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Abstract

Graph learning (GL) is a tool for finding direct relationships between the
nodes of a network, and hence, inferring the graph topology from the data.
Recently, many GL algorithms have been proposed in the field of graph
signal processing, which are based on smoothness of the graph signals on
the learned graph. However, although it is possible for the input graph
signals to be contaminated by outliers, for example due to sensor failures or
temporary faulty information records, existing techniques are very vulnerable
to outliers. So, the goal is to infer a graph topology to be, as much as
possible, insensitive to this kind of data corruptions. To this aim, due to the
sparse nature of outlier data, we propose a new approach for robustifying
GL algorithms by incorporating L1-norm or squared L1-norm terms into the
objective function of smoothness based GL methods, yielding to a non-convex
minimization problem. A novel iterative minimization method is introduced
to solve the resulting non-convex problem. Moreover, the convergence of the
algorithm is established despite of its non-convex nature. In simulations, the
high performance of the proposed algorithm is demonstrated in presence of
a considerably large amount of outliers.

Keywords: Graph signal processing, graph learning, outlier compensation,
block coordinate descent, convergence analysis

1. Introduction

Graph signals are useful tools for representing data with complicated
structures such as brain, social, or sensor networks, to name a few. In the
case that the underlying graph of the data is known a priori, there exist
powerful tools in the field of graph signal processing (GSP) that can offer
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a good range of data analyzing and inferring techniques [1, 2, 3]. However,
the number of applications in which the underlying graphs of the data are
available may be limited, emphasizing the necessity of learning them from
the data. This strengthens the motivation of proposing many GSP-based
graph learning (GL) algorithms in recent years, trying to extract the graph
from the data [4, 5].

Before GSP point of view, GL techniques are mainly based on proba-
bilistic models. In these models, the joint probability distribution of the
data is considered to be determined by the graph topology [6]. An impor-
tant model is Gaussian Markov random field (GMRF), which uses inverse
covariance matrix (i.e. precision matrix) to represent the graph. For exam-
ples, the works [7, 8, 9] make a multivariate Gaussian assumption for the
data distribution, and their goal is to find the precision matrix by GMRF
estimation. Afterwards, some prior information, such as sparsity, is intro-
duced in GL methods, that are based on precision matrix estimation [7, 8].
Particularly, one of the most renowned method is the graphical LASSO al-
gorithm proposed in [8]. However, in these works, the precision matrix is
only constrained to be sparse. Thus, the resulting graph may have negative
edge weights or self-loops, which may not be very well-interpretable in some
applications [4]. So to prevent the mentioned problems, the precision matrix
is restricted to have Laplacian matrix structure in [9].

Introducing the GSP field helps the proposed GL methods to offer more
interpretable graphs. In [10], data is modeled by factor analysis with a prior
distribution that forces the signal to be smooth on the graph. Then, data
smoothness over the underlying graph has been used in Maximum Likelihood
Estimator (MLE) to infer the graph structure. It leads to a similar opti-
mization problem as in the precision matrix estimation but with constraints
that guarantee the resulting matrix to have the structure of a Laplacian
matrix [10]. In [11], various regularization terms are provided in order to
extract more accurate graphs. More computationally-efficient optimization
techniques are also derived for each of the cases. Other previous works in-
clude GL by structural dictionary learning [12, 13], using pre-defined spectral
templates to learn the eigenvalues of the Laplacian matrix [14], using non-
convex regularization terms [15], and graph learning problem in the presence
of incomplete data [16]. For learning multiple graphs from the data, the au-
thors of [17] proposed graph Laplacian mixture model (GLMM) algorithm.
K-graphs [18] is also another multiple GL algorithm inspired by K-means.
Unlike GLMM and K-graphs, which assume that the graph signals are in-
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dependent in different time stamps, there are dynamic GL algorithms that
consider the time dependency of signals. In [19], a graphical LASSO based
algorithm, called TICC, is proposed that partitions the whole time span into
multiple segments, and assigns for each segment a constant precision matrix.
Similar to TICC [19], a dynamic GL algorithm, called dynamic K-graphs,
is proposed in [20], but since it works with Laplacian matrices, it can offer
more interpretable graph structures. Recently, the authors of the [21] use
non-convex penalties for graph topology changes to improve the dynamic
graph learning performance. In [22], a time-varying framework is proposed
for graph learning models to reach the optimal time-varying solution.

However, for the graph learning task, compensating the effect of outlier
data is not considered in the previous graph learning algorithms in the GSP
field [2]. Maybe the most related work is [23], where the authors propose a
robust graph learning model for clustering and semisupervised classification
tasks, while our main focus is on the graph learning task. Their method can
be viewed as an extension of graph regularized robust principal component
analysis (RPCA) method [24] where the graph is constructed automatically
by the algorithm. The outlier data can be caused by the reasons such as a
sensor failure in sensor networks, an intentionally unfair score for a movie by
a user in the user/movie rating data, and salt-and-pepper-like noise in a set
of digital image patches. The nature of outlier noise is different from that
of white additive noise. For example, there are small deviations from the
true values in the sensor readings due to the thermal noise or manufacturing
inaccuracies, while sensor failures are rare, but capable of causing larger error
values. In other words, the outlier data has a sparse nature, in contrast to
additive white noise. On the other hand, as will be shown in the simulations
of this paper, existing GL methods are vulnerable to outlier data. Hence, it
is important to robustify the GL algorithms to outlier data.

In this paper, an outlier-robust GL algorithm is proposed with the ca-
pability of compensating outliers in the data. More precisely, the goal is to
jointly learn the graph topology of the data and removing outliers from the
data. To this end, smoothness-based GL approaches are reconsidered in order
to provide a tool for learning graphs in the presence of outlier data. Utiliz-
ing the sparsity property of the outlier data, `1-norm or squared `1-norm is
added to the objective function. Note that in compressed sensing literature,
adopting family of `1-norms has been a common way of dealing with outliers
in the data [25, 26, 27]. However, in graph learning, this modification of the
problem results in a non-convex minimization. So, another contribution of
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this paper is to introduce a novel block coordinate descent (BCD) method
that not only solves the resulting non-convex problem with less computa-
tional complexity, but also has a more straightforward convergence analysis.
In fact, we will show that the proposed BCD iterative method converges
to a stationary point. Moreover, the results of the numerical simulations
show that our algorithm, in the presence of outlier data, has a better GL
accuracy in comparison to an state-of-the-art uncompensated GL algorithm.
The sensitivity of the algorithm to the input data scale is also studied in the
simulations, and it is demonstrated that the squared `1-norm version of the
algorithm is appreciably less sensitive to the scale of the input data.

The rest of the paper is organized as follows. In Section 2, some required
basic knowledge on GSP and proximal operators are very briefly reviewed.
Then, our outlier-robust GL algorithm is proposed in Section 3, and its con-
vergence analysis is also studied. Finally, Section 4 is devoted to simulation
results.

2. Background

In this section, a brief review on GSP basics and GL algorithms that
are based on the smoothness assumption is provided. Additionally, a basic
description of the proximal operator is presented, which is required in our
work.

2.1. Graph Signal Processing

Let G(V , E ,W) represent an undirected, positive weighted graph, where
V and E ∈ V × V are the sets of nodes and edges, respectively, with N
number of nodes (|V| = N). The weighted adjacency matrix W ∈ RN×N is
symmetric with zero values on its diagonal entries. The (i, j)-th entry of W,
denoted by wij, is the edge weight between the nodes i and j. If there is no
edge between the nodes i and j, then wij = wji = 0. The diagonal matrix
D is the degree matrix containing the degree of the i-th node in its (i, i)-th
entry, i.e. dii =

∑N
j=1wij. Another important matrix is graph Laplacian

matrix defined as L , D −W [6], and the set of valid graph Laplacian
matrices is

L =
{
L ∈ RN×N : L = LT , lij ≤ 0 (∀i 6= j),L.1 = 0

}
, (1)

where 0, 1, and (.)T denote all-zeros vector, all-one vector, and matrix trans-
portation, respectively.
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A graph signal x ∈ RN×1 is a vector whose entries assign real values to
the vertices of the graph [2, 1]. An important expression in GSP field is the
graph Laplacian quadratic form [1] defined as

xTLx =
1

2

∑
i,j

wij(xi − xj)2, (2)

where it can be considered as a smoothness measurement criterion for a graph
signal over the graph. A smaller value of quadratic form indicates that the
graph signal x has small deviations along the connected nodes, specially the
strongly connected ones. Equation (3) also shows that the graph Laplacian
matrix is positive semi-definite (PSD) since the edge weights are all non-
negative.

Being symmetric and PSD, an eigenvalue decomposition can be performed
on the Laplacian matrix, L = VΛVT , with orthonormal set of eigenvectors
V, and the diagonal matrix Λ containing the corresponding non-negative
eigenvalues λ1 ≤ . . . ≤ λN , as its diagonal entries. The columns of V are
interpreted as Graph Fourier Transform (GFT) basis, where λn’s are the
coresponding frequencies [1]. The smaller λn results in smoother vn over the
graph. Therefore, the GFT of a graph signal x can be obtained as x̂ = VTx,
and the inverse GFT as x = Vx̂.

2.2. Smoothness-based GL approach

Let x1, . . . ,xM be a set of graph signals. In smoothness-based GL al-
gorithms [10, 11, 18, 4], the idea is to learn the graph by minimizing the
Laplacian quadratic function (2) for all these signals,

trace(XTLX) =
1

2

M∑
m=1

∑
i,j

wij(xim − xjm)2, (3)

where X = [x1, . . . ,xM ] ∈ RN×M is the matrix consisting of all the graph
signals. However, minimizing (3) with respect to the Laplacian matrix L (or
equivalently wij’s) results in the trivial solution of all zeros for edge weights.
This can be avoided by adding regularization terms to the objective function,

minimize
L∈L

trace(XTLX) + f(L), (4)

where f(L) contains the regularization terms and L is the set of all valid
Laplacian matrices.
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2.3. Proximal Operator

Let f : Rm → R ∪ {∞} be a proper, semi-continuous, convex function
[28] with a non-empty domain. The proximal operator of f at point x ∈ Rm

with the parameter λ is defined as [29, 30, 31]

proxλf (x) = argmin
v

1

2λ
‖x− v‖2 + f(v). (5)

The definition depicts that proxλf (x) tries to find a trade-off between mini-
mizing the function and being close to the point x. The resulting point tends
to be close to the minimizer of the function f for a large λ, and close to x
for a small λ [31].

There exist lots of functions that have closed-form proximal operators
[31]. Vector norms are examples of such functions. In this paper, the proxi-
mal operator of `1- norm, i.e. f(x) = ‖x‖1 will be used, which can be easily
obtained as [31]

(
proxλ‖·‖1(x)

)
i

=


xi − λ xi > λ

0 |xi| ≤ λ

xi + λ xi < −λ
, (6)

for i = 1, . . . ,m. This proximal operator is known as soft thresholding [31],
which is denoted by proxλ‖·‖1(x) = soft(x, λ).

3. The Proposed Outlier-robust GL Algorithm

In this section, our proposed GL algorithm, which is robust to outlier
data, is presented. The model of graph signals is first modified in order to
address the outliers in the data. The problem is then described as a non-
convex optimization problem, which is solved be alternating minimization.
At the last subsection, the convergence of our iterative method is established.

3.1. Incorporating robustness against outliers into uncompensated GL ap-
proach

The minimization problem (4) may not be appropriate in the presence of
outlier values in the input data. Thus, for removing the outlier, the following
graph signal model is utilized

ym = xm + ôm, (7)
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where xm is the uncontaminated graph signal, ôm is the vector that contains
the unknown outlier values, and ym is the graph signal contaminated by the
outliers. Given y1, . . . ,yM , a similar idea as in [32] is adopted to make the
GL algorithm robust to outliers, that is, the GL problem is reformulated as
the following optimization problem:

{L∗,O∗} = argmin
L∈L,O

1

2

M∑
m=1

(ym − om)TL(ym − om) +
1

2
f(L) + g(O), (8)

where om’s and L are the optimization variables, O , [o1, . . . ,oM ], o∗m is
the optimal value of om, which is the estimation of the true outlier vector
ôm, O∗ , [o∗1, . . . ,o

∗
M ], and L∗ is the optimal value of L. The first term in

(8) enforces the graph signal ym − om, which is an estimation of xm, to be
smooth over the graph L, for 1 ≤ m ≤M . Similar to (4), the function f(L)
is for regularization of the resulting Laplacian matrix f(L). The function
g(O) in the last term is to promote the sparsity of the outlier matrix. The
above problem can be rewritten in matrix form as

{L∗,O∗} = argmin
L∈L,O

1

2
trace

(
(Y −O)TL(Y −O)

)
+

1

2
f(L) + g(O). (9)

Different functions may be utilized for g(·), such as `1-norm (‖O‖1),
squared `1-norm (1

2
‖O‖21), sum of `2-norms (

∑M
m=1‖om‖2), and sum of squared

`1-norm (1
2

∑M
m=1‖om‖21). In this paper, `1-norm and squared `1-norm are

used. As it can be found in the simulations, squared `1-norm has a better
insensitivity to the scale of the input data.

To solve the GL problem with outlier, a BCD (also known as alternating
minimization) [33] approach is adopted. The first idea coming into mind
is to alternatively minimize the objective function with respect to (w.r.t.)
the graph Laplacian matrix L and the outlier matrix O. Minimizing (9)
w.r.t. the Laplacian matrix L is equivalent to the uncompensated GL in
(4) with X = Y − O. Next, minimizing w.r.t. O results in the following
minimization problem

minimize
O

1

2
trace

(
(Y −O)TL(Y −O)

)
+ g(O), (10)

where finding a closed form solution for it is challenging. However, efficient
numerical minimization methods can be used for solving the convex program
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in (10), such as alternating direction method of multipliers (ADMM) [34],
proximal gradient descent [31, 30], or CVX package [35]. Proximal gradient
descent method [31, 30] is a good option for the problem of (10) since `1-
norm and squared `1-norm functions used for g(·) have closed form proximal
operators. Additionally, this method has a well-studied convergence analysis
[36, 30], and it is faster than the general-purpose tools like CVX.

Proximal gradient is an iterative method, where in each iteration, a
gradient step is taken on the smooth part of the objective function (i.e.
1
2

trace((Y − O)TL(Y − O)) in (10)), and then, the proximal operator of
the non-smooth part (i.e. g(O) in (10)) is calculated at the resulting point.
Particularly, outlier matrix in {k + 1}-th iteration, O{k+1}, is obtained from
the k-th iteration, O{k}, as follows

O{k+1} = proxg
(
O{k} − ηk L

(
Y −O{k}

))
, (11)

where ηk is the step size and L(Y−O{k}) is the gradient of the smooth part in
(10) [37]. Here, the step size plays an important role in the convergence of the
iterative algorithm. Specially, it can be shown that the method converges
for a fixed step size ηk = η, when L(Y − O) is Lipschitz continuous with
constant L and 0 < η ≤ 1/L [31, 30]. Assuming λmax to be the greatest
eigenvalue of the Laplacian matrix L, any L ≥ λmax is a Lipschitz constant
for L(Y −O) [31].

The outlier-robust GL algorithm based on the above coordinate descent
approach is summarized in Algorithm 1.

However, the focus of this paper is not Algorithm 1. The reasons are:
Firstly, the convergence analysis of Algorithm 1 is more tricky than the con-
vergence of the upcoming proposed method. For example, since the Laplacian
matrix is not positive definite there is no guarantee that one may always find
a unique solution for O in problem (10). Secondly, there exists no closed form
solution for problem (10). Moreover, it requires another iterative algorithm,
resulting in an inner loop nested inside the main outer loop. Thus, it can
make the main algorithm to be potentially computationally-expensive and
time-demanding. Another issue is the introduction of the gradient descent
step size parameter η, suggesting the need for being tuned.

To avoid the above mentioned issues, one of the contributions of this
paper, another BCD approach for solving (8) is introduced. In this method,
instead of minimizing the whole outlier matrix O as in Algorithm 1, each row
of the outlier matrix is separately minimized in each step of the alternating
minimization algorithm. More precisely, (9) is firstly rewritten as
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Algorithm 1 Outlier-robust GL algorithm based on proximal gradient
method
Input: Graph signal matrix Y ∈ RN×M , outlier regularization parameter µ,

and the step size of the inner proximal gradient descent method η.
Output: graph Laplacian matrix L∗ and outlier matrix O∗ ∈ RN×M

1: Initialize outlier matrix with all-zero matrix: O = 0N×M .
2: repeat
3: Update graph Laplacian matrix L using uncompensated GL in (4).
4: repeat
5: Update O using (11).
6: until convergence
7: until convergence
8: L∗ = L and O∗ = O

{L∗,O∗} = argmin
L∈L,{o[n]}Nn=1

1

2
trace

(
(Y−O)TL(Y−O)

)
+

1

2
f(L)+g(O), (12)

where the row-vector o[n] ∈ R1×M is the n-th row of the matrix O, i.e.
O = [oT[1], . . . ,o

T
[N ]]

T . Then, in iterations of the BCD-based algorithm for

solving (12), the blocks L, o[1], . . . , and o[N ] are updated cyclically. Taking
only the n-th row of the outlier matrix as the update variable and fixing the
rest results in the convex optimization problem

minimize
o∈R1×M

1

2
trace

([
y[n] − o

Y[\n] −O[\n]

]T
·
[
lnn lTn
ln Lnn

]
·
[

y[n] − o
Y[\n] −O[\n]

])
+ g(O),

(13)
where y[n] ∈ R1×M is the n-th row of Y, the matrix Lnn ∈ R(N−1)×(N−1)

is the submatrix of Laplacian matrix formed by omitting the n-th row and
the n-th column of L, the scalar lnn is the n-th diagonal entry of L, the
vector ln ∈ R(N−1)×1 contains the entries of the n-th column of L except the
n-th one, and the matrices Y[\n] ∈ R(N−1)×M and O[\n] ∈ R(N−1)×M are the
corrupted graph signal matrix and the outlier matrix, respectively, with their
n-th rows being omitted.

The objective function in subproblem (13) can be rewritten w.r.t. o[n] in
the following compact form

oT[n] = argmin
o∈RM

1

2
‖o− bT[n]‖22 + gn(o), (14)
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where b[n] , y[n] −
lTn (Y[\n]−O[\n])

lnn
, and gn(o) = µ′‖o‖1 for the `1-norm, or

gn(o) = µ′

2
(‖o‖1 + ‖O[\n]‖1)2 for the squared `1-norm cases, with µ′ = µ

lnn
.

Solving subproblem (14) is equivalent to finding the proximal mapping of
the function gn(o) at point bT[n]. Let ŏ = proxgn(o) be the proximal mapping

of the function gn(·) at point o. For the `1-norm case, i.e. for gn(o) = µ′‖o‖1,
according to Section 2, the proximal operator is ŏ = soft(o, µ′), which is the
soft-thresholding of the vector o with threshold µ′ [31]. However, finding the
proximal mapping for the squared `1-norm case, i.e. for gn(o) = µ′

2
(‖o‖1+c)2,

is not as straightforward as the `1-norm case. The proximal operator of the
squared `1-norm function without constant c (i.e. µ′

2
‖o‖21) can be obtained

by Algorithm 4 of [38]. Adopting the same idea, it is possible to obtain a
closed-form expression for the proximal operator of gn(o) = µ′

2
(‖o‖1 + c)2:

Theorem 1. The proximal operator of the function g(o) = µ′

2
(‖o‖1 + c)2 at

point x ∈ RM is given by an expression presented as Algorithm 2.

Proof. Refer to Appendix A.

Remark. Note that Algorithm 2 is not iterative, and it provides a closed-
form for the proximal operator proxg(x), which is unique and exact.

The final iterative algorithm for minimizing the main objective function
(12) is given in Algorithm 3. Each iteration of the algorithm consists of N+1
steps. In each step, the graph Laplacian matrix, L, or one of the N rows of
the outlier matrix (o[n]) are updated. The updates are performed iteratively
until the algorithm converges.

3.2. Convergence Analysis

Algorithm 3 is a BCD method, and it tries to solve the non-differentiable
non-convex optimization problem (8) for learning the graph in the presence
of outliers. In general, analyzing the convergence of the BCD method for
non-convex problems may not be very straightforward. A broad class of
non-convex problems have the following objective function form,

f(u1, . . . ,uQ) = f0(u1, . . . ,uQ) +

Q∑
i=1

fi(ui), (15)

where u1, . . . ,uQ are the block coordinates. In this form, f0(·) is the smooth
differential part of f(·), and fi(·)’s contain the non-differentiable parts. Con-
straints can also be incorporated into (15) by indicator functions. For ex-
ample, the constraint L ∈ L can be taken into account using the indicator
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Algorithm 2 Calculating the proximal operator of g(o) = µ′

2
(‖o‖1 + c)2 at

point x ∈ RM

Input: Vector x ∈ RM , constant c, and parameter µ′.
1. Set ūm = |xm| − µ′c for each m = 1, . . . ,M .
2. Sort ūm’s as ū(1) ≥ . . . ≥ ū(M).
3. if ū(1) > 0 then

4. ρ = max
{

1 ≤ ρ′ ≤M |ū(ρ′) > µ′

1+µ′ ρ′

∑ρ′

m=1 ū(m)

}
5. Compute x̆m = sign(xm) . soft(ūm, τ) for m = 1, . . . ,M , where τ =

µ′

1+µ′ ρ

∑ρ
m=1 ū(m).

6. else
7. x̆m = 0 for m = 1, . . . ,M .
8. end if

Output: Vector x̆, where its m-th element is x̆m.

function ιL(L), where

ιL(L) =

{
0, L ∈ L
+∞, L /∈ L

. (16)

For Algorithm 1, there are two block coordinates (Q = 2), i.e. one for the
graph Laplacian u1 = vec(L) and one for the outlier matrix u2 = vec(O),
where vec(·) indicates the vectorization symbol. In this case, f0(u1,u2) =
1
2

trace
(
(Y −O)TL(Y −O)

)
, f1(u1) = 1

2
f(L) + ιL(L), and f2(u2) = g(O).

On the other hand, for Algorithm 3, the objective function of (12) can
be written in form of (15) for g(O) = µ‖O‖1, but not for g(O) = µ

2
‖O‖21.

Particularly, there are Q = N + 1 blocks, one for u1 = vec(L) and N for
un+1 = oT[n], for 1 ≤ n ≤ N . For g(O) = µ‖O‖1:

f0(u1, . . . ,uN+1) =
1

2
trace

(
(Y −O)TL(Y −O)

)
, (17)

f1(u1) =
1

2
f(L) + ιL(L), (18)

fn+1(un+1) = µ‖o[n]‖1, for 1 ≤ n ≤ N. (19)

However, it should be noted that the objective function of (12) for g(O) =
µ
2
‖O‖21 cannot be written in the form of (15), since the term g(O) = µ

2

(∑N
n=1‖o[n]‖1

)2
is not separable with respect to o[n]’s.
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The seminal work of Tseng [39] studies the convergence analysis of BCD
for non-convex problems with some specific conditions, which are also ap-
plicable to the problems of this paper. In this section, the convergence of
Algorithm 3 is studied with the help of the results in [39]1. For the sake of
clarity, Q = N + 1 blocks at the k-th iteration of the algorithm are gathered

in an unknown vector variable u{k} = vec
(
{L{k},o{k}[1] ,o

{k}
[2] , . . . ,o

{k}
[N ]}

)
.

For g(O) = µ‖O‖1, the objective function (denoted by h1(·)) is

h1(L, {o[n]}Nn=1) =
1

2
trace

(
(Y −O)TL(Y −O)

)
+

1

2
f(L) + ιL(L) + µ

N∑
n=1

‖o[n]‖1.
(20)

Lemma 1. The objective function in (20) is regular (as defined in [39]), that
is, any coordinate-wise minimum point of function h1(·) is also a stationary
point of h1(·). Here, the definition of a stationary point is, according to [39],
a point that moving away from it in any feasible direction results in increasing
of the objective function for a sufficiently small neighborhood.

Proof. According to Lemma 3.1. of [39], if the objective function f(·) is in
the separable form of (15), and f0(·) has an open domain and is Gâteaux-
differentiable [40] on its domain, then f(·) is regular.

For (20), the function f0(·) defined in (17) has an open domain. Moreover,
the following operator exists for f0(·)

df0(L,O; L′,O′) , lim
t→0

f0(L + tL′,O + tO′)− f0(L,O)

t

=
1

2
trace

(
(Y −O)TL′(Y −O)

)
− trace

(
O′

T
L(Y −O)

)
,

(21)

and is linear with respect to L′ and O′, for any L ∈ L, O, L′ ∈ L, and O′.
Thus, f0(·) is Gâteaux-differentiable on its domain, and consequently, f(·) is
regular.

1The convergence analysis of Algorithm 1 would be tricky because the conditions of
the theorems of [39] are not satisfied for the minimization problem (9). Thus, it remains
as a question for further research.
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Algorithm 3 Outlier-robust GL algorithm

Input: Graph signal matrix Y ∈ RN×M and outlier regularization parameter
µ.

Output: graph Laplacian matrix L∗ and outlier matrix O∗ ∈ RN×M

1: Initialize outlier matrix with all-zero matrix: O = 0N×M .
2: repeat
3: Update graph Laplacian matrix L using uncompensated GL in (4).
4: for n = 1, . . . , N do
5: Update o[n] by solving (14).
6: end for
7: until convergence
8: L∗ = L and O∗ = O

Theorem 2. For g(O) = µ‖O‖1, the cluster points generated by Algorithm 3,
i.e. {u{k}}k=1,2,..., converge to a stationary point.

Proof. The required conditions mentioned in Theorem 4.1. part (b) of [39]
can be satisfied by the objective function in (20). Particularly, the level
set U{0} = {u : h1(u) ≤ h1(u

{0})} is compact, and h1(·) is continuous on
U{0}. Moreover, from Lemma 1, h1(·) is regular at every point u ∈ U{0}.
Thus, based on Theorem 4.1. part (b) of [39], if a set of N blocks, out of
N + 1 blocks, can be found such that the objective function h1(·) becomes
pseudoconvex [41] for every pair of blocks in this set, then every cluster
point generated by the BCD method using a cyclic rule (as defined in [39])
converges to a stationary point. In the objective function h1(·), the set of N
blocks {o[n]}Nn=1 meets this condition. This is because h1(·) is convex w.r.t.
the outlier matrix O, hence, it would also be pseudoconvex w.r.t. to the
pair (o[i],o[j]) for any 1 ≤ i, j ≤ N (i 6= j). Consequently, the BCD method
introduced in Algorithm 3 for g(O) = µ

2
‖O‖1 converges to a stationary point

of h1(·).

Theorem 3. For g(O) = 1
2
‖O‖21, the cluster points {u{k}}k=1,2,... generated

by Algorithm 3 converge to a coordinate-wise minimum point of the objective
function.
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Proof. In this case, the objective function (denoted by h2(·)) is

h2(L, {o[n]}Nn=1) =
1

2
trace

(
(Y −O)TL(Y −O)

)
+

1

2
f(L) + ιL(L) +

µ

2

(
N∑
n=1

‖o[n]‖1

)2

.

(22)

As stated before, h2(·) cannot be written in the separable form of (15) due to
the squared term, and hence the objective function h2(·) is not regular. How-
ever, based on Theorem 4.1. part (c) of [39], the convergence to a coordinate-
wise minimum point still holds. The level set U{0} = {u : h1(u) ≤ h1(u

{0})}
is again compact, and h2(·) is continuous on this level set. According to the
Theorem 4.1. part (c) of [39], if there is at most one minimum point for the
N − 1 blocks of u2, . . . ,uN , then every cluster point of the BCD method of
Algorithm 3 generated by the cyclic rule is a coordinate-wise minimum point.
In the minimization problem (12), we derived closed-form unique solutions
for o[1], . . . ,o[N ]. In other words, we solved the optimization step of (14) in
closed form for the squared `1-norm case, and obtained a unique solution
for each of o[1], . . . ,o[N ] using Algorithm 2. Thus, there is at most one min-
imum point for each of o[n]’s, which makes the condition of the mentioned
theorem be satisfied, and the cluster points of {u{k}}k=1,2,... converge to a
coordinate-wise minimum point.

However, in comparison with Theorem 2, this convergence is weaker be-
cause the minimization guarantee only holds for coordinate directions.

4. Numerical Simulations

In this section, the performance of the outlier-robust GL method in Al-
gorithm 3 (OR-GL) is demonstrated in the presence of outlier data. For
our simulations, synthetic data is used. This helps us to have the true un-
derlying graph and so the performance of GL algorithms can be assessed.
The effects of different outlier ratios and different additive noise levels on
the algorithm are presented, and it is shown that outlier data can adversely
affect uncompensated GL algorithms. In another experiment, the robustness
of the algorithm to different input data scales is demonstrated for squared
`1-norm. In this section, a well-known GL algorithm [11] is chosen as the un-
compensated GL (U-GL) algorithm. The accuracy of the obtained graph is

14



measured by signal to noise ratio (SNR) defined as (this is the same criterion
used in [18])

SNRL = 10 log10

‖L̃(true)‖2F
‖L̃(true) − L̃‖2F

, (23)

where L̃(true) and L̃ are the true and the estimated normalized Laplacian
matrices, respectively. The normalization is done by dividing the Laplacian
matrix by its trace, i.e.

L̃ ,
L

trace(L)
. (24)

The procedure of generating synthetic data begins with creating a random
graph as the true underlying graph. The function GSP sensor in GSPBox

toolbox [42] is used for this purpose. Throughout the simulations, we use
N = 30 number of nodes for the generated graphs. For producing smooth
graph signals over the resulted graph, white noise vectors w ∼ N (0, I) are
graph low-pass filtered [1], where I ∈ RN×N is the identity matrix. More
precisely, the procedure is as follows:

1. Calculate the GFT of the white noise, i.e. ŵ = VTw.

2. Suppress the high-frequency coefficients of ŵ by point-wise multiplying
it by the GFT of a low-pass filter, i.e. ψ̂. Specifically, the GFT coeffi-
cients of the resulting smooth graph signal are calculated as x̂

(smooth)
n =

ψ̂n.ŵn for n = 1, . . . , N .

3. Calculate the inverse GFT of the modified coefficients, i.e. x(smooth) =
Vx̂(smooth).

As the low-pass filter ψ̂n, the same filter as in [10] is used, that is,

ψ̂n =

{
1/
√
λn λn 6= 0

0 λn = 0
. (25)

For the additive noise, a white Gaussian noise vector v ∼ N (0, σ2
vI) is

added to each smooth graph signal x(smooth),

x = x(smooth) + v. (26)

The SNR of the input signal is calculated as

SNRin = 10 log10

E{‖x(smooth)‖22}
E{‖v‖22}

=
E{‖x(smooth)‖22}

Nσ2
v

, (27)
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Figure 1: GL performance of the proposed outlier-robust GL (OR-GL) and the uncom-
pensated GL [11] (U-GL) algorithms for different ratios of outlier data δ with SNRin = 10
dB.

where E{·} is the expectation symbol.
Then, all graph signals are gathered as the columns of the matrix X ∈

RN×M . For all the simulations, we generate M = 1000 number of graph
signals. For simulating the outlier effect on the data, an outlier value is
added to each entry of the matrix X with probability δ, named as outlier
ratio. These outlier values are sampled from a Gaussian distribution with
mean ηo = 5σx and standard deviation σo = 0.2σx, where σx is the standard
deviation of all entries of the data matrix X. The sign of the outlier is
randomly selected with equal probability. After imposing the outlier values
to the matrix X, the matrix Y, which contains the graph signals corrupted
by the outlier values, is obtained.

The only parameter in Algorithm 3 is the outlier regularization coefficient
µ, which could be set using cross validation. In our simulations, to tune the
parameter µ, graph signals are generated from a set of known graphs for the
case δ = 0.01 and SNRin = 10 dB, and the best value is chosen with the
grid search. Then, this value is used for different outlier ratios and input
SNRs in all simulations of this section. As the result, for g(O) = µ‖O‖1,
µ = 1 is chosen, and for g(O) = µ

2
‖O‖21, µ is set equal to 10−4. The stopping

criterion for the algorithms is to run them for 50 iterations. In practice, this
number of iterations is large enough to reach the convergence. Each point in
the figures is the average of 1000 independent realizations.

Fig. 1 shows the performance of GL for different outlier ratios in the range
0.001 ≤ δ ≤ 0.06. The proposed method is compared with the uncompen-
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Figure 2: GL performance of the proposed outlier-robust GL (OR-GL) and the uncom-
pensated GL [11] (U-GL) algorithms for different values of SNRin with δ = 0.01.

sated GL algorithm of [11] (U-GL). In the lower outlier ratios, e.g. δ = 0.001,
the SNRL for the U-GL algorithm is close to the OR-GL algorithm. Moving
to higher δ’s, SNRL decreases for U-GL, while OR-GL has almost the same
SNRL level until2 δ = 0.04. Thus, the sensitivity to outlier data is easily seen
for the U-GL algorithm. By more increasing the outlier ratio, a fast perfor-
mance drop occurs in OR-GL, and the reason is that the sparsity assumption
for the outlier-corrupted entries is no longer valid.

Fig. 2 shows SNRL versus SNRin, while the ratio of outlier is kept fixed
at δ = 0.01. For the different amounts of additive noise, OR-GL has a higher
SNRL than U-GL.

In the next experiment, the GL performances are compared for two cases
of outlier regularization functions: 1) g(O) = ‖O‖1 and 2) g(O) = 1

2
‖O‖21, for

different scales of the input data. The previously generated data is multiplied
by a scale factor ranging from 10−3 to 103 in logarithmic steps, for SNRin = 10
dB and δ = 0.01. The `1-norm penalty term performs reliably for the scales
0.8 to 20. However, squared `1-norm penalty term maintains its own best
performance for the whole range. This is because the term ‖O‖21 scales with

2The subtle increase of SNRL despite the increase of the outlier ratio δ from 0.001 to
0.02 is partially related to the effect of outlier regularization coefficient µ. In fact, since µ
is tuned for the case δ = 0.01, the performance around this outlier ratio is higher than the
low ratios, and the maximum SNRL in δ = 0.02 indicates that the value µ = 1 is optimum
for δ = 0.02. However, as it can be seen in Fig. 1, this effect is subtle, that is, the SNRL

curve is almost constant for δ ≤ 0.03, and has a sudden drop for δ > 0.03.
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Figure 3: GL performance of the uncompensated GL algorithm of [11] and the proposed
algorithm based on `1-norm and squared `1-norm for different scales of the input data.
Moreover, the performance of the algorithm with `1-norm is also added when the coefficient
µ is tuned for each data scale separately. The outlier ratio is δ = 0.01 and the input SNR
equals SNRin = 10 dB.

power two, the same order of the first term in (12), i.e. quadratic function.
However, the term ‖O‖1 changes linearly w.r.t. the data scale. This means
that the `1-norm and the quadratic function terms scale with different orders,
and so the coefficient µ is not well-tuned for the whole range of scales. To
validate this for `1-norm case, another curve (with star marks) has been
included in Fig. 3 to see the effect of adjusting the regularization parameter
µ separately for different input data scales. Particularly, µ is grid searched
for a set of data scales, and the higher GL performance is reported for each
data scale. As it is expected, the curve for `1-norm case with µ tuned for
each data scale shows the similar performance as the squared `1-norm case.
However, the algorithm with the squared `1-norm regularization term does
not need to be tuned for each data scale separately.

5. Conclusion

In this paper, an algorithm for smoothness-based graph learning prob-
lem in the presence of outlier data was proposed by incorporating `1 and
squared `1 norms to the objective function of GL. Precisely, a novel BCD
minimization approach was introduced to solve the resulted non-convex op-
timization problem. Besides its low computational advantage, it provides a
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straightforward way to establish the convergence of the iterative algorithm.
Numerical simulations demonstrated that uncompensated GL methods are
sensitive to the existence of outlier data in the input graph signals. However,
the proposed method is capable of robustifying GL algorithms to outliers.
Specifically, the performance of the outlier-robust GL does not drop until a
certain amount of outliers, after which it exhibits a rapid performance drop.
This rapid drop of performance is because our main assumption of outlier
sparseness does not hold anymore. It was also shown that the squared `1-
norm version of the algorithm is more robust to the scale of the data in
comparison to the simple `1-norm. The expense of this good property is
that calculating the proximal operator of the squared `1-norm is consider-
ably harder that the `1-norm.

Appendix A. Proof of Theorem 1

In this appendix, a similar approach as [38] is adopted, except that there
is a constant c in the squared `1-norm function. Before going to the proof, a
few lemmas are stated.

Lemma 2. Consider the following minimization problem for a given vector
x ∈ RN ,

p1(x) = argmin
v∈RM

1

2
‖x− v‖2 +

µ′

2
(‖v‖1 + c)2. (P1)

If the solution for (P1) is denoted by p1(x), then the following statements
are true for p1(x):

a) If x < 0, then p1(x) < 0, where < denotes element-wise greater than
or equal.

b) Let α ∈ {±1}M be an arbitrary non-zero sign vector, then p1(α�x) =
α � p1(x), where � denotes element-wise (Hadamard) product of two
vectors.

Proof. Refer to the proof of Lemma 9 in [38].

Lemma 3. Consider the following constrained minimization problem

p2(x) = argmin
v

1

2
‖x− v‖2 +

µ′

2
(vT1 + c)2

s. t. v < 0,

(P2)
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where p2(x) is the solution of (P2). Then, the following equation relates the
solutions of (P1) and (P2)

p1(x) = p2(x+)� sg(x), (A.1)

where sg(x) ∈ {±1}M is a vector containing the signs3 of the entries of x,
i.e.

(
sg(x)

)
i

= sign(xi), and x+ ∈ RM
+ is a vector of absolute values of the

entries of x, resulting in x = sg(x)� x+.

Proof. Since x+ < 0, Lemma 2.a ensures that p1(x+) < 0. Therefore, p1(x+)
is also the solution of the following constrained minimization problem

argmin
v

1

2
‖x+ − v‖2 +

µ′

2
(‖v‖1 + c)2

s. t. v < 0.

(A.2)

Then, the `1-norm in the second term can be replaced by vT1 due to the
v < 0 constraint, yielding p1(x+) = p2(x+). Additionally, from Lemma 2.b,
it can be obtained that p1(x+) = sg(x)� p1(x), which results in (A.1).

Lemma 4. Define v∗ , p2(x) and ū , x+ − µ′c 1 (i.e. ūm , |xm| − µ′c for
1 ≤ m ≤ M). Then, for problem (P2), ūj ≤ ūi results in v∗j ≤ v∗i , meaning
that v∗m’s are arranged in the same descending order as ūm’s.

Proof. Karush–Kuhn–Tucker (KKT) conditions [33, 43] for (P2) are written
as

v∗ − ū + (µ′1Tv∗) 1 = λ, (A.3)

v∗ < 0, (A.4)

λ < 0, (A.5)

λTv∗ = 0, (A.6)

where (A.6) is the complementary slackness condition, Lagrangian multipliers
are gathered in the vector λ, and equation ū = x+ − µ′c 1 is used in (A.3).
From ūj ≤ ūi and (A.3), it can be found that λj −λi ≥ v∗j − v∗i . Now assume
by contradiction that v∗j > v∗i , then λj − λi > 0, and also v∗j > 0 because
of v∗i ≥ 0. However, due to the complementary slackness condition in (A.6),
letting v∗j > 0 makes λj = 0 and results in λi < 0, which is in contradiction
with non-negativity of λi as in (A.5).

3The sign of zero entries can be chosen arbitrary negative or positive.

20



Proof of Theorem 1. The proximal operator of the function g(o) = µ′

2
(‖o‖1+

c)2 at point x ∈ RM is the solution of (P1). However, it is easier to solve
(P2) instead of (P1) since there is no need to deal with the non-differentiable
`1-norm function. Afterwards, the solution of (P1) can be obtained using
Lemma 3. Let v∗m’s and ūm’s are sorted as v∗(1) ≥ . . . ≥ v∗(M) and ū(1) ≥
. . . ≥ ū(M), respectively. According to Lamma 4, equation (A.3) also holds
for the sorted versions of v∗m’s and ūm’s, i.e.

v∗(m) − ū(m) + µ′
M∑
i=1

v∗(i) = λ(m) (A.7)

for 1 ≤ m ≤ M , where λ(m) is the corresponding Lagrangian multiplier for
v∗(m).

Solving (P2) is performed for two separate cases. In the first case, it
is supposed that all constraints in (P2) for v∗m’s are binding, i.e. v∗ = 0.
According to (A.3) and (A.5), all ūm’s are non-positive. Thus, if ū(1) ≤ 0,
the solution of (P2) is the all-zero vector, i.e. p2(x) = v∗ = 0.

In the second case, it is assumed without loss of generality that ρ number
of constraints for v∗m’s are non-binding, i.e. v∗(1) ≥ . . . ≥ v∗(ρ) > 0 and
v∗(ρ+1) = . . . = v∗(M) = 0. Summing (A.7) for m = 1, . . . , ρ and using (A.6),
it can be obtained that

τ , µ′v∗T1 =
µ′
∑ρ

m=1 ū(m)

1 + ρµ′
, (A.8)

in which, the equality
∑ρ

m=1 v
∗
(m) =

∑M
m=1 v

∗
m is utilized.

Since ū(m) > τ for 1 ≤ m ≤ ρ, and ū(m) ≤ τ for ρ + 1 ≤ m ≤ M , ρ can
be found as ρ = max

{
m|ū(m) > τ

}
. Finally, from (A.3), it is obtained that

p2(x) = v∗ = soft(ū, τ), where τ is defined as in (A.8), and then p1(x) can be
found using (A.1) in Lemma 3. This concludes the proof of Theorem 1.
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