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As an alternative to adaptive nonlinear schemes for dimensionality reduction, linear

random projection has recently proved to be a reliable means for high-dimensional data

processing. Widespread application of conventional random projection in the context of

image analysis is, however, mainly impeded by excessive computational and memory

requirements. In this paper, a two-dimensional random projection scheme is consid-

ered as a remedy to this problem, and the associated key notion of concentration of

measure is closely studied. It is then applied in the contexts of image classification and

sparse image reconstruction. Finally, theoretical results are validated within a compre-

hensive set of experiments with synthetic and real images.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

The need for efficient collection, storage and proces-
sing of large, high-dimensional data has increased drasti-
cally over the past decade. Unfortunately, the high-
dimensionality of data, in particular, jeopardizes the
performance of inference tasks, due to the so-called
‘‘curse of dimensionality’’ phenomenon [1]. Luckily,
dimensionality reduction techniques are often helpful in
reducing this burden by extracting key low-dimensional
information about the original high-dimensional signals,
from which we can later infer key properties of the
original data. It is therefore desirable to formulate a
method that efficiently reduces the dimensionality effi-
ciently, while preserving as much information from the
original data as possible [2]. There are two main scenarios
in which dimensionality reduction is successful: (1) Low-
complexity inference, where only a small amount of
information is required to make an inference about data.
ll rights reserved.
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Examples include function estimation, signal detection,
and classification [3,4]. (2) Low-dimensional signal mod-
els, in which signals of interest have few degrees of
freedom. In fact, it frequently happens in real-world
applications that high-dimensional data actually obey
some sort of concise low-dimensional model. Examples
include signals with finite rate of innovation, manifolds,
etc [5,6]. While most conventional dimensionality reduc-
tion techniques are adaptive and involve nonlinear map-
pings to preserve certain desirable properties of data, a
linear non-adaptive technique based on random projec-
tions (RP’s) of data has recently been introduced [7]. In
fact, random projections have been successfully utilized
in low-complexity inference tasks, such as classification
and estimation [3,4,8,9]. RP has also demonstrated
remarkable performance in obtaining a faithful low-
dimensional representation of data belonging to low-
complexity signal models, as in acquisition and recon-
struction of sparse signals and manifolds [10,11,2].
Remarkable properties of RP stem from a simple concen-
tration of measure inequality which states that, with high
probability, the norm of a signal is well-preserved under a
random dimensionality-reducing projection [12]. This
seminal fact allows us to show that in many settings the
l random projection, Signal Process. (2011), doi:10.1016/
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1 Similar definitions may differ in scaling.
2 For a sub-Gaussian random variable y we have Prfjyj4ugrKe�du2

for every u and some K ,d40. Equivalently, a sub-Gaussian random

variable satisfies Eeuy renu2
for every u 2 R and some n40, which we

refer to the infimum of such n as the Gaussian standard of u.
3 By an orthoprojector, we mean an orthogonal projection from Rn

to Rm , mrn, that can be expressed as an m�n matrix with orthonormal

rows.
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distinguishing characteristics of a signal can be encoded
by a few random measurements. In particular, using the
simple union bound in combination with the above result
leads us to Johnson–Lindenstrauss (JL) Lemma, which
implies that the geometric structure of a point cloud is
preserved under a random dimensionality reduction pro-
jection [13].As shown in [14], these results can be further
extended to infinite sets with low-complexity geometrical
structure, such as sparse signals and manifolds. Despite
these impressive results, application of conventional RP to
high-dimensional data, such as images and videos faces
severe computational and memory difficulties, due to the
so-called vector space model [15–17]. Under this model,
each datum is modeled as a vector, i.e. columns (or rows)
of each two-dimensional signal (2D-signal) are initially
stacked into a large vector, as a result of which the row/
column-wise structure of the image is ignored and sto-
rage and computational requirements are drastically
increased. To alleviate the expensive conventional RP
(1D-RP) scheme, the so-called two-dimensional random
projection (2D-RP) has been recently proposed, which
directly leverages the matrix structure of images and
represents each datum as a matrix, instead of a vector
[15]. In fact, similar ideas have previously appeared, for
instance, in the context of 2D principal component ana-
lysis (2D-PCA) [18] and 2D linear discriminant analysis
(2D-LDA) [19], in which the extensions of conventional
PCA and LDA on 1D-signals to the image domain have
demonstrated substantial improvements in memory and
computational efficiency. In this paper, the idea of 2D-RP
is studied and the corresponding concentration properties
are closely analyzed. It is observed that desirable proper-
ties of 1D-RP extends to 2D analogue, while significantly
gaining in computational and storage requirements. This
gain, essentially due to the reduction in the number of
degrees of freedom of the projection matrices, comes at
the cost of extra measurements to obtain the same
accuracy. 2D-RP is then applied to two important applica-
tions: (1) 2D-compressive classification, which is con-
cerned with classification of images based on random
measurements provided by 2D-RP. In particular, we con-
sider multiple hypothesis testing given only random
measurements of possibly noisy images, and (2) sparse
2D-signal reconstruction, which addresses the problem of
accurate acquisition and reconstruction of sparse images
from relatively few random measurements. In accordance
with our expectations, comprehensive experiments verify
the comparable performance and remarkable computa-
tional and storage advantages of 2D-RP compared to the
1D counterpart. Preliminary steps towards this work have
been presented in ICIP2009 [20], in which the application
of 2D-RP to classification of sparse images was studied
briefly, along with a study of 2D-RP with Gaussian
random matrices.

The rest of this paper is organized as follows. Section 2
offers a brief review on 1D-RP and corresponding techni-
cal results. 2D-RP and its implications for 2D-signals,
finite sets, and infinite sets with low-complexity signal
models are discussed in Section 3. Section 4 presents two
main applications of 2D-RP and offers detailed perfor-
mance analysis. In Section 5, these findings are validated
Please cite this article as: A. Eftekhari, et al., Two-dimensiona
j.sigpro.2011.01.002
through comprehensive experiments with synthetic and
real images.

2. 1D random projection

Consider making m linear measurements of 1D-signals
in Rn, mon. Equivalently, we can represent this measure-
ment process in terms of linear projection onto Rm by an
m�n matrix A. Successful statistical inference or stable
recovery in Rm then mostly depends on the preservation
of the geometric structure of data after projection [21].
This, in turn, requires a stable embedding of data in Rm,
which is commonly characterized using the following
notion of isometry [10,14].

Definition 1 (Baraniuk and Wakin [10, Section 3.2.1]).
Given x 2 Rn, a matrix A 2 Rm�n is said to have isometry
constant e for x, if the following holds1:ffiffiffiffiffi

m

n

r
ð1�eÞJxJ2rJAxJ2r

ffiffiffiffiffi
m

n

r
ð1þeÞJxJ2, ð1Þ

in which J � J2 denotes the ‘2�norm.

Also, we say that an m�n random matrix is admissible
if its entries are independently drawn from a zero-mean
sub-Gaussian2 probability distribution with variance 1=n.
Examples include random Gaussian and Bernoulli
matrices, as well as orthoprojectors.3 The well-known
concentration of measure inequality then implies that,
with high probability, (1) holds for all admissible random
(AR) matrices [14,22]. This is formally stated as follows.

Theorem 1 (Baraniuk and Wakin, Baraniuk et al.

[10,14]). Suppose that e 2 ð0,1Þ and x 2 Rn are given. Then,
there exists a positive constant c depending only on e, such

that an AR matrix A 2 Rm�n has the isometry constant e for

x, with probability exceeding 1�e�cm.

In addition, c is shown to be e2=400 n2, where n40 is
the Gaussian standard of the distribution of the entries of
A. These arguments about random projection of 1D-
signals (1D-RP) easily extend to any finite set of signals.
In particular, we say that a matrix A 2 Rm�n has isometry
constant e on a set fxig

N
i ¼ 1 � Rn, if (1) holds for every

point in the set [10, Section 3.2.1]. Using a simple union
bound in combination with the above results, it is
straightforward to show that, AR matrices have desired
isometry constant on an arbitrary finite set with high
probability, provided that sufficient number of measure-
ments are acquired. This result is formally stated in terms
of the JL Lemma, and is concerned with stable embedding
of a finite set of points under a random dimensionality-
reducing projection. JL Lemma implies that with high
probability the geometry of a point cloud is preserved
l random projection, Signal Process. (2011), doi:10.1016/

dx.doi.org/10.1016/j.sigpro.2011.01.002
dx.doi.org/10.1016/j.sigpro.2011.01.002


A. Eftekhari et al. / Signal Processing ] (]]]]) ]]]–]]] 3
by random linear projection onto a space with dimension
that only logarithmically grows in the number of points.
In particular, the pair-wise distances are uniformly
shrunk by a factor of

ffiffiffiffiffiffiffiffiffiffi
m=n

p
[13,14].

These results can be further extended to infinite sets
with low-complexity geometric structures, such as sparse
(or nearly sparse) signals and manifolds. Let Sk denote the
set of signals in Rn with at most k nonzero entries. With
careful application of JL Lemma and simple covering
arguments, it has been shown that linear random projec-
tion stably embeds Sk into the lower-dimensional space
Rm with high probability, provided that the number of
measurements m is linear in k and logarithmic in n [14].
This result is formally stated below.

Theorem 2 (Baraniuk et al. [14]). Given e 2 ð0,1Þ, there

exist constants c1,c240 depending on e, such that an AR

matrix A 2 Rm�n has the isometry constant e for Sk with

probability exceeding 1�e�c2m, provided krc1m=logn=k.

Theorem 2 implies that if the signal is sparse (or nearly
sparse) in some basis, then linear random projection
encodes the salient information in the signal with high
probability, and enables signal reconstruction within a
controllable mean-squared error, even when the observa-
tions are corrupted by additive noise [23,24]. Several
tractable algorithms, such as basis pursuit [25,26], match-
ing pursuit [27–29], and smoothed ‘0�norm algorithm
(SL0) [30], have been proposed for efficient sparse signal
reconstruction based on such non-adaptive linear
measurements.
3. 2D random projection

Traditionally, to collect a set of linear measurements of
a 2D-signal (image), columns of the 2D-signal are first
stacked into a large column vector. This so-called vector
space model for signal processing [16], however, ignores
the intrinsic row/column-wise structure of the 2D-signal
and, even for moderately sized signals, involves prohibi-
tive computational and memory requirements for collect-
ing linear measurements and for applying statistical
inference and reconstruction algorithms after projection.
More specifically, to linearly project an n�n image X onto
Rm2

(mon), 1D-RP produces y9Ax, in which A 2 Rm2�n2

is
an AR matrix and x¼ vecðXÞ is the n2

�1 vector obtained
by stacking the columns of X. This projection requires
Oðm2n2Þ operations and m2n2 memory units to store A.
Therefore, direct application of 1D-RP to high-dimen-
sional data, such as images and videos, quickly reaches
practical computational limits.

As a remedy to these drawbacks, one may use the so-
called two-dimensional random projection (2D-RP) to
directly leverage the matrix structure of images. 2D-RP
of X 2 Rn�n onto Rm�m produces Y9AXBT , where A,B are
m�n AR matrices. This can be equivalently shown by
y¼ ðB� AÞx, where y¼ vecðYÞ, x¼ vecðXÞ, and � denotes
the Kronecker product [31]. This projection, in contrast to
1D-RP, requires only Oðmn2Þ operations and 2mn memory
units to store the projection matrices. Despite the experi-
mentally verified effectiveness of 2D-RP in the context of
Please cite this article as: A. Eftekhari, et al., Two-dimensiona
j.sigpro.2011.01.002
sparse images reconstruction [15], theoretical aspects and
other applications of this method have mainly remained
unexplored. Therefore, as our first result, Theorem 3
focuses on the concentration properties of the Kronecker
product of two AR matrices. Note, however, that this is
not trivial, since entries of the product are no more
independently distributed. Proof of this result is given in
Appendix A.

Theorem 3. Suppose that e 2 ð0,1Þ and X 2 Rn�n are given.

Then, there exists c¼ cðeÞ40 depending only on e, such that

with probability exceeding 1�e�cm, B� A has isometry

constant e for X, where we assume that the entries of the

Kronecker product of AR matrices A,B 2 Rm�n are sub-

Gaussian random variables.

In particular, due to the heavy tail of the product of
two Gaussian random variables, the Kronecker product of
two random Gaussian matrices is not guaranteed to
satisfy the concentration inequality (1). Note, however,
that the concentration inequality holds for the Kronecker
product of matrices with entries of the form

ffiffiffiffiffiffi
jyj
p

, where y

is drawn from N ð0,p=2n2Þ, i.e. a Gaussian distribution
with zero mean and variance of p=2n2. Furthermore, we
observe that the concentration inequality is satisfied by
the Kronecker product of any two AR matrices with
entries drawn from finitely supported probability
distributions.

Also, it would be instructional to compare Theorem 3
(which studies the Kronecker product of AR matrices)
with that of a single AR matrix. According to Theorem 1,
an m2

�n2 AR matrix D has isometry constant e with
probability exceeding 1�e�cm2

, for some c40. On the
other hand, Theorem 3 states that, the Kronecker product
of m�n AR matrices A and B achieves an isometry
constant of e with probability at least 1�e�cum, for some
cu40 and provided that a certain condition on probability
distribution is met. Therefore, compared to 1D-RP, 2D-RP
requires more measurements to ensure the same isome-
try constant. The factor of OðmÞ increase in the required
number of observations may be attributed to the reduc-
tion in the number of degrees of freedom from Oðm2n2Þ to
OðmnÞ. However, it shall be emphasized that Theorem 3
only states that the sufficient conditions for concentration
of measure. In practice, while saving considerably in
memory resources and computation time, performance
of 2D-RP proves to be comparable to that of 1D-RP most
of the times. Before extending the above results to infinite
sets with low-complexity structures, it shall be empha-
sized that Theorem 3 is easily extended to any arbitrary
finite set of 2D-signals, X ¼ fX1, . . . ,XLg � Rn�n. Using the
union bound, it is straightforward to verify that there
exists constants c1,c240 depending only on e, such that
B� A has an isometry constant e for X with probability
exceeding 1�e�c2m, provided mZc1lnL.

Now we extend these results to a well-known example
of infinite sets with low-complexity geometric structure,
namely sparse 2D-signals, where the signals of interest
have few degrees of freedom relative to the dimension of
the ambient space. Building upon the ideas presented in
[15], we consider the following three definitions for
l random projection, Signal Process. (2011), doi:10.1016/
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sparse 2D-signals in Rn�n. Again, since extension of the
consequent results to the general case is straightforward,
only the symmetric case (i.e. where both A and B are of
the same dimension m�n) is assumed for the sake of
neatness.

Definition 2. We define the following notations:

Let S1
k to be the set of n�n 2D-signals whose nonzero

entries are distributed in at most k rows and k columns.

Let S2
k to be the set of n�n 2D-signals with no more

than k2 nonzero entries, where the number of nonzero

entries in each row and column does not exceed k.

Let S3
k to be the set of n�n 2D-signals with no more

than arbitrary-distributed k2 nonzero entries.

Note that S1
k � S2

k � S3
k , and that S3

k is the direct
extension of the concept of sparsity from 1D case and
therefore neglects the row/column-wise structure of the
2D-signal. In contrast, S1

k and S2
k assume a row/column-

wise structure on 2D-signals, which, as shown later,
usually allows for better concentration properties.
Theorem 4, proved in Appendix B, extends Theorem 2 to
the set of sparse 2D-signals.

Theorem 4. Given e 2 ð0,1Þ, there exist constants

c2,14c2,24c2,340 and c1 depending only on e, such that

with probability exceeding 1�e�c2,im, B� A has the isometry

constant e for Si
k, i 2 f1,2,3g, where we assume that the

Kronecker product of m�n AR matrices A and B is sub-

Gaussian, and krc1

ffiffiffiffiffi
m
p

=logn=k.

According to Theorem 4, B� A satisfies stronger con-
centration inequalities for S1

k and S2
k , which assume a

column/row-wise structure on sparse 2D-signals, com-
pared to S3

k which is merely the extension of 1D case. Also
note that, Theorem 2 states that, with high probability, an
m2
�n2 AR matrix D has the isometry constant e for S3

k ,
provided that mZck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logn2=k2

p
for some c40. On the

other hand, Theorem 4 states that, with high probability,
the Kronecker product of m�n AR matrices A and B

achieves an isometry constant e for S3
k , provided that

mZcuk2log2n=k for some cu40. Again, 2D-RP witnesses an
increase in the required number of random measure-
ments compared to 1D-RP.

Finally, Table 1 compares 1D-RP and 2D-RP for 2D-
signals. By its definition, 1D-RP is indifferent to the row/
column structure of 2D-signals. Thus, in order to have a
Table 1
Comparison of 1D and 2D random projection schemes.

1D–RP 2D–RP

# of operations to

get m2

measurements

Oðn2m2Þ Oðnm2Þ

Storage cost for

matrices

n2m2 2 nm

Failure probability

for e on Sk
3 if m

satisfies

e�c1m2 e�c2 m

mZOðck

ffiffiffiffiffiffiffiffiffiffiffiffi
log

n2

k2

r
Þ

mZOðk2log2n

k
Þ

Please cite this article as: A. Eftekhari, et al., Two-dimensiona
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meaningful comparison, we have only included S3
k in

this table.

4. Applications of 2D random projection

In this section, we use 2D-RP in the context of two
representative applications. First, as an example of low-
complexity inference tasks, we consider the problem of
2D compressive classification, which is concerned with
image classification based on relatively a few 2D random
measurements. In particular, we study the problem of
multiple hypothesis testing based on (possibly noisy) 2D
random measurements. Detailed theoretical analysis
along with derivation of an error bound for an important
special case is also provided. Next, as an application to
low-dimensional signal models, 2D-RP is exploited for
compressive 2D-signal reconstruction, in which we rely
only on a few non-adaptive linear random measurements
for recovery of sparse images [32]. Theoretical require-
ments for recovery, as well as a fast and effective algo-
rithm for image reconstruction are discussed.

4.1. 2D compressive classification

A few recent studies have shown that classification can
be accurately accomplished using random projections
[3,4,8,33], which indeed suggests random projections as
an effective, reliable, and yet universal feature extraction
and dimension reduction tool. Here we apply 2D-RP to the
problem of multiple hypothesis testing in an image
database. The problem under consideration can be for-
mally described as follows. Let X ¼ fXig

L
i ¼ 1 denote a set of

n�n known images. The ‘‘true’’ image XT 2 X is contami-
nated by noise and then projected onto Rm�m to obtain
Y ¼ AðXTþNÞBT , where N 2 Rn�n represents the noise and
A and B are m�n AR matrices. This can be equivalently
stated as y¼ ðB� AÞðxTþnÞ, in which y¼ vecðYÞ,
xT ¼ vecðXT Þ, and n¼ vecðNÞ. Now, given only the low-
dimensional random projection Y, we will be concerned
with discrimination among the members of X. Given A

and B, failure will be quantified in terms of the expected
error. For the sake of simplicity, we further assume that
noise is Gaussian and white, i.e. n�N ð0,s2In2 Þ, where Ia

denotes the a� a identity matrix. Moreover, to meet the
requirements of Theorem 3 and to preserve the distribu-
tion of noise after projection, A and B are chosen to be
random orthoprojectors, with entries of B� A being sub-
Gaussian. Provided that elements of X happen equally
likely, the Bayes decision rule is [34]:

~xl ¼ argmin
xl2vecðX Þ

Jy�ðB� AÞxlJ2 ¼ argmin
Xl2X

JY�AXlB
TJF , ð2Þ

in which J � JF denotes the Frobenius norm. The associated
expected error would be [34]:

ErrðA,BÞ91�
1

L

Z
y

max
l
fplð ~yÞg d ~y

¼
1

L

XL

l ¼ 1

Z
RC

l

plð ~yÞ d ~y, ð3Þ

where plð ~yÞ ¼N ððB� AÞxl,s2Im2 Þ stands for the conditional
density of ~y given xl. Also Rl � Rm2

is the region in which
l random projection, Signal Process. (2011), doi:10.1016/
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plð�Þ achieves the maximum among fpluð�Þg. Thus,
Rl9f ~y j argmax pluð ~yÞ ¼ lg. The superscript C denotes the
complement of a set. Now let us define dmin9minlalu

Jxl�xluJ2. The following result in proved in Appendix C.

Theorem 5. With a probability of at least 1�e�c2m and

provided that mZc1lnL, the average classification error is

bounded as

ErrðA,BÞr

ffiffiffiffi
2

p

r
r�1e�r2=2, ð4Þ

where

r9s�1
ffiffiffiffiffiffiffiffiffi
1�e
p m

n
dmin:

If mZmaxðc1lnL,
ffiffiffi
2
p

q
sð

ffiffiffiffiffiffiffiffiffi
1�e
p

dminÞ
�1nÞ, the above bound

can be simplified to

ErrðA,BÞre�ð1�eÞðm
2=n2Þðd2

min
=2s2Þ:

Here, A and B are random orthoprojectors and we assume

that the entries of B� A are sub-Gaussian. Also, c1 and c2 are

constants that depend on e and specified in the proof.

It is observed that, as the number of observations m2

increases, the classification error decays exponentially
fast. This is also experimentally confirmed in Section 5
with synthetic and real images. Furthermore, the depen-
dence on L is only via dmin and the required number of
measurements. In the context of 1D-signal classification,
estimation, and detection, this exponential rate of decay
has previously appeared in [3,4], in which, authors have
shown that, despite the loss in information due to non-
adaptive projection, statistical inference based on few 1D
random measurements achieves a performance compar-
able to traditional classification using the original images.
For the rest of this paper, the above classifiers based on
1D-RP and 2D-RP of signals will be referred to as 2D
compressive classifier (2D-CC), and 1D compressive clas-
sifier (1D-CC), respectively, where the later simply applies
nearest neighbor rule to 1D-RP of signals. Finally, as
experimentally verified in Section 5, these remarkable
results are not limited to orthoprojectors, but also hold for
several other types of random matrices which meet the
conditions stated in Theorem 3.

4.2. Sparse 2D-signal reconstruction

In conventional sparse signal reconstruction, random
linear projections of sparse (or compressible) 1D-signals
have been shown, with high probability, to contain
enough information for signal reconstruction within a
controllable mean-squared error, even when the observa-
tions are corrupted by additive noise [7,23,35,36,24]. The
main challenge is then to recover the high-dimensional
sparse signal from a few linear random measurements.
Although such inverse problems turn out to be ill-posed
in general, sparse signal reconstruction algorithms exploit
the additional assumption of sparsity to identify the
correct signal. In this section, we consider the application
of 2D-RP to the problem of sparse image reconstruction.
Suppose that a sparse n�n 2D-signal X� 2 Si

k is given,
Please cite this article as: A. Eftekhari, et al., Two-dimensiona
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i 2 f1,2,3g. Then, m�n AR matrices A and B are used to
project X� onto Y ¼ AX�B 2 Rm�m, or equivalently
y¼ ðB� AÞx�, where y¼ vecðYÞ and x� ¼ vecðX�Þ. Now, the
goal is to recover X� given Y. We will observe that, under
some conditions on the structure of X�, solving the
following problem uniquely recovers X� from Y.

P0 : argmin
x2Rn2

JxJ0 s:t: ðB� AÞx¼ y, ð5Þ

in which JxJ0 denotes the ‘0�norm, i.e. number of non-
zero entries, of x. Uniqueness conditions are specified in
the following result, which is proved in Appendix D.

Theorem 6. Suppose that Y ¼ AX�BT is given, where

X� 2 Rn�n, Y� 2 Rm�m, and A,B 2 Rm�n. Then, if any of the

following conditions are met, solving P0 uniquely recovers X�

from Y.

X� 2 S1
k and B� A has isometry constant e 2 ð0,1Þ for S1

2k.

X� 2 S2
k and B� A has isometry constant e 2 ð0,1Þ for S1

2k.

X� 2 S3
k and B� A has isometry constant e 2 ð0,1Þ for

S ffiffi
2
p k3.

Since S1
k � S2

k � S3
k , provided B� A has isometry con-

stant e 2 ð0,1Þ for S ffiffi
2
p k3, the accurate recovery of X� 2 Si

k,
i 2 f1,2g, is guaranteed. Similar arguments are also valid.
Therefore, in combination with Theorem 4, the above
theorem implies that, there exists constants c1,c240,
such that solving P0 uniquely recovers X� 2 Si

k from Y

with probability exceeding 1�e�c2m, provided
krc1

ffiffiffiffiffi
m
p

=logn=k and that the entries of B� A remain
sub-Gaussian random variables, i 2 f1,2,3g. Directly sol-
ving P0, however, is intractable as it requires a combina-
torial search. Moreover, since any small amount of noise
completely changes the ‘0�norm of a vector, this method
is prone to errors in noisy settings [37,38]. In turn, several
alternative approaches, such as basis pursuit, matching
pursuit, and FOCUSS have been considered to pursue
sparse solutions [26,29,27,39–41]. These algorithms
essentially attempt to identify a solution which matches
the observations, but also has a sparse representation in
some basis. Instead of pursuing conventional techniques,
we consider the smoothed ‘0�norm algorithm for 1D
sparse signal reconstruction (1D-SL0) [30]. 1D-SL0 algo-
rithm iteratively minimizes a smoothed version of the
‘0�norm and is shown to run much faster than the
conventional algorithms, while producing solutions with
the same or better accuracy. For a more detailed descrip-
tion of 1D-SL0 algorithm, the interested reader is referred
to Appendix E. This appendix also provides the proof of
the following theorem, which discusses the application of
this algorithm for sparse 2D-signal reconstruction.

Theorem 7. Suppose e 2 ð0,1Þ is given. There exists con-

stants c1,c240 depending on e, such that with probability

exceeding 1�e�c2m, SL0 algorithm uniquely recovers any

X� 2 Si
k from Y ¼ AX�B, provided the Kronecker product of

the m�n AR matrices A,B remains sub-Gaussian, i 2 f1,2,3g.
This theorem requires krc1

ffiffiffiffiffi
m
p

=logn=k, and that the algo-

rithm does not get trapped into local maxima.
l random projection, Signal Process. (2011), doi:10.1016/
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As further described in experiments, SL0 algorithm
produces remarkable experimental results. A detailed
convergence analysis guarantees that SL0 finds the unique
sparsest solution (and thus avoids the local maxima), if
appropriate conditions are met. Interested reader is
referred to [42]. Without perturbing the recovery criteria,
SL0 algorithm has been adapted to deal with 2D-RP [15].
The resulting 2D-SL0 algorithm accomplishes the signal
reconstruction in the matrix domain and hence is much
faster and more efficient for images, compared to the 1D-
SL0. For convenience, this algorithm is summarized in
Fig. 1. Finally, we should emphasize that, as a result of the
presence of noise in practical situations, AX�BT ¼ Y not
exactly but approximately holds and it would be more
appropriate to seek for sparse approximate representa-
tions, instead. Though not considered here, extension of
the above results to the noisy case is easily accomplished
using the method presented in [37].
5. Experiments

In this section, the effectiveness of 2D-RP is demon-
strated via comprehensive experiments with synthetic
and real images. First, we evaluate the performance of
2D-CC (Section 4) for multiple hypothesis testing in
databases of synthetically generated random images and
real retinal images. Secondly, successful application of
2D-SL0 (Section 4) to synthetic random images illustrates
the advantages of 2D-RP in the context of sparse image
reconstruction. Our experiments are performed in
MATLAB8 environment using an Intel Core 2 Duo,
2.67 GHz processor with 3.24 GB of memory, and under
Microsoft Windows XP operating system. Moreover, CPU
time is used as a rough indicator of the computational
complexity of algorithms.
Please cite this article as: A. Eftekhari, et al., Two-dimensiona
j.sigpro.2011.01.002
5.1. 2D compressive classification

5.1.1. Random images

Here, application of 2D-RP to the problem of multiple
hypothesis testing is quantitatively assessed on a finite
set of synthetically generated random images. Pixels of
each image Xl 2 R

256�256, l¼ 1, . . . ,400, are independently
obtained from a uniform distribution. To meet the condi-
tions stated in Theorem 3, entries of the m�256 projec-
tion matrices A,B are drawn independently from a
Bernoulli distribution {1=

ffiffiffi
n
p

with probability 1/2,
�1=

ffiffiffi
n
p

with probability 1/2}, followed by Gram–Schmidt
orthonormalization to obtain an orthoprojector. 2D-RP is
then used to project the images X ¼ fXig

L
i ¼ 1 onto Rm�m to

obtain Y ¼ fAXiB
T gLi ¼ 1. The ‘‘true’’ image is chosen uni-

formly at random from the set X and contaminated by
additive white Gaussian noise with s2

n ¼ 0:1. The obtained
noisy image is then projected onto Rm�m with 2D-RP and
labeled in consistence with the nearest member of Y.

Alternatively, with entries of the m2
�2562 projection

matrix D obtained similarly, X may be projected onto Rm2

using 1D-RP to obtain Y ¼ fDxig
L
i ¼ 1, where xi ¼ vecðXiÞ. 1D

compressive classification then assigns a noisy image to
the nearest member of Y in Rm2

. In either of the two cases,
the average misclassification rates for several values of m

are recorded by averaging the empirical errors in 1000
trials. For each trial, independent realizations of noise and
projection vectors were generated. Fig. 2 depicts the
resulting averaged misclassification rates of 2D-CC and
1D-CC for several values of m. Computational complexity
of 2D-CC and 1D-CC are compared in Fig. 3. While explicit
calculation of the bound in (4) is intractable [33], we
notice that the exponential nature of error is in consis-
tence with our expectations. It is also observed that 2D-CC
runs much faster than 1D-CC for all values of m, while
producing results with negligible loss in the performance.
l random projection, Signal Process. (2011), doi:10.1016/

dx.doi.org/10.1016/j.sigpro.2011.01.002
dx.doi.org/10.1016/j.sigpro.2011.01.002


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

m

M
is

s 
C

la
ss

ifi
ca

tio
n 

R
at

e 
(%

) 2D−CC
1D−CC

Fig. 2. Misclassification rate (%) of 2D-CC and 1D-CC on random images

using m2 random observations and s2
n ¼ 0:1. Due to limited memory

resources, 1D-CC was not applicable to m44.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

Number of Observations

C
P

U
 T

im
e 

(S
ec

.)

2D−CC
1D−CC

Fig. 3. CPU time (S) for 2D-CC and 1D-CC on random images using m2

observations and s2
n ¼ 0:1. Due to limited memory resources, 1D-CC was

not applicable to m44.

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

m

M
is

s 
C

la
ss

ifi
ca

tio
n 

R
at

e 
(%

)

Fig. 4. Performance of 2D-CC on random images using m2 random

observations for different noise levels.

0
2

4
6

8 0
2

4
6

8
0

10

20

30

40

50

m1
m2

M
is

sl
as

si
fic

at
io

n 
R

at
e(

%
)

2D−CC

1D−CC

Fig. 5. Misclassification rate (%) of 2D-CC and 1D-CC on random images

using m1m2 observations and s2
n ¼ 0:2. Due to limited memory

resources, 1D-CC was not applicable to m44.

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

m

M
is

sc
la

ss
ifi

ca
tio

n 
R

at
e 

(%
)

Bernoulli
Square Root of Gaussian
Uniform

Fig. 6. Performance of 2D-CC using m2 observations, s2
n ¼ 0:2, and for

A. Eftekhari et al. / Signal Processing ] (]]]]) ]]]–]]] 7
In addition, 2D-CC enjoys significantly less memory
requirements. Now, to study the effect of noise level, s2

n

is varied between 0 and 0.5 and the misclassification rates
of 2D-CC and 1D-CC are depicted in Fig. 4, which shows
reasonable robustness against noise.

We next conduct an experiment to study the perfor-
mance of 2D-CC in the general case of non-symmetric
projection matrices. For s2

n ¼ 0:1, we calculate the mis-
classification rates of 1D-CC and 2D-CC on X for several
values of m1,m2. Results, depicted in Fig. 5, verify the
similar advantages of 2D-RP with asymmetric left and
right projection matrices. Finally, note that the above
results apply to other classes of random matrices without
any notable difference in performance. This is shown in
Fig. 6, using few types of random matrices and setting
s2

n ¼ 0:2.

several types of random projection matrices.
5.1.2. Retinal images

Retinal biometrics refers to identity verification of
individuals based on their retinal images. The retinal
Please cite this article as: A. Eftekhari, et al., Two-dimensiona
j.sigpro.2011.01.002
vessel distribution pattern, as a biometric trait, has
several desirable properties such as uniqueness, time-
invariancy, and noninvasiveness, which places it as one of
l random projection, Signal Process. (2011), doi:10.1016/
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Fig. 7. (a) Retinal vessel map and OD (bright area), (b) Vessel tree and ring-shape mask. (c) Feature matrix for n1=100, n2=300.
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the most accurate biometric feature [43]. This pattern is
unique for each individual, and does not change through
the individual’s life, unless a serious pathology appears in
the eye. Also, the location of vessels makes it almost
impossible to forge. Fig. 7a depicts the retinal vessels and
optic disc (OD). We note that the optic disc is usually used
as a reference point in retina and vessels converge to it.
Retinal-based biometric system relies on feature extraction
from retinal vessel map for identification. This system
consists of two important steps: (1) Enrollment, in which
template characteristics of all individuals are extracted from
their retinal images and stored in the database, and (2)
Identification or verification, where the identity of the user
is, respectively, determined or verified by comparing the
feature vector (or matrix) of the user to the database. Our
experiment is conducted on VARIA database which contains
153 retinal images of 59 individuals [44]. Few samples of the
database are shown in Fig. 8. In this figure, images in the
same row belong to the same person. For each retinal image,
following the methodology presented in [45], OD is first
localized and vessels are segmented. Then, a ring-shaped
mask with proper radii centered at OD is used to form the
n1�n2 feature matrix by collecting the intensities along
n2=200 beams of length n1=100 originating from OD. This
process is depicted in Figs. 7b–c. Once all images are
processed, the set of feature matrices is obtained. 2D-CC is
then used to project the feature matrices onto Rm1�m2 .
Similar to previous experiments, random admissible
matrices A 2 Rm1�n1 and B 2 Rm2�n2 with independent Ber-
noulli entries are used for 2D-RP. Let X, Y ¼ AXBT , and Mi

denote the new feature matrix, its projection, and the mean
of lth class, l¼ 1, . . . ,59, respectively. Then, we will classify
the new feature matrix X according to the following rule:

l̂ ¼ argmin
l ¼ 1,...,59

JY�AMlB
TJF :

The above classification rule assigns Y to the class with the
closest mean and enhances our performance by reducing the
effect of noise. The identification error is measured using the
leave-one-out scheme, i.e. for each retinal image, the identity
Please cite this article as: A. Eftekhari, et al., Two-dimensiona
j.sigpro.2011.01.002
is predicted by the algorithm trained on the rest of the
dataset. Similarly, we perform the dimension reduction and
classification in Rm1m2 using 1D-RP. The average error rates
of two algorithms are compared over 100 independent
repetitions for a wide range of values for m1 and m2

(Fig. 9). Again, we notice the exponential nature of the error.
Moreover, due to highly redundant nature of feature

matrices along their columns, for ‘‘wise’’ choices of m1 and
m2 which consider this redundancy, 2D-CC outperforms
1D-CC and exhibits slightly better performance. In other
words, 2D-CC, unlike 1D-CC, can take the available
redundancy into account by picking m1 small (for a fixed
m1 �m2). In contrast, for ‘‘careless’’ choices of m1 and m2,
2D-CC performs worse than 1D-CC, as depicted in Fig. 10.
In sum, for typical choices of m1 and m2, 2D-CC runs much
faster than 1D-CC, yet producing results with negligible
loss in performance. This loss, however, may disappear
with proper choices for m1 and m2 which takes the prior
knowledge into account. In addition, 2D-CC enjoys sig-
nificantly less memory requirements.

5.2. Sparse image reconstruction

This section presents the experimental results for
sparse image reconstruction from 2D random measure-
ments. Our simulations were conducted using syntheti-
cally generated random sparse n�n images. Given kon,
sparse image X� was randomly selected from Si

k,
i 2 f1,2,3g, where nonzero entries of X� were indepen-
dently drawn from the uniform density over [0,1]. Gen-
eration of sample images from S1

k and S2
k is then

straightforward i.e. each sample of S3
k was generated by

fixing the rows and selecting k random positions in each
row for nonzero entries. Also, projection matrices A,B 2
Rm�n were independently drawn from the Bernoulli dis-
tribution {1=

ffiffiffi
n
p

with probability 1/2, �1=
ffiffiffi
n
p

with prob-
ability 1/2}, which clearly meets the conditions stated in
Theorem 6. 2D-RP was then used to obtain the observa-
tion Y under the noisy model Y ¼ AX�BTþN, where the
entries of N were independently drawn from N ð0,s2

nÞ.
l random projection, Signal Process. (2011), doi:10.1016/
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Fig. 8. Sample retinal images from the VARIA database. Images in each row belong to one person.

A. Eftekhari et al. / Signal Processing ] (]]]]) ]]]–]]] 9
Finally, 2D-SL0 algorithm was used to recover X� from Y.
The signal to noise ratio (SNR), defined as 20logðJX�JF=

JX��X̂JF Þ with X̂ denoting the obtained estimation, was
used as the measure of performance. The following set of
Please cite this article as: A. Eftekhari, et al., Two-dimensiona
j.sigpro.2011.01.002
parameters were used for 2D-SL0: L=10, m0 ¼ 1, c=0.5,
smin ¼ 0:005. Similarly, we used 1D-RP to project X� onto
Rm2

using an m2
�n2 projection matrix with independent

Bernoulli entries. 1D-SL0 algorithm was then applied for
l random projection, Signal Process. (2011), doi:10.1016/
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recovery with the same set of parameters as of 2D-SL0. In
the absence of numerical inaccuracies, both 1D-SL0 and
2D-SL0 have been proved to be mathematically equiva-
lent, and their difference is only in the speed and memory
that they need [15]. Results were also quantitatively
compared to SPGL1, as a novel, fast and accurate sparse
reconstruction algorithm based on the vector space point
of view [46]. Parameters of this algorithm were set to
their default values. As our first experiment, setting
n=100, m=50, s2

n ¼ 0:2, and varying k from 1 to 50, we
studied the performance of 2D-SL0 for reconstruction of
sparse images in Si

k, i 2 f1,2,3g. The average performance
over 100 trials is reported in Fig. 11, where for each trial,
independent realizations of noise, sparse image, and
projection matrices were generated. For all meaningful
values of k, results demonstrate the better performance of
2D-SL0 on images in S1

k and S2
k , which take advantage of

the row/column-wise structure of the image.
Finally, we compared our approach, namely 2D-RP + 2D-

SL0, to other algorithms over completely generic 2D-signals.
Of interest was to show that using the Kronecker product of
random matrices (rather than full matrices) produces very
reliable performance with lower computational complexity
Please cite this article as: A. Eftekhari, et al., Two-dimensiona
j.sigpro.2011.01.002
and memory requirements. To achieve this goal, we used S3
k

(sparse 2D signals with arbitrary distributed nonzero
entries) in this experiment. Setting n=50, m=20, s2

n ¼ 0:01
and varying k from 1 to 25, the average performances of 1D-
SL0 and 2D-SL0 for sparse image reconstruction over 100
trials are reported in Fig. 12. Also, Fig. 13 compares the
computational complexities of these algorithms. It is
observed that, though roughly equal in terms of reconstruc-
tion accuracy, a significant gain in memory and computa-
tional cost is obtained by using 2D-SL0. We shall emphasize
that, due to extreme memory requirements of 1D-SL0
algorithm, using larger values for n was not feasible in this
experiment. Finally, in an attempt to study the robustness of
2D-SL0 against noise, n, m, and k are set to 50, 20 and 5,
respectively, and the noise power s2

n is varied from 0 to 0.5.
Average performances of different sparse reconstruction
algorithms are demonstrated in Fig. 14. It is observed that
the performances of all the algorithms degrade when noise
increases. We also note that the dependence of 2D-SL0 on
l random projection, Signal Process. (2011), doi:10.1016/
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its parameters, though not examined here, is similar to 1D-
SL0, which has been thoroughly explored in [30].
6. Conclusions

In this paper, random projection technique was extended
to directly leverage the matrix structure of images. We then
studied the proposed 2D-RP and its implications for signals,
arbitrary finite sets, and infinite sets with low-complexity
signal models. These findings were then used to develop 2D-
CC for image classification, along with an error bound for an
important special case. The proposed classifier proved to be
successful in experiments with arbitrary finite sets of syn-
thetic and real images. In addition, 2D-RP was used in the
context of sparse image reconstruction. Corresponding the-
oretical recovery conditions, as well as the recovery condi-
tions of 2D-SL0 algorithm were discussed. Comprehensive
validation of these results with synthetic and real images
demonstrates significant gain in memory and processing
requirements, at the cost of moderate or negligible loss in
the performance. Provided results are yet limited to a class of
random variables that satisfy certain conditions. Promising
Please cite this article as: A. Eftekhari, et al., Two-dimensiona
j.sigpro.2011.01.002
experiments with other types of random variables
encourages us to seek more general statements, which
indeed requires further study.
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Appendix A. Proof of theorem 3

Our proof employs some of the ideas and techniques
presented in [1,47]. Recall that a sub-Gaussian random
variable y satisfies Eeuyrenu2

, for some n40, and all
u 2 R. Also, let g be a zero-mean, unit-variance Gaussian
random variable, which is assumed to be independent
from all other random variables that appear in the proof.
We note that, for all t 2 R, Eetg ¼ et2=2 and, Eetg2

¼ 1=ffiffiffiffiffiffiffiffiffiffiffiffi
1�2t
p

for all t 2 ð0,1=2Þ. We will also use the following
inequality for nonnegative random variables y1, . . . ,yK , which
is a simple consequence of the Holder’s inequality [48].

E
YK

k ¼ 1

ykr
YK

k ¼ 1

EyK
k

 !1=K

: ð6Þ

Before proceeding to the main proof, we shall prove the
following observation.

Lemma 1. Suppose that A and B satisfy the conditions stated

in Theorem2. Let a9½a1, . . . ,an	
T and b9½b1, . . . ,bn	

T denote

a row of A and B, respectively. Then d9n½b1aT , . . . ,bnaT 	 2

Rn2

denotes the corresponding row of nB� A. Also, given x 2

Rn2

with JxJ2 ¼ 1, we partition it to obtain x¼ ½xT
1 , . . . ,xT

n	
T ,

where xk 2 R
n, k¼ 1, . . . ,n. Now, let us define u¼ n

Pn
l ¼ 1 bl

aT xl. Then, for some n40, the following holds for all

0rar1=8nn:

Eeau2

reaþ100n2n2a2

: ð7Þ

Proof. First, using the fact that the entries of a and b are
i.i.d. sub-Gaussian random variables with zero mean and
variance 1=n , we can write

Eu2 ¼ n2EbEa

Xn

k ¼ 1

b2
k ðx

T
k aaT xkÞþn2EbEa

X
kal

bkblðx
T
k aaT xlÞ

¼ nEb

Xn

k ¼ 1

b2
kJxkJ

2
þnEb

X
kal

bkblðx
T
k xlÞ ¼

Xn

k ¼ 1

JxkJ
2
2 ¼ 1:

ð8Þ

Now we find a simple upper bound on Eeau2
, which will be

refined later

Eeau2

¼ EuEge
ffiffiffiffi
2a
p

ug ¼ EuEgen
ffiffiffiffi
2a
p

g
Xn

k ¼ 1

bkaT xk

rEg

Yn

k ¼ 1

Een2
ffiffiffiffi
2a
p

gbkaT xk

 !1=n

rEg

Yn

k,l ¼ 1

Een2
ffiffiffiffi
2a
p

gxklalbk

 !1=n

, ð9Þ

where xkl is the lth entry of xk. Using the hypothesis that
albk is a sub-Gaussian random variable and denoting the
l random projection, Signal Process. (2011), doi:10.1016/
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corresponding Gaussian standard by n=n2, (9) is simplified
for 0rar1=8nn to get

Eeau2

rEg

Yn

k,l ¼ 1

e2nn2ax2
kl

g2

 !1=n

¼ Ege2nnag2

¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�4nna
p r

ffiffiffi
2
p

, ð10Þ

Now, using (8), the bound in (10) is refined for
0rar1=8nn as follows:

Eeau2

¼
X1
p ¼ 0

apEu2 m

p!
¼ 1þaþ

X1
p ¼ 2

apEu2 m

p!

¼ 1þaþ
X1
p ¼ 2

ð8nnaÞpð8nnÞ�pEu2 m

p!

¼ 1þaþð8nnaÞ2
X1
p ¼ 2

ð8nnaÞp�2
ð8nnÞ�pEu2 m

p!

r1þaþð8nnaÞ2
X1
p ¼ 2

ð8nnÞ�pEu2 m

p!

r1þaþð8nnaÞ2Eeðu
2=8nnÞ

r1þaþ100n2n2a2

reaþ100n2n2a2

: ð11Þ

This completes the proof of this lemma. &

Now we can complete the proof of Theorem 3.

Proof. (Theorem 3) Note that, due to linearity, it suffices
to prove the theorem for the case JxJ2

2 ¼ 1. We first find an
exponentially-decreasing upper bound for

Pr JðB� AÞxJ2
2Z

m2

n2
ð1þeÞ

� �
: ð12Þ

Let us define D9nB� A. Then, by hypothesis, the entries
of D are zero-mean unit-variance sub-Gaussian random
variables and (12) can be equivalently written as

PrfJDxJ2
2Zm2ð1þeÞg: ð13Þ

Invoking the Chernoff bounding technique [39], for any
t40, we have

PrfJDxJ2
2Zm2ð1þeÞgr EetJDxJ2

2

etm2ð1þ eÞ
: ð14Þ

Therefore, it suffices to bound the expectation on the right
hand side of (14). Properties of the Kronecker product
imply that each row of D is dependent with exactly
2(m�1) other rows, and that we can partition the rows
of D into m nonoverlapping partitions fRig

m
i ¼ 1 with

jRij ¼m, such that the rows in each partition are inde-
pendent. Let us denote by DRi

the m�n2 submatrix
obtained by retaining the rows of D corresponding to
the indices in Ri. Clearly, the rows of DRi

are independent,
and we have

JDxJ2
2 ¼

Xm

i ¼ 1

JDRi
xJ2

2: ð15Þ

Defining uij9ðDRi
xÞj, j¼ 1, . . . ,m, we have

EetJDxJ2
2 ¼ Eet

Pm

i ¼ 1
JDRi

xJ2
2 r

Ym
i ¼ 1

EemtJDRi
xJ2

2

 !1=m
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¼
Ym
i ¼ 1

Ee
mt
Pm

j ¼ 1
u2

ij

 !1=m

¼
Ym

i,j ¼ 1

Eemtu2
ij

0
@

1
A

1=m

, ð16Þ

where we have used the independence of the rows of DRi

in the second line. Note uij is the dot product of x and a
row of D, we may set a¼mt in Lemma 1, to further bound
the last term in (16):

EetJDxJ2
2 r

Ym
i,j ¼ 1

Eemtu2
ij

0
@

1
A1=m

reðm
2tþ100n2n2m3t2Þ: ð17Þ

Using (17) in combination with (14), we finally obtain

Pr JDxJ2
2Zm2ð1þeÞ

n o
re�ðe

2m=400n2n2Þ: ð18Þ

Using similar arguments, we can show that

Pr JDxJ2
2rm2ð1�eÞ

n o
re�ðe

2m=400n2n2Þ: ð19Þ

Combining (18) with (19) completes our proof. &

Appendix B. Proof of theorem 4

Our proof follows a similar strategy as in [14]. Let T �

f1, . . . ,n2g be a subset of indices. We first observe that if
B� A has isometry constant e for all signals which are
zero outside T, then B� A also has isometry constant e for
all signals which are zero outside any T u � T . Conse-
quently, it suffices to prove Theorem 4 for all T �

f1, . . . ,n2g with jTj ¼ k2.
Given a set of appropriate indices T with jTj ¼ k2, let XT �

Si
k denote the set of n�n 2D-signals that are zero outside of

T. Also, let us define vecðXT Þ9fvecðXÞjX 2 XT g. We then
cover the k2-dimensional subspace of vecðXT Þ with a finite
set of points QT 2 vecðXT Þ, such that JqJ2r1 for all q 2 QT ,
and minq2QT

Jx�qJ2re=4 for all x 2 vecðXT Þ with JxJ2r1.
Simple covering arguments show that we can choose a set
with jQT jr ð12=eÞk

2

. Applying the union bound, we find that
B� A has isometry constant e=2 for QT with probability
exceeding 1�2jQT je

�e2m=1600n6n2
, where n is the Gaussian

standard of the entries of B� A. Noting that 1þe=2þ
ð1þeÞe=4r1þe, the following inequality is indeed valid:

JðB� AÞxJ2
2rJðB� AÞqJ2

2þJðB� AÞðx�qÞJ2
2r1þ

e
2

þð1þeÞ e
4
r1þe: ð20Þ

Similarly, since

JðB� AÞxJ2
2ZJðB� AÞqJ2

2�JðB� AÞðx�qÞJ2
2Z1�

e
2

�ð1þeÞ e
4
Z1�e: ð21Þ

we conclude that B� A has isometry constant e for XT , with

probability exceeding 1�2ð12=eÞk
2

e�e
2m=1600n2n2

. There exist

n
k

� �2
, g n2

k2

� �
, and n2

k2

� �
such choices for XT in S1

k , S2
k , and S3

k ,

respectively, where4go1 is an absolute constant. Application
of union bound then implies that B� A has isometry
l random projection, Signal Process. (2011), doi:10.1016/
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constant e for Si
k, with probability exceeding Pi, where

P1 ¼ 1�2
n

k

� �2 12

e

	 
k2

e�ðe
2m=1600n6n2Þ

P2 ¼ 1�2g n2

k2

	 

12

e

	 
k2

e�ðe
2m=1600n6n2Þ

P3 ¼ 1�2
n2

k2

	 

12

e

	 
k2

e�ðe
2m=1600n6n2Þ: ð22Þ

Thus, for a fixed c1, whenever krc1

ffiffiffiffiffi
m
p

=logn=k, we have
that PiZ1�2e�c2,im, provided that c2,i satisfies

c2,1r
e2

1600n6n2
�2c1

1þ ln n
k

ln n
k

�c2
1

ln 12
e

ln n
k

c2,2r
e2

1600n6n2
�c2

1

1þ2ln n
k þ ln 12

e

ln2 n
k

þ lng

c2,3r
e2

1600n6n2
�c2

1

1þ2ln n
k þ ln 12

e

ln2 n
k

, ð23Þ

where we have used the fact that n
k

� �
r ðen=kÞk. Hence we

can always choose c1 sufficiently small to ensure that c2,i40,

i 2 f1,2,3g. This completes our proof.

Appendix C. Proof of theorem 5

Since, by hypothesis, A and B are m�n AR matrices,
remarks following Theorem 3 imply that B� A has the
isometry property for any prescribed e 2 ð0,1Þ with high
probability. In particular, let c¼ cðeÞ be as specified in
Theorem 3, and define c192c�1lnL and c29c=2. As a
consequence, it is easy to check that provided mZc1lnL,
the following holds except with a probability of at least
1�e�c2m:

1

2
min
lalu

JðB� AÞðxl�xluÞJ2Z
ffiffiffiffiffiffiffiffiffi
1�e
p m

n
dmin9r:

Define Rul9f ~y j J ~y�ðB� AÞxlJ2Zrg, and note that RC
l � Rul,

because J ~y�ðB� AÞxlJ2or implies that ~y is closest to the
lth Gaussian. Now, under the event above, it follows from
(3) that

ErrðA,BÞ ¼
1

L

XL

l ¼ 1

Z
RC

l

plð ~yÞ d ~y

r
1

L

XL

l ¼ 1

Z
Rul

plð ~yÞ d ~y

¼
1

L

XL

l ¼ 1

Z
J ~yJ2 Z r

N ððB� AÞxl,s2Im2 Þ d ~y

¼ ð2ps2Þ
�m2=2

Z
J ~yJ2 Z r

e�ðJ ~yJ
2
2=2s2Þ d ~y

¼ ð2ps2Þ
�1=2

Z
J ~yJ2 Z r

e�ðJ ~yJ
2
2=2s2Þ dJ ~yJ2

¼ p�1=2

Z
jujZ rffiffi

2
p s

e�u2
du

¼ 1�erf
rffiffiffi
2
p s
	 


r
2sffiffiffiffiffiffi
2p
p re�ðr

2=2s2Þ:

The third line above follows because the distributions share
the same covariance matrix. Also, erfð�Þ is the standard error
Please cite this article as: A. Eftekhari, et al., Two-dimensiona
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function and the last line is a well-known bound on the
error function (1�erfðaÞre�a

2
=
ffiffiffiffi
p
p

a for a40). In particu-
lar, when rZ2s=

ffiffiffiffiffiffi
2p
p

, we obtain the following more
compact result:

ErrðA,BÞre�ð1�eÞððm
2=n2Þ=ðd2

min
=2s2ÞÞ,

as claimed.
Appendix D. Proof of theorem 6

We only prove the first part. The proof of the other
parts of the theorem is very similar. Assume, in contrast,
that AX1BT ¼ Y and AX2BT ¼ Y , for X1,X2 2 S1

k , and X1aX2.
This requires that AðX1�X2ÞB

T ¼ 0. On the other hand,
X1�X2 is clearly a member of S1

2k. Therefore, our hypoth-
esis on A and B implies that 0om=nð1�eÞJX1�X2J2r
JAðX1�X2ÞB

TJ2, which contradicts our assumption. This
completes the proof.
Appendix E. SL0 algorithm and proof of the theorem 7

SL0 algorithm for reconstruction of sparse 1D-signals
is formally stated as follows. Consider the problem
P0 : minxJxJ0 s:t: Hx¼ y, where x 2 Rn, y 2 Rm and H 2

Rm�n. SL0 approximates the JxJ0 with a continuous
function n�FsðxÞ, where we usually set FsðxÞ ¼Sn

i ¼ 1exp
ð�x2

i =2s2Þ [30]. Therefore, SL0 attempts to solve the
following problem:

Qmax
x

lim
s-0

FsðxÞ s:t: Hx¼ y: ð24Þ

However, to avoid getting trapped into several local
maxima of Fsð�Þ for small sus, SL0 solves a sequence of
problems of the form Qs : max

x
FsðxÞ s:t: Hx¼ y, decreasing

s at each step, and initializing the next step at the
maximizer of the previous larger value of s (external
loop). Each Qs is approximately solved using a few
iterations of gradient ascent (internal loop).

Further analysis of the theoretical aspects of SL0
algorithm requires the concept of spark of a matrix [49].
Given H 2 Rn�m, sparkðHÞ is defined as the minimum
number of columns of H that are linearly dependent.
Application of SL0 algorithm to sparse 1D-signals is
discussed by Theorem 8, which is merely a restatement
of Theorem 1 of [37] for noiseless situation.

Theorem 8 (Eftekhari et al. [37]). Assume that the columns

of the projection matrix H are normalized to unit ‘2-norm.
Suppose also that x� is given such that Jx�J0o1=2sparkðHÞ.
Then, SL0 algorithm correctly recovers x�, provided that it is

not trapped into local maxima in the internal loop of SL0.

It should be emphasized that the gradual decrease in s
is aimed avoid the local maxima when maximizing Fsð�Þ

for a fixed s. Though experimentally studied in [30,37],
the question of ‘‘how much gradually’’ is still open for
investigation, although we have a convergence proof for
SL0 [42]. Using the Gershgorin disc theorem, we may
obtain an analogous performance guarantee in terms of
isometry constants. This is stated in the following two
lemmas.
l random projection, Signal Process. (2011), doi:10.1016/
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Lemma 2. Let q¼ qðHÞ ¼ sparkðHÞ�1 denote the Kruskal

rank of the matrix H. If sðqÞmin denotes the smallest singular

value of all submatrices of H formed by taking q columns of

H, then sðqÞmin40.

Proof. This follows directly from the definition of
spark(H). &

Lemma 3. Let Sk denote the set of 1D-signals x 2 Rn with at

most k nonzero entries. Suppose also that the projection

matrix H 2 Rm�n has isometry constant e 2 ð0,1Þ on S2k.
Then, any given x� 2 Sk could be uniquely recovered from

y¼Hx� 2 Rm using SL0 algorithm, provided that it does not

get trapped into the local maxima in the internal loop of S L0.

Proof. Let HI denote the column submatrix of H corre-
sponding to the set of indices I with jIjr2k. Also, let xI

denote the vector obtained by retaining only the entries in
x corresponding to I. Then, the hypothesis on H implies
that, for eo1 and for any I with jIjr2k, we haveffiffiffiffiffi

m

n

r
ð1�eÞJxIJ2rJHIxIJ2r

ffiffiffiffiffi
m

n

r
ð1þeÞJxIJ2: ð25Þ

Defining G¼
ffiffiffiffiffiffiffiffiffiffi
n=m

p
HI , it is observed that the eigenvalues

of GTG belong to the interval (0,2). Assume, without any
loss of generality, that the columns of G are normalized to
unit ‘2�norm. Then, the Gershgorin disc theorem5 and
Lemma 2 together require that the eigenvalues of GTG do

not exceed 1þsðqÞminð2k�1Þ. Therefore 1þsðqÞminð2k�1Þ42,

or equivalently 1=2k�1osðqÞmin. Consequently, according

to Theorem 8, SL0 algorithm correctly recovers x� when

JxJ0r1=2ð1þð2k�1ÞÞ ¼ k, which completes the
proof. &

Theorem 4 on S3
k , in combination with Lemma 3 implies

Theorem 6.
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