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Abstract—Let A be an n×m matrix with m > n, and suppose
that the underdetermined linear system As = x admits a sparse
solution s0 for which ‖s0‖0 < 1

2
spark(A). Such a sparse solution

is unique due to a well-known uniqueness theorem. Suppose
now that we have somehow a solution ŝ as an estimation of
s0, and suppose that ŝ is only ‘approximately sparse’, that is,
many of its components are very small and nearly zero, but
not mathematically equal to zero. Is such a solution necessarily
close to the true sparsest solution? More generally, is it possible
to construct an upper bound on the estimation error ‖ŝ − s0‖2
without knowing s0? The answer is positive, and in this paper
we construct such a bound based on minimal singular values of
submatrices of A. We will also state a tight bound, which is more
complicated, but besides being tight, enables us to study the case
of random dictionaries and obtain probabilistic upper bounds.
We will also study the noisy case, that is, where x = As + n.
Moreover, we will see that where ‖s0‖0 grows, to obtain a
predetermined guaranty on the maximum of ‖ŝ−s0‖2, ŝ is needed
to be sparse with a better approximation. This can be seen as
an explanation to the fact that the estimation quality of sparse
recovery algorithms degrades where ‖s0‖0 grows.

Index Terms—Atomic Decomposition, Compressed Sensing
(CS), Sparse Component Analysis (SCA), Sparse decomposition,
Overcomplete Signal Representation.

I. INTRODUCTION AND PROBLEM STATEMENT

SPARSE solution of underdetermined systems of linear
equations has recently attracted the attention of many

researchers from different viewpoints, because of its potential
applications in many different problems. It is used, for exam-
ple, in Compressed Sensing (CS) [1], [2], [3], underdetermined
Sparse Component Analysis (SCA) and source separation [4],
[5], [6], [7], atomic decomposition on overcomplete dictio-
naries [8], [9], decoding real field codes [10], image decon-
volution [11], [12], image denoising [13], electromagnetic
imaging and Direction of Arrival (DOA) finding [14], etc.
The importance of sparse solutions of underdetermined linear
systems comes from the fact that although such systems have
generally an infinite number of solutions, their sparse solutions
may be unique.

Let A = [a1, . . . ,am] be an n × m matrix with m > n,
where ai’s, i = 1, . . . ,m denote its columns, and consider the
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Underdetermined System of Linear Equations (USLE)

As = x. (1)

By the sparsest solution of the above system one means a
solution s which has as small as possible number of nonzero
components. In signal (or atomic) decomposition viewpoint, x
is a signal which is to be decomposed as a linear combination
of the signals ai’s, i = 1, . . . ,m, and hence, ai’s are usually
called [15] ‘atoms’, and A is called the ‘dictionary’ over
which the signal is to be decomposed. When the dictionary
is overcomplete (m > n), the representation is not unique, but
by the sparsest solution, we are looking for the representation
which uses as small as possible number of atoms to represent
the signal.

It has been shown [14], [16], [17] that if (1) has a sparse
enough solution, it is its unique sparsest solution. More
precisely:

Theorem 1 (Uniqueness Theorem [16], [17]). Let spark(A)
denote the minimum number of columns of A that are linearly
dependent, and ‖ · ‖0 denotes the `0 norm of a vector (i.e. the
number of its nonzero components). Then if the USLE As = x
has a solution s0 for which ‖s0‖0 < 1

2 spark(A), it is its unique
sparsest solution.

A special case of this uniqueness theorem has also been
stated in [14]: if A satisfies the Unique Representation Prop-
erty (URP), that is, if all n × n submatrices of A are non-
singular, then spark(A) = n+1 and hence ‖s0‖0 ≤ n

2 implies
that s0 is the unique sparsest solution.

Although the sparsest solution of (1) may be unique, finding
this solution requires a combinatorial search and is generally
NP-hard. Then, many different sparse recovery algorithms
have been proposed to find an estimation of s0, for ex-
ample, Basis Pursuit (BP) [8], Matching Pursuit (MP) [15],
FOCUSS [14], Smoothed L0 (SL0) [18], [19], SPGL1 [20],
IDE [21], ISD [22], etc.

Now, consider the following two different cases:
• Exact sparsity: We say that a vector s is sparse in the

exact sense if many of its components are exactly equal
to zero. More precisely, s is said to be k-sparse in the
exact sense if it has at most k nonzero entries (and all
other entries are exactly equal to zero).

• Approximate Sparsity: We say that a vector s is sparse in
the approximate sense if many of its components are very
small and approximately equal to zero (but not necessarily
‘exactly’ equal to zero). More precisely, s is said to be
k-sparse with approximation ε if it has at most k entries
with magnitudes larger than ε (all of its other entries have
magnitudes smaller than ε).



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 12, DECEMBER 2011 (*VERY CLOSE* TO THE OFFICIAL VERSION) 2

Some of the sparse recovery algorithms (e.g. BP based on
Simplex linear programming) return estimations which are
sparse in the exact sense, while some others (e.g. MP with
large enough iterations, SL0, FOCUSS and SPGL1) return
solutions which are sparse only in the approximate sense.

Suppose now that by using any algorithm (or simply by a
magic guess) we have found a solution ŝ of As = x, as an
estimation of the true sparsest solution (s0). The question now
is: “Noting that s0 is unknown, is it possible to construct an
upper bound for the estimation error ‖ŝ − s0‖2 only from ŝ,
where ‖·‖2 stands for the `2 norm”? For example, if A satisfies
the URP, and ‖ŝ‖0 is less than or equal bn/2c, where bxc
stands for the largest integer smaller than or equal to x, then
the uniqueness theorem insures that ŝ = s0. On the other hand,
if all the components of ŝ are nonzero but its (bn/2c+ 1)’th
largest magnitude component is very small, heuristically we
expect to be close to the true solution s0, but the uniqueness
theorem says nothing about this heuristic.

In this paper, we will see that the answer to the above
question is positive, and we will construct upper bounds on
‖ŝ − s0‖2 without knowing s0, which depend on the matrix
A and (in the case A satisfies the URP) are proportional to
the magnitude of the (bn/2c + 1)’th largest component of ŝ.
Consequently, if the (bn/2c+ 1)’th largest component of ŝ is
zero, then our upper bounds vanish, and hence ŝ = s0. This is,
in fact, the same result provided by the uniqueness theorem,
and hence our upper bounds can be seen as a generalization
of the uniqueness theorem. In other words, from the classical
uniqueness theorem, all that we know is that if among m
components of ŝ, m − bn/2c components are ‘exactly’ zero,
then ŝ = s0, but if ŝ has more than bn/2c nonzero components
(even if m − bn/2c of its components have very very small
magnitudes) we are not sure to be close to the true solution. As
we will see in this paper, our upper bounds, however, insure
that in the second case, too, we are not far from the true
solution. Moreover, the dependence of our upper bounds on
A provides some explanations about the sensitivity of the error
to the properties of the matrix A.

Constructing an upper bound on the error ‖ŝ−s0‖2 can also
be found in some other works, e.g. [23], [24], [25]. In some
of these works (e.g. [23], [24]) the bounds are probabilistic,
that is, they have been obtained for random dictionaries and
shown to be held with probabilities larger than certain values.
Being non-deterministic, these bounds cannot be used to infer
deterministic results. For example, they cannot be used to say
whether or not the heuristic stated above (that is, “if ŝ has
at most n/2 ‘large’ components, then it is close to the true
solution”) is generally true or not, while our bounds answer
this question. Another difference between our bounds with
those of [23], [24] is that in [23], [24] it has been assumed
that we have at hand an algorithm for estimating the sparsest
solution of an underdetermined linear system and several calls
to this algorithm are required, whereas in this paper, we have
at hand only a single estimation (̂s) of the sparsest solution
(s0), and we are going to develop upper bounds on the error
‖ŝ − s0‖2 without knowing s0. Moreover, the bounds in
some of these works (e.g. [24], [25]) have been constructed
for specific methods used for finding the estimation ŝ, e.g.

minimizing `1 or `q norms for 0 < q ≤ 1, whereas in this
paper we are discussing the bounds based on ŝ itself and
independent of the method used for its estimation: it may be
obtained by any algorithm or by a magic guess. In fact, to
our best knowledge, constructing a deterministic bound on
‖ŝ − s0‖2 and independent of the method used for obtaining
ŝ has not previously been addressed in the literature. Note
however that although our deterministic bounds can be used
to infer deterministic results, they are not suitable for practical
calculation, because they need Asymmetric Restricted Isom-
etry Constant (ARIC) [25], [26] of a dictionary, or similar
quantities, whose calculation are computationally intractable
for large matrices (note however that these quantities have
to be calculated only once for each dictionary). We will also
present a probabilistic bound for random dictionaries, which
is again independent of the method used to obtain the estimate
ŝ.

A related problem has already been addressed in [27], in
which, for the noisy case x = As + e, deterministic upper
bounds have been constructed for the error ‖ŝ − s0‖q (for a
set of different q’s including q = 2). However, in that paper it
has been implicitly assumed that ŝ is sparse in the exact sense,
that is, ‖ŝ‖0 ≤ bn/2c, otherwise, their upper bounds grow to
infinity. On the other hand, if the noise power (‖e‖2) is set
equal to zero, the upper bounds of [27] for ‖ŝ − s0‖ vanish,
resulting again to the uniqueness theorem. In other words,
reference [27] can be seen somehow as a generalization of the
uniqueness theorem to the noisy case, whereas our paper can
be seen as a generalization of the uniqueness theorem to the
case ŝ is not sparse in the exact sense. We will also consider
in Section V the case where there is noise and ŝ is sparse
in the approximate sense. Some error bounds for the noisy
case have also been obtained in [9], but those bounds are for
specific algorithms for estimating s0, while our bounds are
only based on ŝ itself and independent of the method used for
finding it.

Some parts of this work have been presented in the confer-
ence paper [28]. Here, we study the problem more thoroughly
(without repeating some details of that conference paper), and
we provide also a tight bound on the above error. Imposing no
assumption on the normalization of the columns of the dictio-
nary, this tight bound will enable us to obtain a probabilistic
upper bound. Moreover, we address the noisy case where ŝ is
sparse in the approximate sense.

The paper is organized as follows. In Section II we review
a first result already stated in [19], which provides the basic
idea of this paper. Then in Section III, we present a bound
based on minimal singular values of the submatrices of the
dictionary. Our tight bound is then presented in Section IV.
By considering the noisy case in Section V, we complete
our discussion on deterministic dictionaries before studying
random dictionaries in Section VI.

II. A FIRST BOUND

A first result has been given in Corollary 1 of Lemma 1
of [19] during the analysis of the convergence of the SL0
algorithm. We review that result here (with a few changes in
notations).
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Fig. 1. The definition of h(k, s): Sort the magnitudes of the entries of s in
descending order. Then, h(k, s) is the magnitude of the k’s element (denoted
by α in the figure).

For the n×m matrix A, let Pj(A), 1 ≤ j ≤ m, denote the
set of all matrices which are obtained by taking j columns of
A. Moreover, let Mn(A) , P1(A) ∪ P2(A) ∪ · · · ∪ Pn(A),
and define

GA , max
B∈Mn(A)

‖B†‖F , (2)

where B† stands for the Moore-Penrose pseudoinverse of B,
and ‖·‖F denotes the Frobenius norm of a matrix. The constant
GA depends only on the dictionary A. Moreover, for a vector
y and a positive scalar α, let ‖y‖0,α denote the number of
components of y which have magnitudes larger than α. In
other words, ‖y‖0,α denotes the `0 norm of a thresholded
version of y in which the components with magnitudes smaller
than or equal to α are clipped to zero.

The Corollary 1 of Lemma 1 of [19] states then:

Corollary 1 (of [19]). Let A be an n×m matrix with unit `2

norm columns which satisfies the URP and let δ ∈ null(A).
If for an α > 0, δ has at most n components with absolute
values greater than α (that is, if ‖δ‖0,α ≤ n), then

‖δ‖2 < (GA + 1)mα. (3)

We define now the following notation (see also Fig. 1):

Definition 1. Let s be a vector of length m. Then h(k, s) de-
notes the magnitude of the k’th largest magnitude component
of s.

Then, using the above corollary, Remark 5 of Theorem 1
of [19] states the following idea to construct an upper bound on
‖ŝ− s0‖2 as follows: Let αŝ,n , h(bn2 c+1, ŝ). Since the true
sparsest solution (s0) has at most bn2 c nonzero components,
ŝ− s0 has at most n components with absolute values greater
than αŝ,n, that is, ‖ŝ − s0‖0,αŝ,n

≤ n. Moreover, (̂s − s0) ∈
null(A) and hence Corollary 1 implies that

‖ŝ− s0‖2 ≤ (GA + 1)mαŝ,n . (4)

This result is consistent with the heuristic stated in the
introduction: “if ŝ has at most n/2 ‘large’ components, the
uniqueness of the sparsest solution insures that ŝ is close to
the true solution”.

III. A BOUND BASED ON MINIMAL SINGULAR VALUES

The bound (4) is not easy to be analyzed and worked with.
Especially, the dependence of the bound on the dictionary

(through the constant GA) is very complicated. Moreover, cal-
culating the GA constant for a dictionary requires calculation
of the pseudoinverses of all of the

(
m
1

)
+
(
m
2

)
+ · · · +

(
m
n

)
elements of Mn(A). In this section, we modify (4) to obtain
a bound that is easier to be analyzed and (in a statistical point
of view) its dependence to (the statistics of) A is simpler.
Moreover, we state our results for more general cases than
where A satisfies the URP.

A. Definitions and notations
For a matrix B let σmin(B) or σmin,B denote its smallest

singular value1. Similarly, we denote its largest singular value
by σmax(B) or σmax,B. We now define the following notations
about the dictionary A:
• Let q = q(A) = spark(A) − 1. Then, by definition, any
q columns of A are linearly independent, and there is
at least one set of q + 1 columns which are linearly
dependent (in the literature, the quantity q is usually
called ‘Kruskal rank’ or ‘k-rank’ of A). It is also obvious
that q ≤ n, in which, q = n corresponds to the case where
A satisfies the URP.

• Let σ(j)
min(A) or σ(j)

min,A denote the smallest singular value
among the singular values of all submatrices of A ob-
tained by taking j columns of A, that is,

σ
(j)
min(A) = min

B∈Pj(A)
{σmin(B)}· (5)

Note that since any q columns of A are linearly indepen-
dent, we have σ(j)

min(A) > 0, for all 1 ≤ j ≤ q(A).
Recall now the following lemma [30, p. 419] (we presented

a direct simple proof for the first two parts of this lemma
in [28]).

Lemma 1. Let B be an n× p matrix, and let B′ denote the
matrix obtained by adding a new column to B. Then:

a) If p < n (B is tall), then σmin(B′) ≤ σmin(B).
b) If p ≥ n (B square or wide), then σmin(B′) ≥ σmin(B).
c) We have always σmax(B′) ≥ σmax(B).

Using the above lemma, the sequence σ(j)
min,A, j = 1, . . . ,m

is decreasing for 1 ≤ j ≤ q and increasing for n ≤ j ≤ m.
More precisely, if q = n (URP case), we have

σ
(1)
min,A ≥ σ

(2)
min,A ≥ · · · ≥ σ

(n)
min,A︸ ︷︷ ︸
>0

≤ σ(n+1)
min,A ≤ · · · ≤ σ

(m)
min,A,

(6)
and if q < n, we have

σ
(1)
min,A ≥ · · · ≥ σ

(q)
min,A > 0 = σ

(q+1)
min,A =

= · · · = σ
(n)
min,A ≤ σ

(n+1)
min,A ≤ · · · ≤ σ

(m)
min,A·

(7)

Note also that (6) and (7) imply that for 1 ≤ j ≤ q

σ
(j)
min(A) = min

‖x‖0≤j
‖Ax‖2/‖x‖2· (8)

1In some references, e.g. [29], the singular values of a matrix are defined
to be strictly positive quantities. This definition is not appropriate for this
paper. We are using the more common definition of Horn and Johnson [30,
pp. 414-415], in which, the singular values of a p×q matrix M are the square
roots of the min(p, q) largest eigenvalues of MHM (or MMH ). Using this
definition, there are always min(p, q) singular values, where a zero singular
value characterizes a (tall or wide) non-full-rank matrix.
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Remark. The quantity defined in (5) is closely related to
Restricted Isometry Property (RIP) [10], [31], and is in fact
the left Asymmetric Restricted Isometric Constant (ARIC) of
A [25], [26]. As introduced in [10], the Restricted Isometry
Constant (RIC) of A is defined as the smallest δj such that
(1−δj)‖x‖22 ≤ ‖Ax‖22 ≤ (1+δj)‖x‖22 for all vectors x ∈ Rm
with ‖x‖0 ≤ j. The lower and upper bounds of this inequality
are symmetric, and hence the authors of [25], [26] introduced
asymmetric RIC’s, which are defined as the best αj and βj
such that αj‖x‖2 ≤ ‖Ax‖2 ≤ βj‖x‖2 for all vectors x ∈ Rm
with ‖x‖0 ≤ j. Comparing with (8), it is seen that the left
ARIC (αj) is the same quantity denoted by σ(j)

min(A) in above.

B. The upper bound

Now we state the main theorem of this section:

Theorem 2. Let A be an n×m matrix (m > n) with unit `2

norm columns. Suppose that s0 is a solution of As = x for
which ‖s0‖0 ≤ `/2, where ` is an arbitrary integer less than
or equal to q(A). Let ŝ be a solution of As = x, and define
αŝ,` , h(b`/2c+ 1, ŝ). Then

‖ŝ− s0‖2 ≤

(
1

σ
(`)
min,A

+ 1

)
mαŝ,` . (9)

Before going to the proof, let us state a few remarks on the
consequences of the above theorem.

Remark 1. Suppose that As = x has a sparse solution s0

which satisfies ‖s0‖0 ≤ 1
2q(A). By setting ` = q(A) in (9),

which is the largest ` satisfying the conditions of the theorem,
we will have

‖ŝ− s0‖2 ≤

(
1

σ
(q)
min,A

+ 1

)
mαŝ,q . (10)

If the estimated sparse solution ŝ satisfies also ‖ŝ‖0 ≤ q
2 ,

then αŝ,q = 0, hence the upper bound in (9) vanishes, and
therefore ŝ = s0. In other words, the above theorem implies
that a solution with ‖s‖0 ≤ 1

2q(A) is unique, that is, the above
theorem implies the uniqueness theorem. For example, for the
special case of A satisfying the URP (q(A) = n), if we have
found a solution satisfying ‖ŝ‖0 ≤ n

2 , we are sure that we
have found the unique sparsest solution.

Remark 2. Moreover, if the estimated sparse solution ŝ is
sparse only in the approximate sense, that is, if m−b q2c com-
ponents of ŝ have very small magnitudes, then αŝ,q is small,
and the bound (10) states that we are probably (depending on
the matrix A) close to the true solution. Moreover, in this case,
σ

(q)
min,A determines some kind of sensitivity to the dictionary:

For example, if the URP holds (q = n) but there exists an
n × n square submatrix of A which is ill-conditioned, then
σ

(n)
min,A is very small and hence for achieving a predetermined

accuracy, αŝ,n should be very small, that is, the sparsity of ŝ
should be held with a better approximation.

Remark 3. Theorem 2 states also some kind of ‘sensitivity’
to the degree of sparseness of the sparsest solution s0. Let
p , ‖s0‖0, and set ` = 2p in (9), and suppose that ` ≤ q(A).

Then the conditions of Theorem 2 have been satisfied and
hence (9) becomes

‖ŝ− s0‖2 ≤

(
1

σ
(2p)
min,A

+ 1

)
mαŝ,2p . (11)

In other words, whenever s0 is sparser, p is smaller, hence
from (6) and (7) σ(2p)

min,A is larger, and therefore a larger αŝ,2p

is tolerable (that is, we have less sensitivity to exact sparseness
of ŝ). This can somehow explain the fact that sparse recovery
algorithms work better for sparser s0’s [19].

C. Proof

To prove Theorem 2 we first state a modified version of (3):

Proposition 1. Let A be an n×m matrix (m > n) with
unit `2 norm columns, and assume that any ` columns of A
are linearly independent (` ≤ n). Let δ ∈ null(A). If for an
α ≥ 0, ‖δ‖0,α ≤ `, then

‖δ‖2 ≤

(
1

σ
(`)
min,A

+ 1

)
mα. (12)

Proof: The proof is based on some modifications to the
proof of Lemma 1 of [19].

Let ml be the number of components of δ with magnitudes
larger than α, and ms be the number of components of δ
with magnitudes smaller than or equal to α. In other words,
ml = ‖δ‖0,α and ms = m − ‖δ‖0,α (indexes l and s in ml

and ms stand for ‘Large’ and ‘Small’). We consider two cases:
Case 1 (ml = 0 and ms = m): In this case, all the

components of δ have magnitudes less than or equal to α,
and hence we can simply write ‖δ‖2 ≤

∑
i |δi| ≤ mα which

satisfies also (12).

Case 2 (1 ≤ ml ≤ ` and ms ≤ m − 1): In this case,
there is at least one component of δ with magnitude larger
than α. Let δl be composed of the components of δ which
have magnitudes larger than α, and Al be composed of the
corresponding columns of A. Similarly2, let δs be composed
of the components of δ which have magnitudes less than or
equal to α, and As is composed of the corresponding columns
of A. Since δ ∈ null(A), 0 = Aδ = Alδl+Asδs, and define

b , Alδl = −Asδs. (13)

From b = −Asδs,

‖b‖2 = ‖Asδs‖2 = ‖
∑
i

δs,ias,i‖2 ≤
∑
i

|δs,i|︸︷︷︸
≤α

‖as,i‖2︸ ︷︷ ︸
1

⇒ ‖b‖2 ≤ msα ≤ (m− 1)α ≤ mα. (14)

From b = Alδl,

‖b‖2 = ‖Alδl‖2 ≥ σmin(Al)‖δl‖2

⇒ ‖δl‖2 ≤
‖b‖2

σmin(Al)
· (15)

2In MATLAB notation Al , A(:, abs(δ)>α), As , A(:, abs(δ)≤α).
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Note that in the above equations, the assumption ml ≤ `
was essential, otherwise ‖Alδl‖2 and σmin(Al) could be zero.
Combining now (14) and (15), we will have

‖δl‖2 ≤
mα

σmin(Al)
· (16)

Moreover, ‖δs‖2 ≤ msα ≤ (m− 1)α ≤ mα. Therefore

‖δ‖2 ≤ ‖δl‖2 + ‖δs‖2 ≤
mα

σmin(Al)
+mα. (17)

Now, from the definition (5) and Lemma 1, σmin(Al) ≥
σ

(ml)
min (Al) ≥ σ(`)

min(Al), which proves the proposition.

Proof of Theorem 2: s0 has at most b `2c nonzero com-
ponents and ŝ has at most b `2c components with magnitudes
larger than α. Therefore, ŝ − s0 has at most ` components
with magnitudes larger than α. Moreover, (̂s−s0) ∈ null(A).
Hence, the conditions of Proposition 1 hold for δ = ŝ − s0

and α = αŝ,`, which proves the theorem.

IV. A TIGHT BOUND

Although the bound in (9) is relatively simple, except for the
trivial case αŝ,` = 0 the equality in (9) can never be satisfied
(as will be explained in the proof of Theorem 3). Therefore,
for an approximate sparse ŝ the bound in (9) is not tight. In
this section we present a tight bound on the estimation error
ŝ−s0, which does not depend only on minimal singular values
of submatrices of A, but depends on a quantity γ̄(A) defined
below.

A. Definitions and notations

Definition 2. Let A be an n × m matrix and m > n. For
any B ∈ Pj(A), let Bc denote the matrix composed of the
columns of A which are not in B. For j = 1, . . . , q(A) we
define

ηj(A) , max
B∈Pj(A)

{
σmax(Bc)
σmin(B)

}
· (18)

Note that while j ≤ q(A), σmin(B) > 0, and hence
ηj(A) <∞ for j = 1, . . . , q(A).

Definition 3. Let matrix A be as in the previous definition.
For j = 1, . . . , q(A) we define the quantities

γj(A) ,

√
(m− j)

(
1 + η2

j (A)
)
, (19)

γ̄j(A) , max
{
γ1(A), γ2(A), . . . , γj(A)

}
, (20)

γ̄′j(A) , max
{√

m, γ1(A), γ2(A), . . . , γj(A)
}
· (21)

We also use the notations γ̄(A) and γ̄′(A) to denote the
largest γj(A) and γ′j(A) over the whole range of j, that is,
γ̄(A) , γ̄q(A) = max{γ1(A), . . . , γq(A)}, and γ′(A) =
max{

√
m, γ(A)}.

Remark. Note that the sequence ηj(A), j = 1, . . . , n
is not necessarily increasing. In effect, by taking one col-
umn from a matrix M and appending it to a matrix N,
the ratio σ2

max(M)/σ2
min(N) does not necessarily increase,

because both of its numerator and denominator decrease by

Lemma 1. As an example, for the matrix A=[ 0.79, 0.82, -
0.84, -0.82; -0.57, 0.55, 0.33, -0.38; 0.23, -0.19, -0.43, 0.42],
which has normalized columns (up to 2 decimal points),
the sequence ηj is approximately equal to {1.49, 6.91, 5.04}.
Similarly, the sequence γj(A) is not necessarily increasing.
For the above matrix, this sequence is approximately equal
to {3.11, 9.87, 5.14}. However, as we will see in Section VI,
for large random matrices with independently and identically
distributed (iid) Gaussian entries, these sequences are both
almost surely increasing (see Remark 3 after Lemma 4).

B. The upper bound

Now we are ready to state the main theorem of this section,
which provides a tight upper bound on ‖ŝ− s0‖2:

Theorem 3. Let A be an n×m matrix (m > n), and suppose
that s0 is a solution of As = x for which ‖s0‖0 ≤ `/2, where
` is an arbitrary integer less than or equal to q(A). Let ŝ be
a solution of As = x, and define αŝ,` , h(b`/2c+1, ŝ). Then

‖ŝ− s0‖2 ≤ γ̄′`(A) · αŝ,` . (22)

Moreover, if the columns of A are of unit `2 norm, then

‖ŝ− s0‖2 ≤ γ̄`(A) · αŝ,` . (23)

Remark 1. For deterministic dictionaries, one usually uses
normalized atoms, for which (23) holds. However, (22) will be
useful for random dictionaries (Section VI) with independently
and identically distributed (iid) entries, for which having the
unit `2 norm cannot be guaranteed. Note also that if we
normalize the columns of such a random dictionary, its entries
would no longer be independent.

Remark 2. In particular, by setting ` = q in (23), the bound
(10) is modified to ‖ŝ− s0‖2 ≤ γ̄(A) ·αŝ,q , and for the URP
case

‖ŝ− s0‖2 ≤ γ̄(A) · αŝ,n . (24)

In other words, if we know the constant γ̄(A) for our
dictionary, its multiplication by the (bn/2c + 1)’th largest
magnitude component of the estimation ŝ would be an upper
bound on the estimation error ‖ŝ − s0‖2. Like in (9), this
insures that if we have obtained an approximate sparse solution
of As = x, we are probably close to the true sparsest solution.
However, unlike (9) the bound in (24) is tight. We will see
in Section IV-D an example for which the equality in (24) is
satisfied.

C. Proof

From the proof of Theorem 2, it can be seen that if we
obtain an upper bound for ‖δ‖2 where δ ∈ null(A) satisfies
‖δ‖0,α ≤ ` for an α ≥ 0, we will obtain a bound for ‖ŝ −
s0‖2 for α = αŝ,`. Such a bound is given in the following
proposition, as a modification to Proposition 1.

Proposition 2. Let A and ` be as in Theorem 3. Let δ ∈
null(A), and suppose that for an α ≥ 0, ‖δ‖0,α ≤ `. Let also
ml and ms denote the number of entries of δ with magnitudes
larger than, and less than or equal to α, respectively.
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a) Case ml = 0 and ms = m: (i.e. where all entries of δ
have magnitudes smaller than or equal to α). Then

‖δ‖2 ≤
√
mα. (25)

b) Case 1 ≤ ml ≤ ` and ms ≤ m − 1: Let Al and As

be composed of the columns of A which correspond to the
entries of δ that have magnitudes larger than α, and less than
or equal α, respectively (see footnote 2). Then

‖δ‖2 ≤

(√
ms

(
1 +

σ2
max(As)
σ2

min(Al)

))
α. (26)

Proof: The bound in (12) is not tight because several in-
equalities used in its proof are not tight. Indeed, the equalities
of the last inequality in (14) and also the first inequality in
(17) can never be met (unless for the trivial case α = 0).
Hence, we prove the proposition by modifying the proof of
Proposition 1. Moreover, as opposed to what had been done
in (17), in this proof we do not use the assumption that the
columns of A are normalized.

Note first that for a vector y = (y1, . . . , yp)T , if ∀i : 0 ≤
yi ≤ α, then

‖y‖2 ≤
√
pα, (27)

and the equality holds if and only if ∀i : yi = α.
Proof of Part a (case ml = 0 and ms = m): In this case,

(27) directly implies (25), where the equality holds if and only
if |δi| = α ⇒ δi = ±α. Moreover, for the equality being
satisfied, δ has to be in null(A), that is, Aδ =

∑
i δiai = 0,

where ai’s are the columns of A. Hence, the upper bound
in (25) is tight, and is achieved only for the dictionaries for
which a linear combination of their columns with +1 or −1
coefficients vanishes (

∑
±ai = 0).

Proof of Part b (case ml ≥ 1,ms ≤ m− 1): We follow the
same argument as in the proof of Proposition 1, but instead
of (14) we write

‖b‖2 = ‖Asδs‖2 ≤ σmax(As)‖δs‖2· (28)

Combining it with (15), we will have (instead of (16))

‖δl‖2 ≤
σmax(As)
σmin(Al)

‖δs‖2· (29)

Finally, instead of (17) we write ‖δ‖22 = ‖δs‖22 + ‖δl‖22, and
hence from the above inequality we will have

‖δ‖22 ≤ ‖δs‖22+
σ2

max(As)
σ2

min(Al)
‖δs‖22 =

(
1 +

σ2
max(As)
σ2

min(Al)

)
‖δs‖22·

(30)
Finally, we use (27) again to write ‖δs‖2 ≤ α

√
ms, which in

combination with the above inequality gives (26).

To prove Theorem 3, we also need the following lemma,
proof of which is left to Appendix VIII-A.

Lemma 2. Let A be an n×m (m > n) matrix with unit `2

norm columns. Then γ1(A) ≥
√
m .

Proof of Theorem 3: Note that (̂s−s0) ∈ null(A). More-
over, s0 has at most b `2c nonzero components and ŝ has at most
b `2c components with magnitudes larger than αŝ,`. Therefore,

ŝ− s0 has at most ` components with magnitudes larger than
αŝ,`, that is, it has either 0, or 1, . . . , or ` components with
magnitudes larger than αŝ,`. If it has 1 ≤ j ≤ ` components
larger than αŝ,`, from (26) we have

‖ŝ− s0‖2 ≤ αŝ,`

√
(m− j)

(
1 +

σ2
max(As)
σ2

min(Al)

)
≤ γj(A)αŝ,`,

(31)
because γj had been defined as the maximum of√

(m− j) (1 + σ2
max(As)/σ2

min(Al)) for all possible choices
of Al and As. On the other hand, if ŝ−s0 has no components
larger than αŝ,`, from (25) we have ‖ŝ−s0‖2 ≤ αŝ,`

√
m. This

completes the proof of (22). Then, combining it with Lemma 2
proves (23).

Experiment. To experimentally compare the “first bound”
given in (9) and the “second bound” given in (23), we
conduced a simple experiment. We firstly generated a random
A of dimension 8×12 by generating each of its entries using
N(0, 1) distribution, and then divided each of its columns by
its norm to obtain a unit norm column matrix A. We generated
then a random sparse s0 by randomly choosing the positions
of p = 2 of its entries and then assigning random magnitudes
(drawn from a N(0, 1) distribution) to these positions and
zero to other positions. Then x = As0 was calculated and
x and A were given to SL0 algorithm and the parameter
σmin of SL0 was chosen relatively large (0.1) to force SL0
to create a not so accurate estimation ŝ. Then the actual error
‖ŝ − s0‖2, the “first bound” and the “second bound” were
calculated by setting ` = 2p (note that A is of relatively
small dimensions, permitting exact calculation of σ(`)

min,A and
γ̄(A) using a combinatorial search). The whole experiment
was repeated 100 times by regenerating A and s0. The average
values of the ratios (First bound)/(Actual error) and (Second
bound)/(Actual error) through these 100 experiments were
47.4 and 16.2, respectively. It is seen that the second bound
is highly tighter than the first bound. Moreover, although the
ratio (Second bound)/(Actual error) is seen to be in average
16.2, this bound is in fact a tight bound, in the sense that
there are instances of A, s0 and ŝ such that the equality in
(23) holds. Such an example is given in the next subsection,
proving the tightness of this bound.

D. Example of equality in Theorem 3

To show that the bound given in Theorem 3 is tight, we
present the following tricky example, which is stated in the
form of a proposition.

Proposition 3. The estimation error ‖ŝ − s0‖2 achieves its
upper bound in (24) for

A =
[

1 cos θ sin θ
2

0 sin θ − cos θ2

]
, s0 =

 β
0
0

 , ŝ =

 0
β
α

 ,
(32)

for any 0 < θ < cos−1(
√

17−1
4 ) ≈ 38.6683◦, any α > 0, and

β , α/(2 sin θ
2 ).

For example, for θ = 5◦ and α = 0.2, we have the following
example (up to 4 digits) which achieves the upper bound of
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Fig. 2. The columns of the matrix A in (32) are shown as the vectors a1,
a2 and a3.

(24):

A =
[
1 0.9962 0.0436
0 0.0872 −.9990

]
, s0 =

2.2926
0
0

 , ŝ=

 0
2.2926

0.2

 .
Note that ŝ in this example is an approximately sparse

solution of As = x, where x , As0, but it is completely
different from s0.

For proof, we need the following lemma:

Lemma 3. a) Let B be a single-column matrix (i.e. a column
vector), and this column has unit `2 norm. Then the sole
singular value of B is equal to 1.

b) Let B be two-column matrix (with more than one row),
columns of which, b1 and b2, have unit `2 norm. Then the
two singular values of B are equal to σ2

min(B) = 1 − ρ and
σ2

max(B) = 1 + ρ, where ρ , |bT1 b2| = | cosϕ|, in which ϕ
is the angle between b1 and b2. Note that a smaller angle ϕ,
results both in smaller σmin and larger σmax.

Proof: The result is simply obtained by direct calculations
of the eigenvalues of BTB.

Proof of Proposition 3: Step 1) Note that A satisfies the
URP. By defining x , As0, it can be easily verified that both
s0 and ŝ are solutions of As = x. Moreover, for 0 < θ < 60◦,
we have β > α and hence αŝ,n = α.

Step 2) Calculating γ1(A): From definition (18), for j = 1,
B has only one column and hence σmin(B) = 1 from
Lemma 3. Let a1, a2 and a3 denote the columns of A,
respectively. These vectors are drawn in Fig. 2. To maxi-
mize σmax(Bc) among the 3 possible choices for Bc, using
Lemma 3, we have to find the two vectors for which the
absolute value of the cosine of their angles is maximum.
Simple manipulation of Fig. 2 shows that for 0 < θ < 60◦

the maximum of σmax(Bc) is obtained for Bc = [a1,a2].
Consequently, η2

1(A) = 1 + cos θ ⇒ γ2
1(A) = 2(2 + cos θ).

Step 3) Calculating γ2(A): From definition (18), for j = 2,
Bc has only one column and hence σmax(Bc) = 1 from
Lemma 3. Among the 3 possible choices for B, using
Lemma 3, it can be seen that for 0 < θ < 60◦ the minimum
of σmin(B) is obtained for B = [a1,a2]. Consequently,
η2
2(A) = 1/(1− cos θ)⇒ γ2

2(A) = 1 + 1/(1− cos θ).
Step 4) Comparing γ1(A) and γ2(A): Simple algebra

shows that

γ2
2(A) > γ2

1(A)⇔ 2 cos2 θ + cos θ − 2 > 0⇔

cos θ >
√

17− 1
4

⇔ |θ| < θ0,

where θ0 , cos−1(
√

17−1
4 ) ≈ 38.6683◦. Hence, since by the

assumption 0 < θ < θ0, we will have

γ̄(A) = γ2(A) =

√
1 +

1
1− cos θ

=

√
1 +

1
2 sin2 θ

2

· (33)

Step 5) Now, for β = α/(2 sin θ
2 ) we write

‖ŝ− s0‖22 = 2β2 + α2 = α2

(
1 +

1
2 sin2 θ

2

)
= γ̄2(A)α2,

which completes the proof.

V. THE NOISY CASE

Instead of the noiseless system (1), consider now the noisy
case

x = As + n, (34)

where n denotes the noise vector, and ‖n‖2 ≤ ε with ε ≥ 0. In
SCA applications, n denotes the measurement noise in sensors,
and in sparse signal decomposition applications, (34) is for
modeling approximate signal decomposition, in which ε is the
acceptable tolerance of the decomposition.

In presence of noise, the minimum `0 norm solution of
As = x is not stable, in the sense that if x , As0 + n
(in which s0 is sparse), then the minimum `0 norm solution
of As = x may be completely different from s0, even for very
small amount of noise [9], [32]. Hence, instead of finding the
sparsest solution of x = As, it is proposed to estimate s0

as [9]

ŝ = argmin
s
‖s‖0 s.t. ‖As− x‖2 ≤ δ, (35)

for a δ ≥ ε ≥ 0. This approach insures the stability in the
sense that ‖ŝ−s0‖2 grows at worst proportionally to the noise
level [9], [33] (other variants of the above expression have
also been studied in the literature, for example replacing the
`0 norm with `1 norm, or replacing the `2 norm in ‖As−x‖2
by `1 and `∞ norms [9], [34], [35], [36], [37]).

In this section, we are going to study the generalization
of the main question of previous sections to this noisy case:
If we have an estimation ŝ satisfying ‖Aŝ − x‖2 ≤ δ, and
if ŝ is sparse only in the approximate sense3, is it possible
(without knowing s0) to construct an upper bound on the error
‖ŝ− s0‖2? Indeed, we will firstly generalize the looser bound
(9). Then, it will be seen that the tight bound (23) would not
be easy to generalize as a closed form formula.

A. Generalizing the looser bound (9)

1) The theorem: The generalization of the looser bound to
the noisy case is given by the following theorem:

Theorem 4. Let A be an n×m matrix (m > n) with unit `2

norm columns. Let x = As0+n, where ‖n‖2 ≤ ε and ‖s0‖0 ≤
`/2, in which ` is an arbitrary integer less than or equal to

3Such a solution may be obtained for example using Robust-SL0 [38].
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q(A). Let ŝ be an estimation of s0 satisfying ‖Aŝ−x‖2 ≤ δ,
and define αŝ,` , h(b`/2c+ 1, ŝ). Then

‖ŝ− s0‖2 ≤

(
1

σ
(`)
min,A

+ 1

)
mαŝ,` +

∆

σ
(`)
min,A

, (36)

where ∆ , ε+ δ.

Remark 1. For ∆ = 0 (which corresponds to the noiseless
case), the above bound reduces to the looser bound for the
noiseless case, i.e. (36) reduces to (9).
Remark 2. It is also interesting to consider the case αŝ,` = 0.
It corresponds to the case where ŝ is sparse in the exact sense,
e.g. where ŝ is an exact solution of (35) for a δ ≥ ε. In this
case, the bound (36) becomes

‖ŝ− s0‖2 ≤
ε+ δ

σ
(`)
min,A

· (37)

The above inequality holds for all values of ` satisfying the
conditions of the theorem, and hence also for ` = q(A)
(which is the largest possible `). This proves that the problem
(35) is stable for all ‖s0‖0 < 1

2 spark(A), i.e. for the whole
range of uniqueness of the sparse solution, while in [9], this
stability had been proved only for the highly more limited
range ‖s0‖0 < 1+M−1

2 , where M is the mutual coherence of
A. We have discussed this generalization of the stability and
the inequality (37) in the correspondence4 [33].

2) Proof: To prove the above theorem, we need to first
generalize Proposition 1 to the noisy case. This is given in
the following Proposition, which is based on a modification
of [19, Lemma 4]:

Proposition 4. Let A be an n×m matrix (m > n) with
unit `2 norm columns, and assume that every ` columns of A
are linearly independent (` ≤ n). Let δ be a vector satisfying
‖Aδ‖2 ≤ ∆ for a constant ∆ ≥ 0. If for α ≥ 0, ‖δ‖0,α ≤ `,
then

‖δ‖2 ≤

(
1

σ
(`)
min,A

+ 1

)
mα+

∆

σ
(`)
min,A

· (38)

Proof: The proof is based on modifications in the proof
of Proposition 1. Let δl, δs be as defined in that proof.

Case 1 (ml = 0 and ms = m): Exactly like the proof of
Proposition 1, ‖δ‖2 ≤ mα which satisfies also (38).

Case 2 (1 ≤ ml ≤ ` and ms ≤ m − 1): Let Al and
As be as defined in the proof of Proposition 1. We define
again b , Alδl, but b is no more equal to −Asδs. Similar
to (14) we have ‖Asδs‖2 ≤ mα. For upper bounding ‖b‖2,
instead of (14), we use the general inequality ‖y1‖2−‖y2‖2 ≤
‖y1 + y2‖2 to write

‖Alδl‖2︸ ︷︷ ︸
‖b‖2

−‖Asδs‖2 ≤ ‖Alδl + Asδs‖2 ≤ ∆

⇒ ‖b‖2 ≤ ‖Asδs‖2 + ∆ ≤ mα+ ∆. (39)

4In fact, in that correspondence, we have even presented a more general
result: we have shown that even minimizing ‖s‖0 in (35) is not necessary, that
is, the stability is resulted only from ‖As−x‖2 ≤ δ for the whole uniqueness
range ‖s0‖0 < 1

2
spark(A), provided that the estimation ŝ satisfies also

‖ŝ‖0 < 1
2

spark(A).

Putting this in (15), we have (instead of (16))

‖δl‖2 ≤
mα+ ∆
σmin(Al)

, (40)

and hence (17) becomes

‖δ‖2 ≤ ‖δl‖2 + ‖δs‖2 ≤
mα+ ∆
σmin(Al)

+mα, (41)

which in combination with σmin(Al) ≥ σ(`)
min,A completes the

proof.

Proof of Theorem 4: Similar to the proof of Theorem 2,
ŝ− s0 has at most ` components with magnitudes larger than
α. However, here ŝ−s0 is not necessarily in null(A). Instead,
we use the general inequality ‖y1‖2 − ‖y2‖2 ≤ ‖y1 − y2‖2
to write

‖A(̂s− s0)‖2 − ‖n‖2 ≤ ‖Aŝ−As0 − n‖2 = ‖Aŝ− x‖2 ≤ δ
⇒ ‖A(̂s− s0)‖2 ≤ ‖n‖2 + δ ≤ ε+ δ. (42)

Therefore, δ , ŝ− s0 satisfies the conditions of Proposition 4
for ∆ = ε+ δ, which completes the proof.

B. Generalizing the tight bound (23)

In this section, we will see that obtaining a ‘closed form’ ex-
pression as a generalization of the tight bound (23) to the noisy
case would not be easy. In fact, it is seen that the generalization
of the looser bound was based on generalizing Proposition 1 to
Proposition 4. Similarly, we can also generalize Proposition 4
to the noisy case:

Proposition 5. Let A, `, δ, α and ∆ be as in Proposition 4.
Let ml and ms denote the number of entries of δ with mag-
nitudes larger than, and less than or equal to α, respectively.

a) Case ml = 0 and ms = m: We have

‖δ‖2 ≤
√
mα. (43)

b) Case 1 ≤ ml ≤ ` and ms ≤ m − 1: Let Al and As

be composed of the columns of A which correspond to the
entries of δ that have magnitudes larger than α, and less than
or equal α, respectively. Then

‖δ‖22 ≤
(

1 +
σ2

max(As)
σ2

min(Al)

)
msα

2+

+ 2
σmax(As)
σmin(Al)

√
ms α∆ +

∆2

σ2
min(Al)

·
(44)

Proof: Part (a): The proof is the same as the proof of part
(a) of Proposition 2.

Part (b): Let again b , Alδl. With similar reasoning as in
(39) we have ‖b‖2 ≤ ‖Asδs‖2 + ∆. Moreover, ‖Asδs‖2 ≤
σmax(As)‖δs‖2, and hence

‖b‖2 ≤ σmax(As)‖δs‖2 + ∆. (45)

Combining it with (15), we will have

‖δl‖2 ≤
σmax(As)‖δs‖2 + ∆

σmin(Al)
· (46)

Moreover, ‖δs‖2 ≤
√
ms α (from Eq. (27)). Combining this,

the above inequality, and ‖δ‖22 = ‖δs‖22 + ‖δl‖22 proves the
proposition.
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However, although Proposition 4 was generalized to Propo-
sition 5, it would be tricky to use it to obtain a closed form
generalization of (23) to the noisy case. To see the difference,
recall the argument of using (26) to obtain (23) (which is
the same argument as using (12) to obtain (9)): under the
conditions of Theorem 3, δ , ŝ−s0 satisfies the conditions of
Proposition 2 for α = αŝ,`. However, since we don’t know s0,
we don’t know which components of δ are smaller and which
ones are larger than α, and hence, we don’t know As and Al.
Therefore, we consider the worst case of the bound given by
(26), that is, we maximize the right hand side of (26) on all
possible partitionings of A into Al and As (where the number
of columns of Al is at most equal to `). The point is that the
right hand side of (26) was in a form that its maximization
with respect to all possible partitionings of A was independent
of α, and gave us the bound (23), in which, we had a constant
γ̄(A) which is independent of α, and depends only on the
dictionary.

However, with the same reasoning, to obtain an upper
bound on ‖ŝ − s0‖2 under the conditions of Theorem 4, we
have to maximize the right hand side of (44) with respect to
all possible partitionings of A into Al and As (where the
number of columns of Al is at most equal to `). However,
here, this maximization depends also on α and ∆, because
σmax(As)/σmin(Al) and 1/σmin(Al) are not necessarily
maximized5 for the same partitioning of A. Consequently, we
can probably say nothing better than:

Theorem 5. Let all parameters be as defined in Theorem 2.
Let B ∈ Pj(A) and let Bc denote the matrix composed by
the columns of A that are not in B. Define

f(A, α,∆) , max
1≤j≤`

max
B∈Pj(A)

{(
1 +

σ2
max(Bc)
σ2

min(B)

)
msα

2+

+2
σmax(Bc)
σmin(B)

√
ms α∆ +

∆2

σ2
min(B)

}
· (47)

Then

‖ŝ− s0‖22 ≤ max
{
mα2

ŝ,` , f(A, αŝ,`,∆)
}
· (48)

Moreover, if A has unit `2 norm columns, then

‖ŝ− s0‖22 ≤ f(A, αŝ,`,∆). (49)

Remark. In Theorems 2 to 4, the quantities γ̄(A) or σ(n)
min,A

are calculated only once for each dictionary, and then they
are used with αŝ,` (and probably ∆) of a specific problem.
However, in the above theorem, the dictionary, α and ∆
interact, and hence the upper bound should be calculated for
each specific problem separately and since this calculation is
NP-hard, its usage in practical problems is probably limited.

VI. RANDOM DICTIONARIES

Theorems 2 and 3 suggest that σ
(`)
min(A) and/or γ̄`(A)

are important parameters of a dictionary. However, estimat-
ing these parameters for a deterministic matrix seems to
be NP-hard (this has already been proven for estimating

5Using a small MATLAB code, it is easy to find examples of A for which
these two quantities are maximized for different partitionings.

σ
(`)
min(A) [39]). In effect, calculating σ

(`)
min(A) requires ex-

amination of all n × ` submatrices of A, and calculation
of γ̄`(A) requires examination of all n × j submatrices of
A for j = 1, . . . , `. These tasks are combinatorial and
intractable (although they have to be done only once for a
given dictionary). Moreover, even finding a computationally
tractable lower bound for σ(q)

min(A) or an upper bound for
γ̄′(A) would provide us a computable upper bound for the
error.

On the contrary, for a random A with independent and
identically distributed (iid) entries, we need no more to ex-
amine all of its

(
n
`

)
submatrices to obtain probabilistic upper

bounds, because all n×` submatrices are statistically identical.
On the other hand, singular values of random matrices have
extensively been studied in the literature [40], [41]. Indeed,
it is well-known that the singular values of random matrices
are not “so random” and are highly concentrated around some
deterministic values [42, Th. 2.7]. Random dictionaries are
also practically important, e.g. they are frequently used in
compressed sensing [3]. Note also that random matrices satisfy
the URP with probability 1.

In this section, we consider random dictionaries, and state
some probabilistic upper bounds for the estimation error ‖ŝ−
s0‖2 without knowing s0, and independent of the method used
for estimating ŝ.

A. Review of some results from random matrix theory

Let X be an n × p random matrix with independent and
identically distributed (iid) entries with zero mean and variance
1
n (hence the expected values of the `2 norm of its columns are
equal to 1). A famous result by Marc̆henko and Pastur [41, Th.
2.35] states that if the entries of X come from any distribution
with fourth order moment of order O( 1

n2 ), as n, p → ∞ and
p
n → c > 0, the empirical distribution of singular values of
X converges almost surely (a.s.) to a distribution bounded
between |1 −

√
c | and 1 +

√
c. Moreover, if the entries

come from any distribution with finite fourth order moment,
σmax(X) has been shown [43] to converge a.s. to 1+

√
c (this

result has been firstly stated by Geman [44] under some more
restrictive conditions). Similarly, if 0 < c < 1 (i.e. for tall
matrices), it has been shown (firstly in [45] for the Gaussian
case and then in [46] for any distribution with finite fourth
moment) that σmin(X) a.s.−−→ 1−

√
c. As it is said in [46], it is

obvious that a similar result holds also for wide matrices, that
is, where c > 1. To see this, let c > 1. Then X′ ,

√
n/pXT

is a tall p × n matrix with iid zero-mean elements with
variance 1

p , and hence,
√

1/c σmin(X) a.s.−−→ 1 −
√

1/c, and
consequently σmin(X) a.s.−−→

√
c−1. Hence, generally, if c 6= 1,

then σmin(X) a.s.−−→ |1 −
√
c |. The case c = 1 is, however,

more complicated. For example, for Gaussian square random
matrices (p = n), if n → ∞, then the probability density
function (PDF) of the random variable σmin(X) converges to
a simple known function [40, Th. 5.1], [47]. In other words, for
c 6= 1, as n→∞, the PDF of σmin(X) converges to a Dirac
delta function (i.e. σmin(X) converges a.s. to a deterministic
value), but this is not true for c = 1.
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Moreover, if n ≥ p (tall matrix), and the entries of X
are drawn from a N(0, 1/n) distribution, then a result due
to Davidson and Szarek [42, Th. 2.13], [48, Eqs. (4.35) and
(4.36)] states that for any r > 0

P
{
σmax(X) > 1 +

√
p

n
+ r

}
≤ e−nr

2/2, (50)

P
{
σmin(X) < 1−

√
p

n
− r
}
≤ e−nr

2/2. (51)

Note that the second inequality is mostly useful for 0 < r <
1−

√
p/n (otherwise it is trivial).

It is not difficult to see that similar equations hold also
for wide matrices. To show it, let X be an n × p random
matrix with n < p (wide matrix) and with elements drawn
from a N(0, 1/n) distribution (again normalized columns in
expected value). Then, Y ,

√
n/pXT is a p× n tall matrix

with N(0, 1/p) entries, for which we can write the above
inequalities. For example, by writing (50) for Y we have

P
{
σmax(Y) > 1 +

√
n

p
+ r

}
≤ e−pr

2/2

⇒ P
{√

n

p
σmax(X) > 1 +

√
n

p
+ r

}
≤ e−pr

2/2

⇒ P
{
σmax(X) >

√
p

n
+ 1 + r

√
p

n

}
≤ e−pr

2/2.

Hence, by defining r′ = r
√
p/n, we have

P
{
σmax(X) >

√
p

n
+ 1 + r′

}
≤ e−pr

′2( n
p )/2 = e−nr

′2/2.

Consequently, (50) also holds for wide matrices. Similarly, it
can be seen that for wide matrices (p > n), the inequality (51)
becomes

P
{
σmin(X) <

√
p

n
− 1− r

}
≤ e−nr

2/2. (52)

B. Definitions and notations
Let the dictionary A be a random n×m matrix with m >

n and with iid entries drawn from a N(0, 1/n) distribution.
In this section, we use Theorem 3 and Davidson and Szarek
inequalities to obtain a probabilistic upper bound for the error
‖ŝ− s0‖2.
Remark. Note that the `2 norms of the columns of such an
A are not necessarily equal to one (although their expected
values are equal to one). Hence, we cannot use the bound
given in Theorem 2 for this A, because that theorem requires
that the columns of A have unit `2 norms. Moreover, if we
normalize the columns of A by dividing them by their `2

norms, the new entries would no longer be independent, and
consequently, we cannot use Davidson and Szarek inequalities
and many other results in random matrix theory which require
independent entries. Hence, it is not straightforward6 to obtain

6In a personal email communication with the first author, Pr. Szarek has
generalized (51) to the case where the elements of A are firstly drawn
independently from a zero mean Gaussian distribution and then each column
is divided by its `2 norm to obtain a unit `2 norm column dictionary. The
final bound is looser than (51) and is in a more complicated form. Hence
obtaining a probabilistic bound based on Theorem 2 is indeed possible, but
is not straightforward. We don’t consider it in this paper because the error
bound is both looser and more complicated.

a probabilistic bound based on Theorem 2 (this is a mistake
that we had done in the conference paper [28]). However,
Theorem 3 does not require unit `2 norm columns, and we
can use it to obtain a probabilistic upper bound on ‖ŝ− s0‖2.

Note that the bound in Theorem 3 is based on the quantities
ηj(A) and γj(A) defined in (18) and (19), respectively. Hence
to obtain a probabilistic bound on the error ‖ŝ−s0‖2, we obtain
probabilistic upper bounds for these quantities.

For the random dictionary A defined above, for any division
of A into B and Bc as stated in the definition of ηj(A),
from the results of random matrix theory stated in the previous
subsection, we expect that σmin(B) and σmax(Bc) are close
to 1−

√
j/n and 1+

√
(m− j)/n, respectively. Hence, ηj(A)

and γj(A) are expected to be close to quantities

η[j] ,
1 +

√
m−j
n

1−
√

j
n

(53)

and

γ[j] ,

√
(m− j)

(
1 + (η[j])2

)
, (54)

respectively. More precisely, the results of the previous sub-
section imply that where m,n → ∞ while j/m converges
to a constant and j/n converges to a constant strictly smaller
than 1, then ηj(A) and γj(A) will converge a.s. to η[j] and
γ[j], respectively.

To measure the deviation of ηj(A) and γj(A) from the
above quantities (to larger values), let’s define the shorthands

ηr1r2 [j] ,
1 +

√
m−j
n + r1

1−
√

j
n − r2

, (55)

γr1r2 [j] ,

√
(m− j)

(
1 + (ηr1r2 [j])2

)
. (56)

However, note that the bound of Theorem 3 depends mainly
on the quantities γ̄`(A) and γ̄′`(A), not γj(A). In other words,
we need to maximize γ[j] (or γr1r2 [j]) over j = 1, 2, . . . , `.
The following lemma, whose proof has been left to appendix,
shows that the sequences defined above, i.e. ηr1r2 [j] and
γr1r2 [j] and hence η[j] and γ[j] (as the special case of ηr1r2 [j]
and γr1r2 [j] for r1 = r2 = 0), are all increasing with respect
to j. Therefore, it shows that the above maximum is obtained
for j = `.

Lemma 4. The sequence {γr1r2 [j]}, j = 1, . . . , `, where ` ≤
n − 1, is strictly increasing for all r1 ≥ 0 and 0 ≤ r2 <
1−

√
`/n. Moreover, ∀j : γr1r2 [j] >

√
m.

Remark 1. The above lemma shows that the sequences η[j]
and ηr1r2 [j] are also increasing, because the product of (1 +
η2
r1r2 [j]) and the decreasing (and positive) sequence {m− j}

has become an increasing sequence.
Remark 2. Note that for large dictionaries (more precisely
where m,n → ∞ while j/m converges to a constant and
j/n converges to a constant strictly smaller than 1), γj(A)
converges a.s. to γ[j]. The above lemma states hence that
for large dictionaries the sequence γj(A) is almost surely
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increasing and hence a.s. γ̄j(A) = γj(A) = γ[j]. Moreover,
the second part of the above lemma states that a.s. γ̄′j(A) =
γ̄j(A) = γj(A) = γ[j].
Remark 3. In the Remark after Definition 3 in Section IV-A,
we had provided an example of a matrix A for which the
sequences ηj(A) and γj(A) were not increasing. The matrix
A of that example was of very small size, and the above
remark states that where the size of the dictionary grows
finding such examples becomes more and more difficult.

C. Probabilistic bounds on ‖ŝ− s0‖2
In this section, we state two theorems as probabilistic upper

bounds on the error, where the dictionary A is random with
iid Gaussian entries. The first theorem states a bound for
dictionaries of any size, whereas the second theorem considers
the case of large dictionaries.

Theorem 6. Let A be an n × m, m > n, random matrix
with iid and zero-mean Gaussian entries. Let ` be an integer
in the range 1 ≤ ` ≤ n − 1. Suppose that s0 is a solution
of As = x for which ‖s0‖0 ≤ `/2. Let ŝ be a solution of
As = x, and define αŝ,` , h(b`/2c + 1, ŝ). Then for all
r1 > 0 and 0 < r2 < 1−

√
`/n ,

P
{
‖ŝ− s0‖2 > (γr1r2 [`])αŝ,`

}
<[(

m

1

)
+
(
m

2

)
+ · · ·+

(
m

`

)](
e−nr

2
1/2 + e−nr

2
2/2
)
.

(57)

Remark 1. When A is random as in Theorem 6, it satisfies the
URP with probability 1, and hence by the uniqueness theorem,
any solution with ‖s0‖0 ≤ n

2 would be unique. Suppose,
however, that p , ‖s0‖0 < n

2 (not p ≤ n
2 ) and set ` = 2p.

Then ` ≤ n− 1 and hence from (57),

P
{
‖ŝ− s0‖2 > (γr1r2 [2p])αŝ,2p

}
<[(

m

1

)
+
(
m

2

)
+ · · ·+

(
m

2p

)](
e−nr

2
1/2 + e−nr

2
2/2
)
.

(58)

Remark 2: Note that when n grows, (58) does not necessarily
provide a good upper bound on ‖ŝ − s0‖2, in the sense that
as n increases, the probability that ‖ŝ−s0‖0 > γr1r2 [2p]αŝ,2p

does not necessarily decreases exponentially to zero. The point
is that the maximum value for r2 in Theorem 6 is 1−

√
`/n,

hence, where n increases, although the term n in e−nr
2
2/2

increases, r2 has to be smaller, and hence e−nr
2
2/2 does not

necessarily decrease. In fact, the degree of sparsity of s0 plays
an important role here. For example, let choose r1 = r2, and
suppose that 2p is equal to its maximum theoretical value
(which is n − 1, because we had already excluded p = n/2
that turns γr1r2 [2p] to infinity). We expect heuristically that for

large n’s, η2p(A) is close to η[2p] = (1−
√

m−2p
n )/(1−

√
2p
n ).

Taking into account the form of the denominator of ηr1r2 [2p],
for having γr1r2 [2p] not too far from γ[2p], let choose the
value of r2 as a small fraction of 1 −

√
2p/n, that is, let

r2 = c · (1−
√

2p/n), where 0 < c < 1. Then from (58),

P
{
‖ŝ−s0‖2 > (γr1r2 [2p])αŝ,2p

}
< Ae−c

2n(1−
√

2p
n )2/2 (59)

where A , 2
∑2p
j=1

(
m
j

)
. Consider now the exponent c2n(1−√

2p/n )2/2. If 2p = n − 1, this exponent is in fact a
decreasing function of n, and converges to 0 where n→∞.
Consequently, by increasing n, not only e−nr

2
2/2 does not

decrease, but also it increases to 1.
Another way to see the above problem is to note that, as

stated after (53), for large matrices η2p(A) converges to η[2p]
only if 2p/n converges to a value ‘strictly’ smaller than 1.
This is also seen from the discussion at the end of the first
paragraph of Section VI-A.

On the other hand, if p can be at most equal to a
fraction of n/2, say p = u · (n/2), where u < 1, then
e−nr

2
2/2 = exp

{
−c2n(1−

√
u )2/2

}
, which exponentially

decreases where n → ∞. The right hand side of (58) does
not yet necessarily decrease, however, due to the combinatorial
part. We can, however, state the following theorem, for smaller
u’s (as will be discussed after the theorem):

Theorem 7. Let A be an n×m, m > n, random matrix with
iid zero-mean Gaussian entries. Suppose that s0 is a solution
of As = x with sparsity p, i.e., p , ‖s0‖0. Let ŝ be a solution
of As = x, and define αŝ,2p , h(p+ 1, ŝ). If n→∞, while
2p/n → u < 1 and m/2p → v, then for every r1 > 0 and
0 < r2 < 1−

√
u, with an exponentially increasing probability

(with respect to n) we have

‖ŝ− s0‖2 ≤ γr1r2 [2p] · αŝ,2p , (60)

provided that

u(1 + ln v) < min(r21, r
2
2)/2. (61)

Remark. Condition (61) puts a limit on the maximum of the
sparsity (u) for which the above theorem is applicable. To see
this, let fix the underdeterminedness factor β , m/n > 1.
Then v = β/u, and hence (61) and r2 < 1−

√
u imply that

u(1 + ln
β

u
) < (1−

√
u )2/2. (62)

It is easy7 to see that for each β ≥ 1, the function u(1 +
ln(β/u))/(1 −

√
u )2 is strictly increasing with respect to u

over u ∈ (0, 1). Hence, if (62) holds for a u = u0, it holds
also for every u ≤ u0. Therefore, (62) puts a limit on the
maximum of the sparsity for which (60) holds.

Moreover, if, as done in (59), we choose r1 = r2 = c (1−√
u ), where 0 < c < 1, then (61) states that

u(1 + ln
β

u
) < c2(1−

√
u )2/2. (63)

Similarly, this equation puts a limit on the maximum of
sparsity, and since u(1 + ln(β/u))/(1 −

√
u )2 is increasing,

for smaller values of c, this maximum on sparsity is more
restricted.

By replacing the inequality in (63) with equality and solving
it with respect to u, for each β we obtain the supremum of u
for which Theorem 7 is applicable. Figure 3 shows the plot

7This is because direct calculation shows that the derivative of u(1 +
ln(β/u))/(1−

√
u )2 with respect to u is equal to (

√
u+ ln(β/u))/(1−√

u )3, which is strictly positive for β ≥ 1 and 0 < u < 1.
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Fig. 3. The supremum of the values of sparsity (u , 2p/n) versus β , m/n
for which Theorem 7 holds.

of this supremum versus β for different values of c. Note that
the value c = 1 cannot be used, because it turns γr1r2 [2p]
and hence the right hand side of (60) to infinity. It has been
plotted, however, because it indicates the supremum value of
sparsity for which one can choose a value for r2 such that
Theorem 7 is applicable8. It is seen that the range of sparsity
for which we can use this theorem is highly more restricted
compared to the uniqueness condition u ≤ 1.

D. Proofs

We need first the following proposition that states proba-
bilistic upper bounds on quantities ηr1r2 [j] and γr1r2 [j].

Proposition 6. Let A be an n ×m, m > n, random matrix
with iid and zero-mean Gaussian entries. Then for each j =
1, . . . , n− 1 and for all r1 > 0 and 0 < r2 < 1−

√
j/n we

have

P
{
ηj(A) > ηr1r2 [j]

}
≤
(
m

j

)(
e−nr

2
1/2 + e−nr

2
2/2
)
, (64)

and hence

P
{
γj(A) > γr1r2 [j]

}
≤
(
m

j

)(
e−nr

2
1/2 + e−nr

2
2/2
)
. (65)

Remark. Any upper bound on
(
m
j

)
can be used to replace

this term in (65). For example [48, Sec. IV-A],(
m

j

)
≤ em·H(j/m) ≤ ej ln(m/j)+j , (66)

where ∀x ∈ (0, 1), H(x) , −x lnx− (1− x) ln(1− x).

Proof of Proposition 6: There is no assumption in the
lemma about the variance of the entries of A. However,
since multiplying each entry of A by a constant does not
change ηj(A) and γj(A), it can be assumed, without loss of
generality, that this variance is equal to 1

n . Let now B be a
submatrix of A obtained by taking j ‘fixed’ columns of A,

8One may note some kind of tradeoff here. Smaller c results in less
deviation of γr1r2 [2p] from γ[2p], and hence a better upper bound in (60),
but it decreases the sparsity for which Theorem 7 is applicable.

and define ηB , σmax(Bc)/σmin(B). Then, from Davidson
and Szarek inequalities, we have

P

{
σmax(Bc) > 1 +

√
m− j
n

+ r1

}
≤ e−nr

2
1/2, (67)

P

{
σmin(B) < 1−

√
j

n
− r2

}
≤ e−nr

2
2/2, (68)

and hence

P {ηB > ηr1r2 [j]} ≤ P

{
σmax(Bc) > 1 +

√
m− j
n

+ r1

}

+ P

{
σmin(B) < 1−

√
j

n
− r2

}
≤ e−nr

2
1/2 + e−nr

2
2/2. (69)

ηj(A) is the maximum of ηB on all
(
m
j

)
possible choices for

B. Therefore, using the union bound,

P {ηj(A) > ηr1r2 [j]} ≤ P

 ⋃
B∈Pj(A)

ηB > ηr1r2 [j]


≤
(
m

j

)(
e−nr

2
1/2 + e−nr

2
2/2
)
,

which completes the proof of (64). We have also (65), because
the events {ηj(A) > ηr1r2 [j]} and {γj(A) > γr1r2 [j]} are
identical (while 1−

√
j/n− r2 > 0).

Proof of Theorem 6: From (23), if γ̄′(A) ≤ γr1r2 [`] then
‖ŝ − s0‖2 ≤ (γr1r2 [`])αŝ,`. This is equivalent to say that if
‖ŝ− s0‖2 > (γr1r2 [`])αŝ,` then γ̄′(A) > γr1r2 [`]. Therefore

P
{
‖ŝ− s0‖2 > (γr1r2 [`])αŝ,`

}
≤ P {γ̄′(A) > γr1r2 [`]} .

(70)
By Lemma 4,

√
m < γr1r2 [`] and hence γ̄′(A) > γr1r2 [`]

is equivalent to max1≤j≤` γj(A) > γr1r2 [`]. Therefore, from
the union bound,

P {γ̄′(A) > γr1r2 [`]} ≤
∑̀
i=1

P
{
γj(A) > γr1r2 [`]

}
≤
∑̀
i=1

P
{
γj(A) > γr1r2 [j]

}
, (71)

where in the last inequality, Lemma 4 has been used. Now,
combining (70), (71) and (65) proves the theorem.

Proof of Theorem 7: Let r , min(r1, r2) and P ,
P
{
‖ŝ− s0‖2 > (γr1r2 [2p])αŝ,2p

}
. Then, from (58) we have

P < 2p
(
m

2p

)(
e−nr

2
1/2 + e−nr

2
2/2
)
< 4p

(
m

2p

)
e−nr

2/2.

(72)
Hence, from (66),

P < 4p · exp
{

2p ln
m

2p
+ 2p− nr2

2

}
= 4p · exp

{
−n
[
r2

2
− 2p

n

(
1 + ln

m

2p

)]}
·

(73)
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When n grows to infinity, the coefficient of −n in the exponent
converges to the constant r2/2−u(1+ln v), which is positive
by the assumption (61), and hence, P is upper bounded by an
exponentially decreasing function.

VII. CONCLUSION

In this paper, we studied upper bounds for the estimation
error ‖ŝ− s0‖2. We saw that such bounds can be constructed
only based on ŝ, and without knowing s0 (the existence
of a sparse s0 satisfying ‖s0‖0 < 1

2 spark(A) has been
assumed). We have also presented a tight upper bound for
this error. Besides being tight, this bound does not impose any
assumption on the normalization of the atoms of the dictionary,
which enabled us to study random dictionaries (which are used
e.g. in compressed sensing).

As a result, our bounds guaranty that whenever ŝ is only ap-
proximately (not exactly) sparse, it would be not too far from
s0, and the upper bound on their distance is determined by the
properties of the dictionary (A). This upper bound decreases
also when ŝ is sparse with a better approximation. In this point
of view, our bounds can be seen as a generalization of the
uniqueness theorem to the case ŝ is only approximately sparse.
Moreover, these bounds show that whenever ‖s0‖0 grows, to
obtain a predetermined guaranty on the maximum of ‖ŝ−s0‖2,
ŝ is needed to be sparse with a better approximation. This can
be seen as an explanation to the fact that the estimation quality
of sparse recovery algorithms degrades whenever ‖s0‖0 grows.

We also studied the noisy case, and we saw that constructing
a general upper bound for this case is not easy. Hence, we did
not study random dictionaries for this noisy case, which can
be a subject for future investigations.

VIII. APPENDIX

A. Proof of Lemma 2
We will need the following lemma:

Lemma 5. Let B be an n × p matrix, p ≥ n, with unit `2

norm columns. Then σmax(B) ≥
√
p/n ≥ 1.

Proof: The singular values of B are the square root of
eigenvalues of Cp×p , BTB. Moreover, since the columns
of B have unit Euclidean norms, the main diagonal elements
of C are all equal to 1. Therefore,

∑p
i=1 λi(C) = tr(B) = p,

where λi(C) denote the eigenvalues of C. On the other hand,
the rank of C is at most n, and hence there are at most n
nonzero λi’s. Therefore

p =
p∑
i=1

λi(C) ≤ nλmax(C)⇒ λmax(C) ≥ p

n
,

which completes the proof.
Proof of Lemma 2: From the definition (18), for j = 1,

A1 has only one column and hence σmin(A1) = 1 using
Lemma 3. Moreover, Ā1 is an n× (m− 1) matrix. We write

γ1(A) ≥
√
m⇔

√
(m− 1)

(
1 + σ2

max(Ā1)
)
≥
√
m

⇔ 1 + σ2
max(Ā1) ≥ m

m− 1
= 1 +

1
m− 1

⇔ σ2
max(Ā1) ≥ 1

m− 1
,

which holds by Lemma 5, because σ2
max(Ā1) ≥ 1 ≥ 1

m−1 .

B. Proof of Lemma 4

To prove that γr1r2 [j] is strictly increasing with respect to
j, we state the following lemma, in which, we first define a
function Γ(x), x ∈ R, such that γr1r2 [j]’s are scaled samples
of this function (more precisely γr1r2 [j] =

√
nΓ(j/n)) for

appropriate values of the parameters of the function. Then,
we show that Γ(x) is itself strictly increasing, and hence so
are its samples.

Lemma 6. Let p, a, b be real numbers with a ≥ 0, p ≥ b2 > 0.
Then the function Γ(·), defined below, is strictly increasing on
the interval [0, b2):

Γ(x) ,

√√√√(p− x)

[
1 +

(
a+
√
p− x

b−
√
x

)2
]
· (74)

Before going to the proof, note that γr1r2 [j] =
√
nΓ(j/n)

for p = m/n, a = 1 + r1 and b = 1− r2.

Proof of Lemma 6: We have to prove that g(x) ,
Γ2(x) is increasing on [0, b2), and hence we have to
prove that g′(x) > 0,∀x ∈ [0, b2). By defining h(x) ,
(
√
p− x )a+

√
p−x

b−
√
x

= a
√
p−x+(p−x)
b−
√
x

we have g(x) = (p−x)+
h2(x), and hence g′(x) = −1 + 2h(x)h′(x). Consequently,
we have to prove 2h(x)h′(x) > 1,∀x ∈ [0, b2). Direct
calculations show that 2h(x)h′(x) is equal to

(a+
√
p− x)

[
−(a+ 2

√
p− x)(b−

√
x) + p−x√

x
(a+

√
p− x)

]
(b−

√
x)3

,

and hence 2h(x)h′(x) > 1 is equivalent to

(p− x)(a+
√
p− x)2√

x
> (b−

√
x)3+

+ (a+
√
p− x)(a+ 2

√
p− x)(b−

√
x). (75)

To prove (75) we multiply both sides by
√
x/[(a +√

p− x)2(b−
√
x)] and write it as

p− x
b−
√
x
>
√
x

[(
b−
√
x

a+
√
p− x

)2

+ 1 +
√
p− x

a+
√
p− x

]
.

(76)
Note that from p ≥ b2 we have

p− x
b−
√
x
≥ b2 − x
b−
√
x

= b+
√
x, (77)

and hence to prove (76) it is sufficient to prove that

b+
√
x >
√
x

[(
b−
√
x

a+
√
p− x

)2

+ 1 +
√
p− x

a+
√
p− x

]
, (78)

which by multiplying both sides by (a+
√
p− x)2 is equivalent

to

b(a+
√
p− x)2−

√
x
[(
b−
√
x
)2 +

√
p− x (a+

√
p− x)

]
> 0.

(79)
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Fig. 4. A typical graph of Γ(x) defined in (74) and the values γr1r2 [j]
defined in (56). Note: Γj in the figure stands for γr1r2 [j] =

√
nΓ(j/n).

Doing some algebraic manipulations, the left hand side of the
above inequality is equal to

a2b+ab
√
p− x+a

√
p− x(b−

√
x)+(b−

√
x)(p−b

√
x), (80)

and hence (79) holds because the first 3 terms of the above
expression are nonnegative (note that a may be equal to zero),
and the last term is positive from b >

√
x and p > b

√
x

(because p ≥ b2 = b.b > b
√
x).

Proof of Lemma 4: Note that γr1r2 [j] =
√
nΓ(j/n) for

p = m/n, a = 1+r1 and b = 1−r2, where Γ(·) is as defined
in (74). Now, since p = m

n > 1 ≥ (1 − r2)2 = b2 > 0, the
conditions of Lemma 6 are satisfied, and hence that lemma
insures that γr1r2 [j] is strictly increasing.

To prove γr1r2 [j] >
√
m, we note that it is equivalent to

(m− 1)(1 + η2
r1r2 [j]) > m⇔ η2

r1r2 [j] >
1

m− 1
·

which holds because η2
r1r2 [j] > 1 and 1 ≥ 1

m−1 .
Figure 4 shows a typical graph of Γ(x) and γr1r2 [j] (denoted

by Γj in the figure).
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