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Abstract—In this paper, a detector/estimator is proposed for
compressed sensing radars, which does not need to reconstruct
the radar signal, and which works directly from compressive
measurements. More precisely, through direct processing of the
measurements, and without the need for reconstructing the
original radar signal, the system performs target detection, and
then estimates range, Doppler frequency shift, and radar cross
section in the presence of a Gaussian clutter. It can be seen
that for large compression ratios, the detection performance and
estimation quality is comparable to a common radar system while
having a much lower data rate and with less computational load.

Index Terms—compressed sensing, detection-estimation, gen-

eralized likelihood ratio test, receiver operating characteristic,

traditional radar system, compression ratio.

I. INTRODUCTION

APPLICATION of compressed sensing (CS) in radar sig-
nal processing has recently attracted the attention of

many researchers [1], [2], [3], [4], [5], [6] because radar sig-
nals usually have high bandwidths at high carrier frequencies.
Therefore, even when using bandpass sampling theorem [7], in
order to have the signal not aliased, it is necessary to sample at
a very high rate, leading to huge amounts of data. On the other
hand, it is well-known in the CS literature [8], [9], [10] that
one can take many fewer measurements (compared to Nyquist
samples), without any loss of information.

Radar signal is generally sparse in the delay-Doppler do-
main [6] and CS theory may therefore be used to achieve
more efficiency in storage space and computation time. On
this basis, many works have been done in synthetic aperture
radar (SAR) raw data processing to get its image with less
need for onboard data storing and processing [1], [2], [3].
Recently, CS has been employed in multiple input multiple
output (MIMO) radars to achieve more efficient processing of
jointly received signals in order to detect targets and estimate
their parameters, such as position and velocity [4], [5], [6].

In all of the above mentioned works, the desired signal used
for detection and/or estimation is first reconstructed by using
a general-purpose CS reconstruction algorithm [for example
Orthogonal Matching Pursuit (OMP) [11], Basis Pursuit De-
Noising (BPDN) or Compressive Sampling Matching Pursuit
(CoSaMP) [12]] or an algorithm developed specially for the

specific problem [5], [13], [14]. However, the need for recon-
structing the original signal for detection/estimation creates
some difficulties. When using compressed sensing, the data
rate is highly reduced, that is, the rate of measurements is
much lower than for Nyquist samples. If, for processing the
measurements, one needs to reconstruct the original signal,
that is, reconstruct the Nyquist samples in some part of
the system, then the data rate in that part is again very
high. Therefore, it is desirable for detection/estimation to be
based on directly processing the CS measurements, that is, by
performing the processing within the CS “domain”. This has
been the subject of some recent studies [15] and [16].

Detection/Estimation using CS measurements without re-
constructing the original signal has been also discussed in
fields other than radar. For example, authors in [17] and
[18] studied blind communications in the CS domain. In
[17], the carrier frequency of a blind phase shift keying
(PSK) signal is estimated, which is a preliminary step for
the modulation order estimation and blind signal detection. In
[18], the unknown signal is classified between four modula-
tions, namely Binary PSK (BPSK), Quadrature PSK (QPSK),
8PSK and 16 Quadrature Amplitude Modulation (16QAM).
Detection, classification, estimation and filtering in the CS
domain have been explored extensively in [15]. In fact, these
were investigated for the most general form of the signal, and
proper bounds (lower, upper or both) were introduced for the
parameters determined for the algorithm qualification in each
process. The bounds were derived based on the measurement
matrix properties defined there. Authors in [16] proposed the
idea for radar applications generally, but they followed it for
Space Time Adaptive Processing (STAP). They then showed
that statistical testing in the CS domain (compressive statistical
testing) could perform at a level close to the traditional method
for a sufficient number of measurements.

In this paper, detection/estimation in the CS domain is
studied for a simple radar application. More precisely, the aim
is to detect whether any target exists and, if yes, to estimate
its parameters, such as range, Doppler frequency shift and
radar cross section (RCS). It will be shown experimentally
that an excellent detection-estimation performance can be
obtained without the need for a lot of measurements (as is
required in [16]). Therefore, even though the data rate of
this new system is much lower than that of a common radar
system, it is possible to achieve comparable qualities with less



computational load.
The paper is organized as follows. In Section II, the problem

is defined and modeled mathematically. Section III is dedicated
to solving problem. The performance of the proposed detection
algorithm is given in Section IV. In Section V, the signal
to noise and clutter ratio (SNCR) at the input and output of
the measurement obtainer system is calculated, in order to
restate the results of Section IV in terms of SCNR. Finally,
the simulations and their results are described in Section VI.

Notations: For any vector y, its transpose conjugate (Hermi-
tian) is shown by yH . For any square matrix A, its determinant
is denoted by |A|. I is the identity matrix with appropriate
dimensions. For any complex scalar a, its complex conjugate
and real part are represented by a∗ and <{a} respectively.
Finally, E{·} stands for the expectation operator.

II. PROBLEM STATEMENT

Consider a scenario in which there is a target having
unknown distance and velocity relative to the radar platform
in the presence of clutter. As in [19], it is assumed that the
clutter probability density function (PDF) is Gaussian and
also that the radar pulse repetition frequency (PRF) is so
high that the target’s relative distance and velocity are nearly
constant during different pulses. Furthermore, the target RCS
is considered as a random variable and it is assumed that its
value is constant throughout different pulses (called Swerling
Case 1 in [20]). The received signal is sparse in time and
in delay-Doppler domains [6], so instead of sampling the
received signal at the Nyquist rate, it provides many fewer
measurements with properties mentioned in the CS literatures
[8].

The detection problem can be modeled in the form of a
hypothesis testing problem as{

H0 : y = Φ(c+ n)

H1 : y = Φ(αsr(τ, fd) + c+ n),
(1)

in which yM×1 is the measurements vector, ΦM×N is the
real random Gaussian measurement matrix with independent
identically distributed (i.i.d.) elements having zero mean and
unit variance and M � N . It should be noted that the
measurement matrix is assumed to be incoherent with time or
delay-Doppler domain in which the received signal is sparse.
cN×1 is the vector of clutter samples, nN×1 models the
additive white Gaussian noise (AWGN) with variance σ2

n at
the receiver, α is the complex RCS of the target, and sr(τ, fd)
is the received signal with delay τ and Doppler frequency
shift fd relative to the sent signal. As in [19], it is assumed
that the distribution of c is circular normal with zero mean
and covariance matrix Rc denoted as CN (0,Rc). As well,
there is a pre-estimation of Rc. Therefore, if the clutter to
noise ratio (CNR) is fixed, σ2

n will be known. As mentioned
in [20], circular normal distribution can be considered for α
as CN (0, σ2

α), where σ2
α is its variance. This is because α

is formed by the many scatterers in the target range-Doppler
cell. Moreover, as in [21], and [22], it is assumed that σ2

α is
known a priori.

The goal is to detect whether or not any target exists, and if
yes, to estimate its parameters, namely range (or equivalently,
delay), Doppler frequency shift and RCS.

III. THE PROBLEM SOLUTION

If the target exists, its range and Doppler frequency shift
are not known a priori, so the usual likelihood ratio test
(LRT) cannot be computed and used for the detection. Instead,
the generalized likelihood ratio test (GLRT) should be used,
in which the LRT is maximized to find the optimum delay
(or equivalently, range) and Doppler frequency shift, which
are also estimations of the supposed target’s parameters. The
LRT value at the optimal point should then be compared
with a proper threshold. So at the first step, the PDF of
the measurements vector for the two hypotheses is computed.
Because noise and clutter vectors both have circular normal
distribution, conditioned on H0, y is a vector with distribution
CN (0,Φ(σ2

nI + Rc)Φ
T ). If A is defined as the covariance

matrix of y|H0, for the null hypothesis, we have [23]

f(y|H0) =
1

πM |A| exp{−y
HA−1y}, (2)

in which A = σ2
nΦΦT + ΦRcΦ

T . Similarly for the other
hypothesis H1,

f(y|H1, α, τ, fd) = CN (αΦsr(τ, fd),A) (3)

=
1

πM |A| exp
{
−
(
y − αΦsr(τ, fd)

)H
× A−1

(
y − αΦsr(τ, fd)

)}
. (4)

As was assumed in Section II, the distribution of α is
fα(α) = 1

πσ2
α
exp

{
− |α|2

σ2
α

}
, and it is shown in A that

f(y|H1, τ, fd) is as

f(y|H1, τ, fd) =
1

πM |A| exp
{
− yHA−1y

}
× 1

a(τ, fd)σ2
α + 1

exp

{
b(τ, fd)σ

2
α

a(τ, fd)σ2
α + 1

}
,

(5)

where a(τ, fd) = sr(τ, fd)
HΦTA−1Φsr(τ, fd) and

b(τ, fd) =
∣∣yHA−1Φsr(τ, fd)

∣∣2. The LRT can then be
derived as

L(y|τ, fd) =
f(y|H1, τ, fd)

f(y|H0)

=
1

a(τ, fd)σ2
α + 1

exp

{
b(τ, fd)σ

2
α

a(τ, fd)σ2
α + 1

}
.

(6)

In order to find the GLRT, L(y|τ, fd) should be maximized
over τ and fd i.e.

GLRT(y) = max
(τ,fd)

L(y|τ, fd). (7)

As described in B, the GLRT will be in the form

GLRT(y) = L(y|τ̂ , f̂d)

=

√
b
(
τ̂ , f̂d

)
= |yHA−1Φsr

(
τ̂ , f̂d

)
| ≷ Th, (8)



in which (τ̂ , f̂d) = argmax(τ,fd) L(y|τ, fd), 1 − p0 is the a
priori probability of the target existence and

Th =

√
a
(
τ̂ , f̂d

)
σ2
α + 1

σα

√
ln

(
p0

1− p0

(
a
(
τ̂ , f̂d

)
σ2
α + 1

))
.

(9)

IV. DETECTOR PERFORMANCE

For evaluating the detector performance, the receiver op-
erating characteristic (ROC) curve, i.e. the detection prob-
ability (pd) versus the false alarm probability (pf ), should
be calculated. By defining z , yHA−1Φsr

(
τ̂ , f̂d

)
, its PDF

conditioned on the null hypothesis is

f(z|H0) = CN
(
0, a
(
τ̂ , f̂d

))
. (10)

So pf is calculated as

pf = p(|z| > Th|H0)

=

∫ ∞
Th

px(x|H0)dx

= 1−
∫ Th

−∞
px(x|H0)dx

= exp

{
− Th2

a
(
τ̂ , f̂d

)}, (11)

in which x = |z| has a Rayleigh distribution with pa-
rameter (a

(
τ̂ , f̂d

)
/2)1/2 conditioned on H0, denoted as

Ray((a
(
τ̂ , f̂d

)
/2)1/2) [24].

On the other hand, the PDF of z conditioned on H1 and α
can be written as

f(z|H1, α) = CN
(
αa
(
τ̂ , f̂d

)
, a
(
τ̂ , f̂d

))
. (12)

If the above PDF is averaged over α, as shown in C, f(z|H1)
will be as

f(z|H1) = CN
(
0, a
(
τ̂ , f̂d

)
+ a
(
τ̂ , f̂d

)2
σ2
α

)
. (13)

Therefore pd will be

pd = p(|z| > Th|H1)

=

∫ ∞
Th

px(x|H1)dx

= 1−
∫ Th

−∞
px(x|H1)dx

= exp

{
− Th2

a
(
τ̂ , f̂d

)
+ a
(
τ̂ , f̂d

)2
σ2
α

}
, (14)

where, similar to the H0 hypothesis, px(x|H1) =

Ray(((a
(
τ̂ , f̂d

)
+ a
(
τ̂ , f̂d

)2
σ2
α)/2)

1/2).
In order to obtain the ROC, it can be seen from (11) that

Th2 = −a
(
τ̂ , f̂d

)
ln pf so pd = exp

{
a
(
τ̂ ,f̂d

)
ln pf

a
(
τ̂ ,f̂d

)
+a
(
τ̂ ,f̂d

)2
σ2
α

}
or

in other words

pd = pf

(
1+a
(
τ̂ ,f̂d

)
σ2
α

)−1

. (15)

V. SNCR AT THE MEASUREMENTS’ OBTAINER SYSTEM

INPUT AND OUTPUT

The signal at the input of the measurements’ obtainer system
is yin = αsr(τ, fd)+c+n. The signal term is αsr(τ, fd) and
the noise-clutter term is c+n. Therefore, the signal power is
E
{∥∥αsr(τ, fd)∥∥22} = σ2

αNpPw, where Np is the number of
pulses sent and Pw is the number of samples in a pulse. Here it
is assumed that the pulses are rectangular. On the other hand,
the noise-clutter power is E

{
‖c+ n‖22

}
. Because the noise

and clutter are statistically independent, it can be written as

E
{
‖c+ n‖22

}
= E

{
‖c‖22

}
+ E

{
‖n‖22

}
=

N∑
i=1

λi +Nσ2
n,

(16)
where λis are the eigenvalues of Rc. Therefore, the input
SNCR will be

SNCRin =
σ2
αNpPw

Nσ2
n +

∑N
i=1 λi

. (17)

As derived in (8), the output statistic for GLRT is

x =
∣∣yHA−1Φsr

(
τ̂ , f̂d

)∣∣
=
∣∣sr(τ̂ , f̂d)HΦTA−1y

∣∣
=
∣∣∣αsr(τ̂ , f̂d)HΦTA−1Φsr

(
τ̂ , f̂d

)
+sr

(
τ̂ , f̂d

)H
ΦTA−1Φ(c+ n)

∣∣∣
=
∣∣∣αa(τ̂ , f̂d)+ sr

(
τ̂ , f̂d

)H
ΦTA−1Φ(c+ n)

∣∣∣. (18)

Therefore, x2 can be expanded as

x2 = |α|2a
(
τ̂ , f̂d

)2
+ α∗a

(
τ̂ , f̂d

)
sr
(
τ̂ , f̂d

)H
ΦTA−1Φ(c+ n)

+ αa
(
τ̂ , f̂d

)
(c+ n)HΦTA−1Φsr

(
τ̂ , f̂d

)
+ sr

(
τ̂ , f̂d

)H
ΦTA−1Φ(c+ n)

×(c+ n)HΦTA−1Φsr
(
τ̂ , f̂d

)
. (19)

If the input SNCR is high, it can be assumed that∥∥αsr(τ̂ , f̂d)∥∥2 � ‖c + n‖2. Then, x can be approximated
as

x = |α|a
(
τ̂ , f̂d

)(
1 +

sr
(
τ̂ , f̂d

)H
ΦTA−1Φ(c+ n)

αa
(
τ̂ , f̂d

)
+
(c+ n)HΦTA−1Φsr

(
τ̂ , f̂d

)
α∗a

(
τ̂ , f̂d

)
+sr

(
τ̂ , f̂d

)H
ΦTA−1Φ(c+ n)

×
(c+ n)HΦTA−1Φsr

(
τ̂ , f̂d

)
|α|2a

(
τ̂ , f̂d

)2 )1/2
∼= |α|a

(
τ̂ , f̂d

)(
1 +

sr
(
τ̂ , f̂d

)H
ΦTA−1Φ(c+ n)

αa
(
τ̂ , f̂d

)
+
(c+ n)HΦTA−1Φsr

(
τ̂ , f̂d

)
α∗a

(
τ̂ , f̂d

) )1/2



= |α|a
(
τ̂ , f̂d

)√√√√1 + 2<
{sr(τ̂ , f̂d)HΦTA−1Φ(c+ n)

αa
(
τ̂ , f̂d

) }
∼= |α|a

(
τ̂ , f̂d

)(
1 + <

{sr(τ̂ , f̂d)HΦTA−1Φ(c+ n)

αa
(
τ̂ , f̂d

) })
= |α|a

(
τ̂ , f̂d

)
+ <

{ |α|
α

sr
(
τ̂ , f̂d

)H
ΦTA−1Φ(c+ n)

}
.

(20)

If α is considered in the polar form as α = |α|ejψ, x can be
written as

x = |α|a
(
τ̂ , f̂d

)
+ <

{
e−jψsr

(
τ̂ , f̂d

)H
ΦTA−1Φ(c+ n)

}
. (21)

In (21), the signal term is |α|a
(
τ̂ , f̂d

)
and the noise-clutter

term is <
{
e−jψsr

(
τ̂ , f̂d

)H
ΦTA−1Φ(c + n)

}
. Therefore,

the signal power is a
(
τ̂ , f̂d

)2
σ2
α. For the noise-clutter power

calculation, s is defined as s , sr
(
τ̂ , f̂d

)H
ΦTA−1Φ(c+ n)

so the noise-clutter term (NCT) can be restated as

NCT = <
{
e−jψsr

(
τ̂ , f̂d

)H
ΦTA−1Φ(c+ n)

}
= <{se−jψ}
= sr cosψ + si sinψ, (22)

where sr and si are the real and imaginary parts of s
respectively. The noise-clutter power will be

E
{
(sr cosψ + si sinψ)

2
}
= E

{
s2r cos

2 ψ + s2i sin
2 ψ

+2srsi cosψ sinψ
}

= E
{
s2r cos

2 ψ + s2i sin
2 ψ
}
,

because c and n are circular normal and independent of each
other, s is circular normal and therefore its real and imaginary
parts are statistically independent and both are zero-mean.
Furthermore, s is independent of ψ, which has a uniform
distribution in the interval [0, 2π), so

NCP =
1

2
E{s2r + s2i } =

1

2
E{|s|2} = 1

2
a
(
τ̂ , f̂d

)
, (23)

where NCP stands for noise-clutter power. From (23), it can
be concluded that

SNCRout = 2σ2
αa
(
τ̂ , f̂d

)
, (24)

which can be written from (15) in terms of the detection and
false alarm probability as

SNCRout = 2
( ln pf
ln pd

− 1
)
. (25)

VI. RESULTS AND SIMULATIONS

In this section, five simulations are conducted to experi-
mentally evaluate the performance of the proposed detection-
estimation approach. In all of these simulations, the target
RCS, its distance and speed relative to the radar, CNR and also
the number of samples are fixed as RCS = 10.16, R = 3900m,
v = 198m/s, CNR = 27dB and N = 1320. In the following,
compression ratio (CR) means the fraction M

N , and in the case
M
N = 1, the measurement matrix is set to identity. In other
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Fig. 1. ROC curves for different compression ratios at SNCRin = 20dB

(M
N

= 1 means a traditional radar system).

words, CR = 1 corresponds to the traditional radar system,
which does not use CS.
Experiments 1, 2 and 3. Performance Analysis

In these experiments, the presented detector performance is
studied and compared with the traditional method, by using
(15). At first, SNCRin is fixed at 20dB so by (17) σ2

α is known.
The ROC curves for a fixed SNCRin = 20dB and for different
CRs are plotted in Fig. 1. The chosen CRs (except 1) constitute
a geometrical sequence with the first term 0.0031 and common
ratio 2 to cover the interval (0, 1) in a good manner. As can be
seen, the lower the CR, the better the detector performance.
This was expected because, by increasing the number of
measurements, more information from the incoming signal is
obtained. These curves show that the performance degradation
is very small, even for CR = 0.0031 (the detection probability
is above 0.99 for all false alarm probabilities). For comparison,
the ROC curves for the CS method with reconstruction at
SNCRin = 20dB are plotted in Fig. 2. The OMP algorithm is
used for CS reconstruction. As it is observed, the detection is
very good (the detection probability is near 0.99 for all false
alarm probabilities).

Secondly, the detection probability has been shown versus
CR for different input SNCRs at fixed false alarm probability
pf = 10−4. Here, the input SNCR is varied to have a
single target with different powers. For each one, pd is then
computed, while CR varies as the first simulation. The result
is shown in Fig. 3. It is observed that, up to SNCRin = 15dB,
the obtained detection probability at the largest CR is above
0.95 for pf = 10−4.

In the third simulation, the ROC curve is derived for differ-
ent input SNCRs at fixed CR = 0.0031. ROC curves for a fixed
CR and for different input SNCRs, or equivalently different
target powers, have been plotted in Fig.4. From this figure, it
can be deduced that, to have a good detection performance
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(detection probability above 0.97) at CR = 0.0031, the input
SNCR should be increased to 15dB. This is not surprising,
because the number of measurements has been reduced very
much, so the input SNCR has to be increased a little. This is
the key point: by increasing the input SNCR a little, with very
few measurements, a very good performance can be obtained.
For comparison, the ROC curves for the CS method with
reconstruction at CR = 0.0031 are plotted in Fig. 5. It can be
again seen that, to have an acceptable detection performance,
the input SNCR should be increased.
Experiment 4. Computational Cost

In this experiment, the computational cost of the presented
detector is studied and compared with the traditional radar
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Fig. 5. The ROC curves for different input SNCRs at fixed compression ratio
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= 0.0031 with CS reconstruction.

system, i.e. CR = 1. The averaged CPU time of the detection
process over 100 simulations is used as a rough measure of
the complexity of the detection algorithm for different CRs.
Simulations are performed in MATLAB R2013a environment,
using Intel Core (TM) 2 Duo P8800, 2.67GHz processor with
4GB of memory, and under 64 bit Microsoft Windows 7
operating system.

The results are shown in Fig. 6. It is seen that at CR =
0.0031, around 2% reduction in computational cost has been
achieved. Contrary to previous compressive sensing radars
[1], [2], [3], [4], [5], [6], this system does not reconstruct
the Nyquist samples. So, as demonstrated in Figs. 1 and 4,
having a data rate of only 0.3% of a common radar system, the
detection probability is above 0.99, with about a 2% reduction
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in computational load. In Fig. 7, the mean detection time is
plotted when CS reconstruction is used. As it is seen, the
averaged CPU time is increased, however, the key point is
that with CS reconstruction the data rate is increased.
Experiments 5, 6, and 7. Parameters Estimation Accuracy

In these three experiments, the estimation accuracy of the
target parameters is studied. To estimate the target delay
and Doppler frequency shift, (6) and (7) are used. In these
experiments, the simulation is run 100 times and the mean
and standard deviation of the estimated parameters computed.
Input SNCR is varied from 5dB to 30dB. Figures 8 and 9
depict the estimated delay τ̂ and Doppler frequency shift f̂d
respectively for different values of CR and input SNCR. It is
interesting to note that even at SNCRin = 5dB for CRs less
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Fig. 8. Mean estimated delay (τ̂ ) and its standard deviation versus compres-

sion ratio for input SNCR varied from 5dB to 30dB (the true delay value is

τ = 26). Note: M
N

= 1 means a traditional radar system.
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Fig. 9. Mean estimated Doppler frequency shift (f̂d) and its standard deviation

versus compression ratio at for input SNCR varied from 5dB to 30dB (the

true Doppler frequency shift value is fd = 6600). Note: M
N

= 1 means a

traditional radar system.

than 0.0125, the standard deviation of the estimated delay is
negligible, while using less than 2% of the samples of the
traditional radar system. Similarly for the Doppler frequency
shift estimation at CRs less than 0.0031, the standard deviation
is very small. It should also be noted that although there
are some errors in the estimated parameters for CRs greater
than 0.0125, the detection performance is still good for input
SNCRs greater than 10dB (the detection probability is above
0.95).

For signal modeling in the presence of a target, it was
assumed that the signal complex RCS is a circular normal
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Fig. 10. Mean estimated RCS and its standard deviation versus compressin

ratio at SNCRin = 20dB (the true RCS value is 10.16). Note: M
N

= 1 means

a traditional radar system.

random variable. In practice, however, it can be estimated
using the measurements vector. In fact, if the input SNCR
is high, from (18) the target RCS can be approximated as

|α| ∼=
|yHA−1Φsr

(
τ̂ , f̂d

)
|

sr
(
τ̂ , f̂d

)H
ΦTA−1Φsr

(
τ̂ , f̂d

) =

√
b
(
τ̂ , f̂d

)
a
(
τ̂ , f̂d

) . (26)

The RCS approximation accuracy is simulated similar to
the delay and Doppler frequency shift at SNCRin = 20dB.
Figure 10 shows the results. For CRs less than 0.025, the error
in the mean RCS approximation and the standard deviation
is tolerable (less than 5%), but for CRs greater than 0.05,
there may be a large error in the mean RCS approximation.
Therefore, for RCS approximation, a few more measurements
should be obtained.

VII. CONCLUSION

In this paper, it has been shown that a target can be
detected in the presence of a Gaussian clutter, and its important
parameters, such as range, Doppler frequency shift and RCS,
can be estimated using compressive measurements without
reconstructing Nyquist samples. In fact, by using very high
compression ratios (like 0.0031), the detection performance is
proper and the estimation quality is comparable to traditional
radar systems while having a much lower data rate and
with less computational load. So it seems that the proposed
detection algorithm is very suitable especially for high pulse
bandwidth radars.

APPENDIX A

PROOF OF (5)

It is obvious that

f(y|H1, τ, fd) =

∫
f(y|H1, α, τ, fd)fα(α)dαrdαi, (27)

in which αr and αi are the real and imaginary parts of α,
respectively. By substituting the distribution f(y|H1, α, τ, fd)

from (4) in (27) and using fα(α) = 1
πσ2

α
exp

{
− |α|

2

σ2
α

}
we

have

f(y|H1, τ, fd) =
1

πM |A|
1

πσ2
α

exp{−yHA−1y}

×
∫∫ ∞
−∞

exp{−sr(τ, fd)HΦTA−1Φsr(τ, fd)|α|2}

× exp{sr(τ, fd)HΦTA−1yα∗}

× exp{yHA−1Φsr(τ, fd)α} exp
{
− |α|

2

σ2
α

}
dαrdαi.

If we define a(τ, fd) , sr(τ, fd)
HΦTA−1Φsr(τ, fd) (it

is real valued because a∗(τ, fd) = a(τ, fd)) and c(τ, fd) ,
sr(τ, fd)

HΦTA−1y, it can be written

f(y|H1, τ, fd) =
1

πM |A|
1

πσ2
α

exp{−yHA−1y}

×
∫∫ ∞
−∞

exp
{
−
(
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1

σ2
α

)
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}
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}
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=
1
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×
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−∞
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(
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=
1

πM |A|
1

πσ2
α

exp{−yHA−1y}

×
∫∫ ∞
−∞

exp
{
− e(τ, fd)

(∣∣∣α− c(τ, fd)

e(τ, fd)
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−|c(τ, fd)|

2
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1

πM |A|
1

σ2
αe(τ, fd)

exp{−yHA−1y}

× exp
{ |c(τ, fd)|2
e(τ, fd)

}
. (28)

In (28), e(τ, fd) = a(τ, fd) + 1
σ2
α

and the last equality
is obtained by Gaussian PDF integration [25]. By defining
b(τ, fd) , |c(τ, fd)|2 = |sr(τ, fd)HΦTA−1y|2 it can be
shown that

f(y|H1, τ, fd) =
1

πM |A|
1

σ2
αa(τ, fd) + 1

exp{−yHA−1y}

× exp
{ σ2

αb(τ, fd)

σ2
αa(τ, fd) + 1

}
, (29)

which is the same as (5).



APPENDIX B

PROOF OF (8)

According to (6) the likelihood ratio test is

L(y|τ, fd) =
1

a(τ, fd)σ2
α + 1

exp
{ b(τ, fd)σ

2
α

a(τ, fd)σ2
α + 1

}
,

≷
p0

1− p0
(30)

in which p0 is the a priori probability of the H0 hypothesis. As
is obvious, a(τ, fd) is not a function of observations (measure-
ments). So the new likelihood ratio test can be reformulated
as

L1(y|τ, fd) = exp
{ b(τ, fd)σ

2
α

a(τ, fd)σ2
α + 1

}
≷

p0
1− p0

(
a(τ, fd)σ

2
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)
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2
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⇒
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(31)

If L4(y|τ, fd) is maximized over τ and fd simultaneously,
the GLRT will be GLRT(y) = max(τ,fd) L4(y|τ, fd) in which
(τ̂ , f̂d) = argmax(τ,fd) L4(y|τ, fd). This is exactly (7). So the
GLRT can be written as

GLRT(y) = L4

(
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))
. (32)

(32) is the same as (8).

APPENDIX C

FINDING f(z|H1) IN SECTION IV

The starting point is (12) in Section IV, i.e.

f(z|H1, α) = CN
(
αa
(
τ̂ , f̂d

)
, a
(
τ̂ , f̂d

))
. (33)

By integrating (33) over the PDF of α, f(z|H1) can be
found as

f(z|H1) =

∫
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=
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where αr and αi are as in A. The integration can be computed
as
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In (35), e(τ, fd) is the same as defined in A.
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