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Abstract—Let x be a signal to be sparsely decomposed over
a redundant dictionary A, i.e. a sparse coefficient vector s
has to be found such that x = As. It is known that this
problem is inherently unstable against noise, and to overcome
this instability, the authors of [1] have proposed to use an
“approximate” decomposition, that is, a decomposition satisfying
|lx — As|| < ¢ rather than satisfying the exact equality x = As.
Then, they have shown that if there is a decomposition with
Isllo < (1 4+ M~')/2, where M denotes the coherence of the
dictionary, this decomposition would be stable against noise.
On the other hand, it is known that a sparse decomposition
with |[s|lo < 3spark(A) is unique. In other words, although a
decomposition with [|s|lo < 3spark(A) is unique, its stability
against noise has been proved only for highly more restrictive
decompositions satisfying ||s|o < (1 4+ M ~')/2, because usually
(1+M™")/2 < Sspark(A).

This limitation maybe had not been very important before,
because ||s||o < (1+ M ~')/2 is also the bound which guaranties
that the sparse decomposition can be found via minimizing the
¢! norm, a classic approach for sparse decomposition. However,
with the availability of new algorithms for sparse decomposition,
namely SLO and Robust-SL0, it would be important to know
whether or not unique sparse decompositions with (1+M ') /2 <
sllo < %spark(A) are stable. In this paper, we show that such
decompositions are indeed stable. In other words, we extend the
stability bound from ||s||o < (1+M ~')/2 to the whole uniqueness
range [[s|lo < 3spark(A). In summary, we show that all unique
sparse decompositions are stably recoverable. Moreover, we see
that sparser decompositions are ‘more stable’.

Index Terms—Sparse Signal Decomposition, Sparse recovery,
Compressed Sensing, Sparse Component Analysis (SCA), Over-
complete dictionaries.

I. INTRODUCTION

ET A be an n x m matrix with m > n, and consider the
Underdetermined System of Linear Equations (USLE)

As = x. Such a linear system has typically infinitely many
solutions, but let consider its sparsest solution, that is, a
solution sy which has as much as possible zero components.
This problem has recently attracted a lot of attention from
many different viewpoints. It is used, for example, in Com-
pressed Sensing (CS) [2], [3], [4], underdetermined Sparse
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Component Analysis (SCA) and source separation [5], [6], [7],
[8], atomic decomposition on overcomplete dictionaries [9],
[1], decoding real field codes [10], image deconvolution [11],
[12], image denoising [13], electromagnetic imaging and Di-
rection of Arrival (DOA) finding [14], etc.

In atomic decomposition viewpoint [15], the columns of A
are called ‘atoms’ and the matrix A is called the ‘dictionary’
over which the ‘signal’ x is to be decomposed. When the
dictionary is overcomplete (m > n), the representation is
not unique, but by the sparsest solution, we are looking for
the representation which uses as small as possible number of
atoms to represent the signal.

Sparse solutions of underdetermined linear systems would
not be useful, unless positive answers can be provided for the
following three questions:

1) Uniqueness: Is such a solution unique?

2) Practical algorithm: Is it practically possible to find
the sparsest solution of an USLE?

3) Stability against noise: Doesn’t a small amount of noise
result in a completely different sparse solution?

In this paper we study the third question, and we generalize
previously available results. To better explain the problem and
our contribution, we firstly do a brief review in Section II
on the available results about the above questions, and then
explain in subsection II-D what our contribution is. We state
then the main theorem in Section III. Finally, a generalized
result will be stated in Section IV.

II. PROBLEM STATEMENT

A. Uniqueness?

The uniqueness problem has been addressed in [14], [16],
[17], and it has been shown that if an underdetermined linear
system has a sparse enough solution, it would be its unique
sparsest solution. More precisely:

Theorem 1 (Uniqueness [16], [17]): Let spark(A) denote
the minimum number of columns of A that are linearly
dependent, and || - ||o denotes the (° norm of a vector (i.e.
the number of its non-zero components). Then if the USLE
As = x has a solution sq for which ||sollo < 3spark(A), it
is its unique sparsest solution.

A special case of this uniqueness theorem has been stated
n [14]: if A has the Unique Representation Property (URP),
that is, if all n x n submatrices of A are non-singular, then
spark(A) = n+1 and hence |[[so||o < 5 implies that sq is the
unique sparsest solution.
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B. Practical Algorithm?

Finding the sparsest solution of an USLE can be expressed
as:

(Po) :

where || - ||o stands for the ¢° norm of a vector. Solving
the above problem requires a combinatorial search and is
generally NP-hard. Then, many algorithms have been proposed
to indirectly solve the problem. One of the first and most
successful ideas is the idea of Basis Pursuit (BP) [9], which
is to replace the above problem by

(P1)

where ||s||1 > |si| is the ¢! norm of s. Note that the
problem P; is convex and can be easily solved by using
Linear Programming (LP) techniques. Moreover, it has been
shown that if the sparsest solution sg is highly sparse, then
the solution of P, is also the sparsest solution, i.e. it is also
the solution of F.

To express this property more precisely, let the columns
of A be normalized to have unit ¢2 (Euclidean) norm. Let
also define the ‘coherence’, M, of the dictionary A as the
maximum correlation between its atoms, that is:

Minimize ||s||p subjectto As=1x, (1)

Minimize ||s||; subjectto As=x, (2)

M £ max|aa|, 3)

where a;, i = 1, ..., m denote the columns of A. Then:

Theorem 2 (Equivalence of Py and Py [16], [17]): If Eife
USLE As = x has a solution so for which ||so|lo < YH—,
then it is the unique solution of both problems Py and P;.

In other words, if the sparsest solution satisfies [|sgllo <

-1, .
1“;4 , it can be found by solving the convex program P;.

Remark 1. Note that the bound on sparsity that guaranties
the equivalence of P and P, is highly more restrictive than the
bound which guaranties the uniqueness of the sparsest solu-
tion. For example, suppose that the dictionary A is constructed
by concatenating two orthonormal bases, A = [® , ¥ ], and
hence m = 2n. It can be easily shown [16] that in this case the
maximum possible value for M is 1/4/n (this maximum value
for M is obtained for example for concatenation of a Dirac and
a Fourier dictionary). Consider for example such a dictionary
A with m = 1000 and n = 500, which satisfies the URP and
has the maximum possible coherence M = ﬁ ~ 1/(22.36).
Then, by Theorem 1 a solution sy with [[sg||o < 250 is neces-
sarily the unique sparsest solution. However, from Theorem 2,
it is guaranteed that the sparsest solution can be found by P;
only where ||sgllo < (1 + 22.36)/2, that is ||sgllo < 11. In
other words, if there is a solution sg such that among its 1000
entries there are at most 250 non-zero entries, it would be
the unique sparsest solution, but we cannot necessarily find
it by solving P, unless among these 1000 entries, there are
at most 11 non-zero entries. Consequently, equivalence of P;
and P holds only for the case there exists a ‘very very’ sparse
solution.

Remark 2. Note also that if the unique sparsest solution
B —1
satisfies 28— < ||sg[lo < 3spark(A), the above theorem

does not state that it ‘cannot’ be found by solving P;; it simply
does not ‘guarantee’ that P; can recover it. In fact, from the
uniqueness Theorem 1, we know that if we find a solution
8o by using any method (e.g. Pj, or even simply by a magic
guess), and we see that it happens that ||8o|lo < §spark(A),
we will know that we have found the unique sparsest solution.

In addition to the methods based on ¢! norm minimization,
there are other ideas for finding the sparsest solution, for exam-
ple Matching Pursuit (MP) [15] and Smoothed £0 (SLO) [18].
The latter method (SLO), which has been designed in our
group, tries to directly solve the P, problem by replacing the
£° norm by a smooth approximation of it (and hence the name
‘smoothed’ £9). One of the motivations behind SLO is the fact
stated above: Since the equivalence of Fy and P; holds only
where there exist very very sparse solutions, it would probably
be better trying to solve P directly. Another motivation is the
speed: it has been shown [18] that SLO is highly faster than
solving P;.

C. Stability against noise?

Suppose that x; is a linear combination of a few atoms of
the dictionary, that is, xg = Asg, where sg is sparse. Now
consider a noisy measurement of xg, that is, x = xg + n,
where n denotes the noise, and ||n||z < e. The question of
‘stability’ [1] is then: Even for a very small ¢, is it guaranteed
that the sparse decomposition of x over the dictionary (prob-
lem Fp) is not too different from the sparse decomposition of
xo? The answer is unfortunately no, that is, the problem F
can be too sensitive to noise [19].

To overcome this problem, it has been proposed in [1] that
instead of solving Py or P; one considers solving their noise
aware variants:

Minimize [|s|lp st |x—As|a<d (@)

Minimize [|s||; st |x—Asl2<d ()

In other words, it has been proposed to do an “approximate”
decomposition, that is, a decomposition with ||x — As|| < ¢
instead of the exact decomposition x = As. These noise
aware variants have to be solved for a sufficiently large §,
that is, for § > & to guarantee that the true solution s
satisfies the constraints of the above optimization problems.
Then, in [1], the authors prove that both problems P, s and
Py s are stable against noise, that is, the estimation error is
at worst proportional to the noise level. More precisely, the
stability of Fp s is given by the following theorem:

Theorem 3 (Stability of Py s; theorem 2.1 of [1]): Let M
denote the coherence of the dictionary A. Suppose that for
the sparse representation of the noiseless signal xo = Asg
we have:

(6)
If 80,5 denotes the result of applying Py s on the noisy data x
with § > ¢, then:

e+46

80,6 —soll2 < .
805 =2oll2 = o)

)
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Note that (6) implies also that the term under the square
root in (7) is positive.

The authors of [1] also prove the stability of P; s for the
case |sollo < (1+M~1)/4.

A noise aware variant of SLO (called Robust-SLO), has
already been developed [20], which tries to solve directly P s
without passing through P s.

D. Our Contribution

As it was said in Section II-C, the stability of the problem
Py.s has only been shown for the case [|sollo < (1 + M ~1)/2.
This sparsity limit for stability is the same as the sparsity limit
for the equivalence of Py and P; as stated in Theorem 2.
However, as was stated in Remark 1 after Theorem 2, this
sparsity limit is highly more restrictive than the sparsity limit
for the uniqueness of the sparse solution. In other words,
current results state that although a sparse representation with
% < |Isollo < &spark(A) is unique, it is not guaranteed
that Py s can stably recover this representation in presence of
noise.

Maybe the lack of this guarantee had not been important
before, because, the classic idea for solving P, was solving
Py, and the sparsity limit for the equivalence of these two
solutions is the same as the sparsity limit for the stability of
Py,s. However, with new algorithms like SLO or Robust-SLO,
one can now (ry to solve I s directly and without relying on
Py 5. Hence it is now important to know whether or not sparse
representations with Z-M— < ||y |lg < Lspark(A) are stable.

In the next section, we will show that F s is stable for
the whole sparsity range that guarantees the uniqueness, that
is, Py is stable whenever |sollo < ispark(A). Moreover,
we will show that for smaller |[sy|o the problem is ‘more
stable’, that is, the more sparsity, the more stability. Finally,
we will show in Section IV that this stability not only holds for
Py s, but also holds for any estimation §g such that ||8o|o <
1spark(A) and ||x — A8l < 6.

III. THE MAIN THEOREM

To state the main theorems, we need first to define two
notations:
o Let g = q(A) = spark(A) — 1. Then, by definition, every
q columns of A are linearly independent, and there is at
least a set of ¢+ 1 columns which are linearly dependent
(in the literature, the quantity q is usually called ‘Kruskal
rank’ or ‘k-rank’ of the matrix A). It is also obvious that
q < n, in which, ¢ = n corresponds to the case A has
the URP.
o Let ar(njizl, 1 < j < ¢(A), denote the smallest singular
value among all of the submatrices of A formed by taking
J columns of A. Note that since every g columns of A are
linearly independent, we have ar(n]izl >0,V1 <j<gq(A).
Moreover, it is known [21, p. 419], [22, Lemma 3] that if
we add a new column to a full-rank tall matrix, its smallest
singular value decreases or remains the same (refer to [22] for
a simple direct proof). Therefore, o isa decreasing sequence
in j, that is:

min

0) 5 HG+D
Tnin 2 Trmin

>0, Vl<j<gqg-—-1 (®)

We are now ready to state the following theorem.

Theorem 4 (Stability of Py ;): Suppose that the noiseless
signal xo has a sparse representation xy = Asq satisfying
[sollo < 3spark(A). Let also x = Xo + n be a noisy
measurement of Xo and ||nl|la < e. If 80,5 denotes the result
of applying Py s on the noisy signal x with § > ¢, then:

I80.5 = solla < 5, ©)
min

where £ = 2||spl|o-

Remark 1. Theorem 4 shows that Py 5 is stable not only
for ||sollo < % but also for the whole uniqueness range
[sollo < 4spark(A). The stability is in the sense that the
estimation error increases at worst proportionally to the noise
level. Moreover, from (8), the upper bound on estimation error
decreases or remains the same as the sparsity increases (this is
because sparser so means smaller ||sg||o, which implies smaller
¢ and hence larger or the same ar(rﬁzl). In other words, sparser
solutions are ‘more stable’.

Remark 2. The main reason for stating Theorem 4 is to
provide a stability result for the case 1+M 1 < £ = 2||sg||o <
spark(A), because in this case, Theorem 3 provides no sta-
bility result. Moreover, note that for the case ¢/ < 1 + M -1
in which both bounds (7) and (9) are applicable, (9) provides
also a tighter bound than (7). This is implied from Lemma 2.2

of [1] which states that in this case Ur([ﬁn >/1—-M{—-1).

Proof of Theorem 4: Let define X0 5 = A8 5. We write:

X0 — %Xo,sll2 = |Ix —n — %o 5|2
= [[(x — A80,5) — 1|2
< [lx — A8gsll2 + [In|2
—_———
<é <e

<d+e¢ (10)

On the other hand:

X0 — 5(0,6 = A(So - 50,6) =Bv

Y

where v is a vector composed of non-zero entries of sg — 8¢ 5,
and B is a submatrix of A composed of the columns of A
corresponding to the non-zero entries of sg—§ 5. Since § > ¢,
so satisfies the constraint of the optimization problem F s, and
hence [|80.5/|o < |/Sollo. Therefore sy — §9 s has at most ¢ =
2||sollo < spark(A)) non-zero entries (note that ¢{ < spark(A)
means ¢ < ¢(A)). In other words, B has at most ¢ < ¢
columns, and hence (by having also in mind (8)):

¢

IBVI2 > oy [vIl2 (12)
Noting that ||v|j2 = ||so — 80,52, and combining the above

inequality with (11), we obtain:
%0 — %0612 > olinllso — 80,6112 (13)

Combining (10) and (13) gives:
o llso — Sosll2 < 6+ e (14)
which completes the proof. [ ]
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Remark 3. From (8) and ¢ = 2[[sollo < q(A), we may
replace J[(n]izl by its worst case to obtain the following looser
bound, which does not need knowing the value of ||so||o:

A 0+e
||SO,5 - SOHQ < o

min

15)

IV. A GENERALIZED STABILITY THEOREM

If we carefully re-examine the proof of Theorem 4, we
notice that the fact that [|8os|lo < [/sollo is not essential for
obtaining the looser bound (15). Hence, the bound (15) holds
not only for the sparse recovery methods based on solving
Poy.s, but also for any other estimation 8y s (obtained from
any sparse recovery algorithm or even simply from a magic
guess), provided that it satisfies [|So 5]l < %spark(A) and
lx — ASg 5]|2 < 6. In other words, not only P, s is stable, but
also any other method for ‘approximate’ sparse representation
is stable provided that it provides a sparse enough estimation.
More precisely:

Theorem 5 (Stability of approximate sparse representation):

Suppose that the noiseless signal xo has a sparse

representation xo = Asq satisfying |[sollo < 3spark(A).

Let also x = X9 + n be a noisy measurement of Xq

and ||n|2 < e If we have at hand an estimation §s

of the sparse representation coefficients which satisfies

[80,5/l0 < %spark(A) and ||x — ASgs||2 < 6, then:
80,6 — soll2 < %,

min

(16)

Proof: 1t is easily obtained by following the same steps
as the proof of Theorem 4: equations (10) and (11) still hold.

We then note that:
80,6 = sollo < [I80,sll0 + [Isollo < spark(A)  (17)

and hence [|80,s —so|lo < ¢(A). Consequently, instead of (12)
we write:

IBVl> > o) [V (18)
which in combination by (10) and (11) proves (16). [ |

Remark. Note that the condition § > € does not explicitly
appeared in Theorem 5, and is no more essential (while it was
essential in Theorem 4, because it was necessary to insure
that Py s gives an estimation satisfying ||30.s/lo0 < |[Isollos
which was essential in the proof). However, implicitly, the § in
Theorem 5 cannot be too small, because for a very small d, it is

possible that there exists no §g s satisfying ||x — A8 5|2 < 6.

V. CONCLUSION

Since minimizing ¢! norm has been one of the first and
most successful ideas for finding the sparsest solution of an
USLE, some theoretical aspects of the sparsest solution are
currently too much influenced by the ¢! minimization idea.
Currently, with the availability of the algorithms that try to
find the sparse solution by means of other approaches, e.g.
SLO and Robust-SLO, some of the properties of the sparsest
solution need to be revisited. In this paper, we studied the

stability of the sparsest solution, and we showed that it is
stable not only where ||solo < (1+M~1)/2, but also for the
whole uniqueness range |[sollo < 3spark(A). These results
prove the practical interest of designing ¢°-norm minimization
algorithms, since they can provide a good estimation from
noisy data, with the weakest condition of sparsity.
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