite programming (SDP) as
shown in Appendix C; thus, it can be solved using efficient solvers like SDPT3 [34] and SeDuMi [35].

In the case that the support of Rw is unknown to us, the following program is applicable:

(R̃x, R̃w) = arg min
(L,S)

{
µ1∥L∥∗ + µ2∥S∥1 + ∥R̂y − L − S∥F

∣∣∣ L ⪰ 0,S ≻ 0
}
, (6)

in which µ1 > 0 and µ2 > 0 are regularization parameters, S ≻ 0 means that S is positive definitive, and ∥S∥1 =∑
i, j |[S]i j|. Following the same argument as in Appendix C, the program (6) can be formulated as an SDP, as well.

Since the programs (5) and (6) are convex, they can be solved using conventional convex optimization tools like CVX
[36].

Now, using the decomposed covariance matrices R̃x and R̃w, we can detect the presence of the primary signal. If
the signal is absent, Rx = 0; thus, the received power on the sensors is completely due to the noise term. In this case,
the diagonal entries of Ry correspond to the noise power on each sensor. On the other hand, if the signal is present,
Rx is a non-zero matrix with positive entries on the diagonal, representing the received power of the sources on each
sensor. Taking these facts into account, a heuristic detection rule can be formulated by comparing the ratio of the total
received power of the sources to the total received power. More specifically, we perform the following test

T =
tr(R̃x)
tr(R̂y)

H1

≷
H0

γ, (7)

1Though PΩ does not satisfy the conditions in [30, Theorem 7], our numerical simulations confirm that (3) and (4) share the same solutions.
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where tr(·) designates the trace of a matrix and γ is the detection threshold computed approximately in Section 4.1
or can be computed using numerical simulations. If matrix decomposition could be done perfectly, i.e. R̃x = Rx, T
would become zero under H0 hypothesis, and a non-zero value under H1. Therefore, we could detect the primary
signal perfectly in almost any SNR value. However, in practice, the disturbance matrix Q, caused by the finite number
of samples, acts as an additive noise and degrades the performance of the low-rank/sparse matrix decomposition
algorithm. For instance, when the primary signal is not present, the output of the decomposition algorithm, R̃x, is not
equal to 0 and has many nonzero but small entries.

It is also possible to introduce other detection tests on the R̃x matrix, which can perform similar to (7). For
instance, one can use ∥R̃x∥F/∥R̂y∥F or λmax(R̃x)/λmin(R̂y) as detection statistics, where λmax(·) and λmin(·) represent
the largest and smallest eigenvalues of a matrix. However, numerical simulations reveal that the mentioned ratio
detectors have similar performances (see Section 5). In the sequel, we derive an approximate performance analysis
for the trace ratio test (7).

4. Performance Analysis

The performance of the sensing algorithm depends on the selected threshold value γ. In this section, we compute
the threshold value in a way that the probability of false alarm is constant with the scaling of the noise covariance ma-
trix. This criterion is referred to as Semi-Constant False Alarm Rate (S-CFAR) in the sequel. Let pd ≜ P (T > γ|H1)
be the probability of detection and p f ≜ P (T > γ|H0) be the probability of false alarm. We determine p f as a function
of γ.

Determining the distribution of T under both H0 and H1 hypotheses seems to be very tricky because R̃w and R̃x
are the outputs of a highly nonlinear matrix decomposition algorithm. Nevertheless, a naive approach is to simply
run a large number of simulations to extract the best γ value to gain the given p f . To ease the burden of computa-
tions, we derive some approximations for the threshold value using some simplifying assumptions about the matrix
decomposition procedure.

In the following subsections, we approximate a threshold for the S-CFAR. Then, to characterize the effectiveness
of the detector, we study its performance in two cases. First, considering the imperfection of the decomposition
algorithm, we approximate the probability of detection of the proposed detector. Second, neglecting this imperfection
(i.e., assuming we are using an ideal decomposition algorithm), we derive the exact probability of detection which
gives an insight to the effect of using an actual decomposition algorithm.

Since Rw is unknown to the secondary users but is needed to determine the threshold value, in the sequel, we
assume that the sensing algorithm estimates Rw. Rw can be estimated using the results from the matrix decomposition.
Furthermore, a simple but more accurate approach is to average R̃w in the few recent times that the spectrum sensing
algorithm has been executed, assuming that the noise properties do not change rapidly.

4.1. An approximation for the threshold

Under H0 hypothesis, Rx = 0 and R̂y = Rw + Q. Throughout numerical simulations, we observed that due to
absence of the low-rank matrix, Q leaks to the low-rank output of the matrix decomposition algorithm. Accordingly, a
simple approximation would be to replace R̃x with Q and analyze its distribution instead. In this case, we assume that
the sparse matrix R̃w is exactly recovered. Although it is not theoretically provable, numerical simulations show that
the simplified distribution function looks similar to the original one. Moreover, the error caused by approximation of
the threshold value γ is negligible. In summary, we analyze the following random variable

T ′ =

∣∣∣ tr(Q)
∣∣∣

tr(R̂y)
,

as an approximation for T |H0 to determine the probability of false alarm, p f . Figure 1 shows that T |H0 is closely
approximated by T ′, under simulation conditions defined in Section 5, with Rw = R(1)

w and N = 100.
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Figure 1: Comparison between empirical CDF of FT (x) and FT ′ (x). The simulation is done for N = 2000 and other parameters described in
Section 5, with Rw = R(1)

w .

The probability of false alarm is

p f = P (T > γ|H0) ≃ P
(
T ′ > γ|H0

)
= P


∣∣∣ tr(R̂w − Rw)

∣∣∣
tr(R̂w)

> γ

 .
Let P

(
tr(R̂w) − tr(Rw) > 0

)
= 1 − P

(
tr(R̂w) − tr(Rw) < 0

)
= η. After simple algebraic manipulations, we get

η

(
1 − F

(
tr(Rw)
1 − γ

))
+ (1 − η) F

(
tr(Rw)
1 + γ

)
− p f = 0, (8)

where F(z) = P
(
tr(R̂w) ≤ z

)
is cumulative density function (CDF) of trace of a Wishart matrix approximated using

equation (B.2) in Appendix B, and we have η = 1 − F(tr(Rw)). γ can be computed by solving equation (8) using
numerical methods. It can be easily verified that the probability of false alarm is constant over scaling of the noise
covariance matrix Rw.

4.2. Detection probability

When a primary source is present, determining the exact distribution function of T is difficult, even in the case
of uncorrelated white noise. However, in practice, we observed that due to non-ideality of the matrix decomposition
algorithm and the presence of matrix Q acting as an additive noise, the matrix Q partly leaks into R̃x. In other words,
R̃x|H1 is highly correlated to Rx+αQ, where 0 < α ≤ 1 is a constant representing the portion of leakage of Q into R̃x.
A rule of thumb approximation for this imperfection of the decomposition step is to set α = 1; that is, we assume that
Q is mainly absorbed by R̃x. The exact value of α generally depends on the aspects of the problem and the algorithm
used in the decomposition process.

Following the above reasoning, we analyze the following random variable

T ′′ =
tr(Rx +Q)

tr(R̂y)
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as an approximation of T |H1. This gives

pd = P (T > γ|H1) ≃ P
(
T ′′ > γ|H1

)
= P

 tr(Rx + R̂w − Rw)
tr(R̂y)

> γ


= P

(
tr(R̂w) >

tr(Rw)
1 − γ − tr(Rx)

)
.

Thus,

pd ≃ 1 − F
(

tr(Rw)
1 − γ − tr(Rx)

)
, (9)

where F(z) is the CDF function of trace of a Wishart matrix approximated using equation (B.2) in Appendix B.
In addition to the above approximation, we can find the probability of detection p∗d, for an ideal case that the

decomposition is done perfectly. Substituting R̃x by Rx, we can write

p∗d = P
(

tr(Rx)
tr(Rx + R̂w)

> γ

)
.

Thus,

p∗d = F
(

1 − γ
γ

tr(Rx)
)
. (10)

Although this is not the case that happens in practice, by improving the low-rank/sparse decomposition algorithm and
increasing its robustness to noise, the actual pd can approach to the ideal p∗d.

5. Experimental Results

The proposed spectrum sensing algorithm is simulated with M = 6,K = 1. We consider a uniform linear array of
antennas with interelement spacing equal to one third wavelength of the transmitted signal. The transmitted signal is
independently and identically distributed realizations of a complex zero-mean Gaussian distribution. We perform the
simulations with the following noise covariance matrices:

R(1)
w =



0.7 0.2 0.0 0.0 0.0 0.0
0.2 1.9 0.5 0.0 0.0 0.0
0.0 0.5 1.2 −0.4 j 0.0 0.0
0.0 0.0 0.4 j 1.4 0.2 0.0
0.0 0.0 0.0 0.2 0.5 0.4
0.0 0.0 0.0 0.0 0.4 1.3



R(2)
w =



0.8 0.0 0.5 0.0 0.0 −0.6 j
0.0 1.0 0.0 0.0 0.0 0.5 j
0.5 0.0 1.3 0.0 0.0 0.0
0.0 0.0 0.0 0.8 0.4 j 0.0
0.0 0.0 0.0 −0.4 j 1.1 0.0
0.6 j −0.5 j 0.0 0.0 0.0 1.2


.

The first choice corresponds to the case that neighboring antennas have spatially colored noises. By the second
choice, it is shown that the proposed algorithm can still work efficiently with arbitrary but sparse Rw’s. If the support
of Rw is known, an assumption in these simulations, we can use matrix completion methods to recover Rw which,
indeed, leads to more accurate estimates. However, we can also exploit low-rank/sparse decomposition algorithms
to recover Rw when its support is unknown. We use the CVX library [36] to decompose R̃x by program (5). We
use a fixed regularization parameter µ = 1.1∥s̃∥∞

√
M2 − |Ω|, where s̃ is a constant vector defined in [32] and is

computed by a simple numerical simulation. We compare our algorithm with some well-known detection algorithms
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Figure 2: pd of each detection algorithm versus SNR(dB) for N = 500, Rw = R(1)
w and other parameters as described in section 5.

“tr(R̃x)/ tr(R̂y), γ1” denotes pd of our algorithm with the threshold calculated empirically with p f = 0.01, while “tr(R̃x)/ tr(R̂y), γ2” stands for
pd of our algorithm with the threshold computed using (8) with the same p f . “Approximation” and “Ideal Decomp.” indicate the probabilities of
detection calculated using equations (9) and (10), respectively.

for uncorrelated noise case assuming one transmitter. λmax(R̂y)/(tr(R̂y)/M), called Scaled Largest Eigenvalue (SLE)
[10], is suitable when Rw = σ

2I, and λmax(R̂yD−1) with D = diag
(
[R̂y]11, [R̂y]22, . . . , [R̂y]MM

)
[12] is applicable when

Rw = diag(σ2
1, . . . , σ

2
M).

Based on 1000 Monte-Carlo simulations, for each SNR, which is defined as 10 log10 (tr(Rx)/ tr(Rw)), the prob-
ability of detection pd is calculated for each algorithm. The results are shown in Figures 2 to 5 for different Rw
and N values. The thresholds are computed empirically assuming p f = 0.01, except for the plots indicated by
“tr(R̃x)/ tr(R̂y), γ2” in which the threshold is calculated using (8). For larger values of N (as in Figures 3 and 5), our
algorithm performs much better since finite sampling effect decreases and matrix decomposition works with higher
performance. For example, as depicted in Figure 5, for N = 2000, and Rw = R(2)

w our method detects the presence of
the primary signal with SNR 6 dB lower than the other methods. The approximation for the probability of detection is
calculated from (9), and the probability of detection for the ideal case is obtained using (10). As illustrated in Figures
2 to 5, the approximation of pd for our algorithm is close to the pd obtained from numerical simulations. Also, the
performance decay is negligible when the approximated threshold γ2 is used instead of the empirical threshold γ1.

Finally, using equations (8) and (9) the receiver operational characteristic (ROC) curves can be calculated approx-
imately. Figures 6 and 7 depict the approximated ROC curves for N = 500, and N = 2000, where Rw = R(2)

w in all
plots.

6. Conclusion

In this paper, we considered spectrum sensing for CR nodes equipped with an array of sensors in spatially
correlated noise environments with unknown noise covariance. We proposed a detection algorithm based on low-
rank/sparse decomposition of the sample covariance matrix of the received signals. We evaluated the performance of
the proposed detection algorithm using approximately derived probabilities of detection and false alarm. The simula-
tion results showed that in a correlated noise environment, the proposed detector performs much better than the GLRT
detectors for uncorrelated noise case.

Appendix A. Deriving GLRT detector for spatially correlated noise case

We consider the case that K = 1; i.e., there is only one transmitter. Let s(t) ∼ N(0, p) be the transmitted signal
from the source and w(t) ∼ N(0,Rw) be the noise on the sensors. The received signal is y(t) = s(t)a(θ) + w(t), where
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Figure 3: pd of each detection algorithm versus SNR (dB) under the same conditions as of Figure 2 except for N = 2000.
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Figure 4: pd of each detection algorithm versus SNR (dB) under the same conditions as of Figure 2 except for Rw = R(2)
w , and N = 500.

a(θ) = (a1(θ), · · · , aM(θ))T is the vector of complex gains of sensors in the direction θ and θ is the direction of arrival
of the source. Let Y =

[
y(1), . . . , y(N)

]
. UnderH1, the likelihood function is

f (y|H1,Rw, θ, p) ∝ 1

|Ry|
1
2

e−
1
2 yT Ry

−1y

⇒ f (Y|H1,Rw, θ, p) ∝ 1

|Ry|
N
2

e−
1
2 tr(Ry

−1Y),

where Rw and Ry = pa(θ)a(θ)T +Rw are noise and received signal covariance matrices, respectively. Likewise, under
H0, we have

f (Y|H0,Rw) ∝ 1

|Rw|
N
2

e−
1
2 tr(Rw

−1Y).

The generalized likelihood ratio is then

L =
max
Rw,θ,p

1

|Ry |
N
2

e−
1
2 tr(Ry

−1Y)

max
Rw

1

|Rw |
N
2

e−
1
2 tr(Rw

−1Y)
.
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Figure 5: pd of each detection algorithm versus SNR (dB) under the same conditions as of Figure 4 except for Rw = R(2)
w , and N = 2000.
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Figure 6: The approximated ROC for different SNR values with Rw = R(2)
w and N = 500.

It is easy to verify that both optimization problems in numerator and denominator are nonconvex. Furthermore, they
become intractable for a general Rw.

Appendix B. Distribution of the trace of a Wishart matrix

The exact distribution of tr(R̂w), the trace of a Wishart matrix, in a general case, can be computed using zonal
polynomials [37]. However, these polynomials are hard to evaluate specially for large values of M or N. On the other
hand, tr(R̂w) equals to a linear combination of chi-square random variables [38]; that is,

tr(R̂w) ∼
M∑

i=1

λiχ
2
N ,

where λi is the ith eigenvalues of Rw. The distribution of linear combination of chi-square random variables lacks a
simple closed form expression [39]. Nevertheless, a simple approximate distribution can be obtained by constructing
a random variable with the first three moments equal to the original random variable. Using the results of [40], the
probability density function (PDF) of the approximating random variable is given by

f (z) =
N

2Λ

M∑
i=1

(
Nz
2λi

) NΛ
2λi
−1

e−
Nz
2λi

Γ
(

NΛ
2λi

) , (B.1)
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Figure 7: The approximated ROC for different SNR values with Rw = R(2)
w and N = 2000.

where Λ ≜ ∑M
i=1 λi, z ≥ 0, and Γ(x) =

∫ ∞
0 tx−1e−tdt is the gamma function. Thus, the CDF is

F(z) =
∫ z

0
f (z′)dz′ =

1
Λ

M∑
i=1

λiγ( NΛ
2λi
, Nz

2λi
)

Γ
(

NΛ
2λi

) , (B.2)

where γ(s, x) =
∫ x

0 ts−1e−tdt is the lower incomplete gamma function.

Appendix C. Formulation of (5) as an SDP problem

Let r = vec
(
PΩ(Ry − X)

)
, where vec(A) denotes a long vector obtained by stacking the columns of A. We can

rewrite (5) as
R̃x = arg min

X,t

{
µ tr(X) + t

∣∣∣ X ⪰ 0, ∥r∥2 ≤ t
}
,

where ∥r∥2 denotes the ℓ2 norm of r, and t is an optimization variable. Moreover, using a Schur complement argument,
the constraint ∥r∥2 ≤ t is equivalent to (

tIM2 r
rH t

)
⪰ 0.

Therefore, (5) can be reformulated as the following SDP program:

R̃x = arg min
X,t

µ tr(X) + t
∣∣∣ X 0 0

0 tIM2 r
0 rH t

 ⪰ 0
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[11] R. López-Valcarce, G. Vazquez-Vilar, J. Sala, Multiantenna spectrum sensing for cognitive radio: overcoming noise uncertainty, in: Interna-
tional Workshop on Cognitive Information Processing (CIP), IEEE, 2010, pp. 310–315.

[12] D. Ramı́rez, J. Vı́a, I. Santamaria, Multiantenna spectrum sensing: The case of wideband rank-one primary signals, in: IEEE Sensor Array
and Multichannel Signal Processing Workshop (SAM), IEEE, 2010, pp. 9–12.

[13] I. Gupta, A. Ksienski, Effect of mutual coupling on the performance of adaptive arrays, IEEE Transactions on Antennas and Propagation
31 (5) (1983) 785–791.

[14] H. Steyskal, J. S. Herd, Mutual coupling compensation in small array antennas, IEEE Transactions on Antennas and Propagation 38 (12)
(1990) 1971–1975.

[15] J. W. Wallace, M. A. Jensen, Mutual coupling in MIMO wireless systems: A rigorous network theory analysis, IEEE Transactions on Wireless
Communications 3 (4) (2004) 1317–1325.

[16] T. Svantesson, A. Ranheim, Mutual coupling effects on the capacity of multielement antenna systems, in: IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), Vol. 4, 2001, pp. 2485–2488.
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