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Differential of the mutual information

Massoud Babaie-Zadéh, Christian Jutteh and Kambiz NayeBi

Abstract— In this letter, we compute the variation of the mutual  for separating linear instantaneous mixtures [2], [3] a ae
information, resulting from a small variation in its argument.  nonlinear mixtures [4].
Although the result can be applied in many problems, we consider _ N ; £ ;
only one example: the result is used for deriving a new method UI?UI‘?‘"V'_I(Y) I_ .Zi_H(yZ) H(y) is modified by using the
for blind source separation in linear mixtures. The experimental Multiplicative relation:
results emphasize on the performance of the resulting algorithm.

Px (%)
= 2
Index Terms— Mutual Information, _Independent Component
Analysis (ICA), Blind Source Separation (BSS). which leads toH (y) = H(x) + In|det B|, and consequently:
|. INTRODUCTION Iy) = ZH(yi) — H(x) — In|det B 3)

LIND Source Separation (BSS) and Independent Coms . . . . .
ponent Analysis (ICA) are basic problems in signa he gradient off (y) with respect tdB is then easily obtained,

processing which have been studied intensively in the Ia‘fjls;r%d only requires estimation of marginal PDF's or more ex-

. . . . actly of their log-derivatives. Similar relations, and tradient
fifteen years. For linear instantaneous mixtures, the probl of I(y), can be derived for particular nonlinear mixtures [4]
is stated as follows: les(n) = (si(n),...,sn(n))’ be Y P '

the vector of some statistically independent source signal However, for more complicated mixtures, such as convolu-

which are mixed by a regular mixing matrik and generate tive mixtures (where the mixing matrix is composed of filters

the observed signalg(n) — (z1(n) 2y (n)7, that is instead of simple scalars), or convolutive-nonlinear omigs,
- 1 ) ’ ’

(1) = Aa(x) (n his paper. i rumber of sources and 1RSITPE TUIpICALe o e (2 does ot esutiese,
number of observations are assumed to be equal). The goafe%j It"n from a small variation of its arqument (digerential
BSS is to retrieve the source signajsonly by observinge;’s: uiting varat ! gu ( :

there is neither information about the source signals (toeir t of mutual information), th_en we can ea;ily des.ign gradient
statistical independence) nor about the mixing masixFor b"’.‘SEd. algorlt.hms. Th? main purpose of this Iette'r s to tatieu
separating the mixture, we estimate the separating mBrixthIS d|ﬁ‘¢_arent|al In this paper, we only apply it to source
such that the components of the output vegter Bx become _separatlon, bUt. the result is very gen_eral anql could pe us_ed
statistically independent. It has been proven [1] thatéféhis n mgné/ d_lc_)rr]nalns wh(_are the mu;[jual |r}f0”rmat|o|n grad;gnt IIIS
no more than one Gaussian source, and if the componentsgeoofL."re - 'N€ paper IS organized as foflows. In section 1,
v are independent, they will be a copy of the source signa\{f'se introduce a few definitions. Section Il is devoted to the
up to a scaling and a permutation indeterminacy.

computation of the differential of the mutual information.
The degree of independence between random vari@kplesln section 1V, this result is applied for deriving estimatio

equations for linear instantaneous and convolutive megur

Y2 -+ Yn, €aN be measured by their mutual information: In section V, we illustrate the algorithm efficacy by a simple
py(y experiment.
160 = [ o) 22y < ) - 11y @
y l—L pyi (yl)
wherey = (yi,...,yn)", py andp,, are the Probability Il. JSFs, MSFs AND SFDs
Density Functions (PDFs) of andy;, respectively, and{ In this section, we introduce the definition of the Joint ®cor

denotes Shannon’s entropy. The mutual information is @waynction (JSF), the Marginal Score Function (MSF) and the
non-negative, and vanishes if and only if the random varscqre Function Difference (SFD). First, recall the defamitof
ablesy,, ..., yn are independent. Therefore, the estimatiogye score function of a scalar random variable from statisti
algorithm of the separating matri2 can be designed basedjierature:

on minimizing the mutual information of the outpufgy), Definition 1: The score function of the scalar random vari-

and for this minimization, the steepest descent algoritiam Cablez, is the opposite of the log-derivative of its densitg,:
be used. This technique has already been applied sucdgssful

/
_ __pu(2)
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Definition 2: The Marginal Score Function (MSF) of is Lemma 1:Let x = (z1,...,zx)" be a bounded random
the vector of score functions of its componens, v, (x) = vector andA = (Aq,..., An)" be a ‘small’ random vector,
(1 (21), ..., Un(zN))", where: then

d Py, (2:) Y9
Yi(x) = " dz, Inpg, (2;) = (@) ) paralt)—px(t) = — Z aTi{EAi {Ai[x= t}px(t)}+0(A)
=1
andp,. (z;) is the marginal PDF of:;. (10)

Proof: For any differentiable functiorh(t):
Definition 3: The Joint Score Function (JSF) of the oh
random vector x, is the vector function ¢, (x) = h(x+ A) = h(x) = ZAi%(X) +o(A) (1)
(p1(x), ..., on(x))", where: i '
Thus:

d
fpx(x)

In py(x) = — 22222

i &) Px(x)

andpx(x) is the joint PDF of the random vectat

pi(x) = — £ (6) oh

E{h(x+ A) - h(x)} = ZE {Aiati(x)} +0(A) (12)

o _ _ From the well-known [8] relation F{g(x,y)} =
Definition 4: The Score Function Difference (SFD)g, {E, {9(x,y)|x}}, the term under summation in the
of x, is the difference between its MSF and JSk., above equation can be written as follows:

B (x) = Py (%) — px(x).

h
E {Alah(x)} = FEy {EA% {Aia(x) | x}}
The following theorem can be easily proved [5]: ot ot;
Theorem 1:The components of a random vector are inde- _E @(X)E (A | x)
pendent if, and only if, its SFD is zero. R TS S
oh
I11. DIFFERENTIAL OF THEMUTUAL INFORMATION - /taiti(twb"‘ {Ai | x = t] px(t)dt
The main theorem of the paper can now be stated: - 0 e
Theorem 2:(Differential of mutual information) Lek be a - /th(t)ati {EAi {Ai|x= t}px(t)}dt
bounded random vector, and At be a ‘small’ random vector (13)

with the same dimension, then: The last equality is written by using integration by part® O

I(x+A) = I(x) = E{ATB,(x)} +0(A)  (7) the other hand, we have:

where 3, is the SFD ofx, ando(A) denotes higher order FE {h(x+ A) — h(x)} = /h(t) (Pxt+a(t) — px(t)) dt
terms inA. t (14)

) ) ) Now, by combining equations (12), (13) and (14), we con-
Remark 1. Equation (7) may be stated in the following formclude:

(which is similar to what is done in [6]): N

I +8y) — 10 = E{EY) 800} +0€) @) [ 1) (era(t) = pul0)dt =~ [ n(t) > 51 {Bs, (As|x =t
t t i=1 "

wherex andy are bounded random vector§,is a matrix (15)

with small entries, an@(£) stands for a term that converges ]
to zero faster than|€||. This equation is mathematically Equation (10) can be deducted from the fact that the above

more sophisticated, because in (7) the term ‘small randdifuality holds for any functioth.
vector’ is somewhat ad-hoc. Conversely, (7) is simpler, and ] ) u
easier to be used in developing gradient based algorithms folLemma 2:Let x and A be as defined in Lemma 1, then:

optimizing a mutual information. H(x+A)— H(x) = —E {AT%((X)} +o(A)  (16)

Remark 2. Recall that for any multivariate differentiable\yhere 77 denotes Shannon’s entropy, and-) and ¢, (-) are
function f(x), we have: the PDF and the JSF of, respectively.

fx+A) = f(x) = ATVf(x) +0(A) )

A comparison between (7) and (9) shows that SFD can be
called the ‘stochastic gradient'of the mutual information (x+A) — H(x) = —E{lnpxia(x+ A)} + E{lnpx(x)}

Proof: We write:

(although, it must be noted that in (&,and A are random —E {ln px(x+ A) }

vectors, but in (9) they are deterministic vectors). Pxia(x+ A)
To prove the theorem, we first have to prove two lemmas. px(x+ A)

The scalar versions of these lemmas have been already pro- - B {lnpx(x)}

posed [7]. (17)
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In the neighborhood of Inz = (¢ — 1) — 3(z —1)>+---, where 3, denotes the SFD of. This equation shows that

and hence by defining = x + A, the first term of (17) can % = E{py,(y)z;}, and hence:

be written as:

oI
Z _F T 22
E{lnpx(Z)} _ E{px(Z) B 1} oA og — F{By(y)x"} (22)
PZ(Z) A Pa(2) Finally, the steepest descent algorithm for estimating the
:/ (pX( ) _ 1) pz(t)dt +O(A) (18) matrix B is: T
¢ \ Pa(t) B~ B-—uFE {ﬁy(y)x } (23)
=0(A)
The second right term of (17) is simplified as follows: B. Linear convolutive mixtures

px(x+ A) In this section, we show how the theorem can be used
—E {lnp(x)} = E{lnpx(x)} — E{lnpx(x+ A)}  in separating convolutive mixtures, that is, when the ngxin
* matrix is composed of linear time invariant filters instead

= / In px (t)px (t)dt — / In ps (t) pxta (t)dt of scalars. Suppose that the separating filters are FIR with
¢ Jt maximum degreeV/. Then, the separating matrix is in the
= /lnpx(t) (px(t) — pxya(t)) dt form B(z) = ZkM:o B, z~*, and the output vector is:
’ y(n) =Box(n) + Bix(n — 1)+ -+ Byx(n — M) (24)

For separating the sourceBy,...,B,; must be determined
to produce independent outputs. Here, a simple multiplieat
relation like (2) does not exist, and the traditional metfaits

=3 [inonte) g {Ea (A 1x = 6 pu®) it +o(A)

(using Lemma 1)

=— Z /EAi {A; | x =t} pi(t)px(t)dt + o(A) in calculating the gradient df(y(n)) with respect tdB,,. But,
i Ut by using Theorem 2, this gradient can be easily computed.
(integration by parts) First, we writeB; = B + £ and then:
==Y B Ea i xb i)} +o(A) I1(y(m) = I(y(m) = E{By (v(n)ex(n—k)}  (25)
' and from there:
- - Z E {A1<P1(X)} + O(A) 6[(}’(71))
‘ T OB, =K {/By (y(n))x(n - k>T} (26)

= —E{ATp,(x)} +0(A) | o |
However, in convolutive mixtures, instantaneous indepen-

(29) . - . ;
_ o _ dence is not sufficient for separating the sources, and tiseng
The lemma is proved by combining equations (17), (18) arghove gradient needs some more considerations, detailed fo
(19) . instance in [5]. As shown in [5], the whole criterion require

B 3 few terms which can be computed with equations similar to
Corollary 1: For scalar random variables; and A;, we (26), and leads to an efficient algorithm.
have:
H(wi + &) = Hw) = —E{A; v, ()} +0(A) (20) v EXPERIMENTAL RESULTS
Here, we present separation results for linear instantaneo
mixtures. Sources are a sine wave and a uniform random

- .__signal, both with zero mean and unit variance. The mixing
Proof of Theorem 2:Combining the usual expression -~ is:

I(x) =), H(x;)— H(x) with equations (16) and (20) proves 1 06
the theorem. ] A=lo6 1

IV. APPLICATION IN BSS For using the algorithm (23), we need to estimate the SFD
y. For this estimation, we have used a simple histogram
timation method (but other estimators could be used). In
this method,y; andy, are first splitted into some bins. Let
N and Cardn,,n2) denote, respectively, the total number
of output samples and the number of samples in the bin

(n1,n2). Thenp(nq,ne) = %

. . . . f

In this section, we use the results of the previous section T[és

deriving estimation equations for source separation iedin
mixtures.

A. Linear instantaneous mixtures

We first calculate the gradient dfy) with respect to the .. L p(n1,n2)
separating matriB. .b|I|ty est|ma'1t.|on in (nl,ng')., and 'p(ng.|nl) = 5 )
LetB = B4-&, where€ = [e;] is a ‘small’ matrix. The new 1S the conditional probability estimation. Finally, nagirthat

_90_
output vector isy =y + £x. From Theorem 2, the variation 3, (y) = 8%1 Inp(yely1) = 2PWel) e can estimate

n2) is the joint proba-

of I will be (up to first order terms): Bi(ny) as: pluzlun)
19) - 1(y) = E{By(1)€x| = 3 ey B {Byi(y)z;} (21) Buny) = p(n2|n1; (—np|<:2) 1 = 1) (27)
2,7 21701
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Practically, this equation is simpler than (29), since ityon
requires estimation of marginal score functions. Howetre,
separation information is contained in the averaged SFD, as
the gradient of the mutual information. Moreover, SFD is the
difference of two termsp, (y) and ¢, (y), and consequently
Vsl will be the difference of the two term& {v (y)y”}

and E {4, (y)y”}. In (30), one of these terms is exactly
computed. Therefore, a good estimation of the other term
is required for separating the sources, because the ditfere

of these terms must vanish for achieving the convergence in
a gradient based algorithm (note also that from Theorem 1,
the separation achieves when the SFD of outputs vanishes).
However, in the method presented in this paper, we directly
estimate the SFD, and hence a good separation can be achieved
even with a simple histogram approximation.

100

0 50

150

Fig. 1. Output SNRs in separating the mixture of two sources.

VI. CONCLUSION

B2(n2) will be estimated in a similar way. In this paper, the variation of the mutual information résul
We usedN = 500 andu = 0.1. For estimating the SFDy;  ing from a small variation in its argument (the ‘differertia
andy. are splitted into 10 bins eachd. a 10 by 10 histogram of the mutual information), has been calculated. It can be
is used). The initial value aB is the identity matrix, and the used for developing gradient based algorithms in any mutual
expectation in (23) is estimated by the empirical average iformation optimization problem. As an example, we used it
the data block. for developing a new algorithm for blind source separation.

For measuring the quality of separation, the output SignBkperimental results, for linear instantaneous mixtusb&w
to Noise Ratio (SNR) is used, which is defined by (in dB): the good performance of the resulting algorithm. The appli-
SNR_ 101 E {52} cation of the method for separating more general mixtures is
Ologyq E{(s —y)7} currently under study.

Figure 1 shows the averaged output SNR’s versus iteration,
taken over 100 runs of the algorithm. As it can be seen in _
the figure, a good separation quality is obtained: 37dB and! P- Comon, “Independent component analysis, a new contegignal

. . . Processingvol. 36, no. 3, pp. 287-314, 1994.
31dB. If the same experiment is repeated using the methgsl p. T. pham, “Blind separation of instantaneous mixtures an inde-
of [3], with a 10 bins histogram estimation for marginal pendent component analysis$EEE Transactions on Signal Processing
; o i vol. 44, pp. 2768-2779, 1996.

score functions, the a.ve.raged output SNR’s will ‘be .29d%3] A. Taleb and C. Jutten, “Entropy optimization, applicatito blind
anc_{ 17_dB- Moreove_r, if in the methOd of [3], the optimal ™~ source separation;” ifCANN, Lausanne, Switzeland, October 1997, pp.
estimation of marginal score functions using a 3rd order

(28)
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