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A closed-form solution for graph signal separation based on
smoothness
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Abstract—Using smoothness criteria to separate smooth graph signals
from their summation is an approach that has recently been proposed
[1] and shown to have a unique solution up to the uncertainty of the
average values of source signals. In this correspondence, closed-form
solutions of both exact and approximate decompositions of that approach
are presented. This closed-form solution in the exact decomposition also
answers the open problem of the estimation error. Additionally, in the
case of Gaussian source signals in the presence of additive Gaussian noise,
it is shown that the optimization problem of that approach is equivalent
to the Maximum A Posteriori (MAP) estimation of the sources.

Index Terms—graph signal processing, graph signal separation, blind
source separation, smooth graph signal.

I. INTRODUCTION

GRAPH Signal Processing (GSP) [2] studies signal arising
from complex structures by modeling the relation between

signal samples with graphs. A classical signal processing topic that
has recently been generalized to GSP is Blind Source Separation
(BSS) [3] whose goal is to retrieve source signals from their mixtures.
In [4], [5], some classical BSS methods are extended to separate
graph signals from a set of their mixtures, in which, similar to many
classical BSS methods, the number of mixtures is assumed to be
equal to the number of source signals. However, the problem that
is investigated in [1] is the separation of smooth graph signals from
only one mixture of them, i.e. the summation of the source signals.
The proposed methods in [1] utilize smoothness criteria as the main
objective function for two different types of signal decomposition:
exact (to be used for noiseless mixtures) and approximate (to be
used for noisy mixtures). Additionally, it is shown in [1] that the
corresponding optimization problems have unique solutions up to
the indeterminacy of their DC values, i.e. the average of each signal.
However, the problem of how well these decompositions estimate the
original source signals is left open in [1].

In this correspondence, we derive closed-form solutions for both
exact and approximate decompositions of [1], and calculate the
estimation error in the exact decomposition. Additionally, we show
that for Gaussian sources in the presence of additive Gaussian
noise, the approximate decomposition is equivalent to Maximum A
Posteriori (MAP) estimation of the sources.

The rest of this correspondence is organized as follow. In Section
II, brief preliminaries are mentioned and then Section III is devoted
to the closed-form solutions and the MAP estimation problem.

II. PRELIMINARIES

An undirected graph with N nodes can be represented as G =
(V, E ,W), where V and E denote the node set and edge set,
respectively, and W ∈ RN×N is the adjacency matrix with entries
wij = wji ≥ 0. Another matrix that describes G is the Laplacian
matrix, which is defined as L , D −W, where D is a diagonal
matrix with diagonal entries dii ,

∑N
j=1 wij . L is a positive

semidefinite matrix with eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λN and
corresponding orthonormal eigenvectors 1√

N
1 = v1,v2, . . . ,vN ,
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where 1 stands for the all-one vector (for a connected graph,
only the smallest eigenvalue is equal to zero, therefore range(L)
consists of all vectors in Rn whose DC values are zero) [2]. A
graph signal x ∈ RN is a mapping from the node set to RN
that assigns a real value to each node. The smoothness of a graph
signal x can be measured by the graph Laplacian quadratic form as
xTLx =

∑
1≤i<j≤N wij(xi − xj)

2, which evaluates the variation
of the signal values on the graph [2].

For a positive semidefinite matrix A ∈ RN×N with eigen-
values 0 ≤ λ1 ≤ . . . ≤ λN and corresponding orthonormal
eigenvectors v1, . . . ,vN , the eigenvalue decomposition is as A =∑N
i=1 λiviv

T
i = VΛVT , where Λ , diag(λ1, . . . , λN ) and V ,

[v1, . . . ,vN ]. The Moore-Penrose pseudo inverse of A is a positive
semidefinite matrix defined as A† =

∑
i∈I

1
λi

viv
T
i = VΛ†VT ,

where I = {1 ≤ i ≤ N : λi 6= 0}. Therefore, A can be considered
as an injective mapping from range(A) to range(A) with inverse
mapping A†, which results in the following lemma.

Lemma 1. Let y ∈ range(A). The system of linear equations Ax =
y has a unique solution in range(A), which is equal to x = A†y.

III. CLOSED-FORM SOLUTIONS

A. Exact decomposition

Let x1, . . . ,xK ∈ RN be K smooth graph signals over connected
graphs G1, . . . ,GN , respectively. Graphs G1, . . . ,GN have the same
nodes and are different in their edge sets. Suppose the average value
of each xi is equal to zero, i .e. 1Txi = 0, i = 1, . . . ,K. The
optimization problem proposed in [1] for retrieving xi’s from their
summation x =

∑K
i=1 xi is

minimize
x1,...,xK

K∑
i=1

xTi Lixi s.t.

{
x =

∑K
i=1 xi ,

1Txi = 0 , i = 1, . . . ,K.
(1)

As proved in [1], problem (1) has a unique solution. Moreover,
as explained in [1], in case of graphs with different eigenvalue
distributions, the objective function in (1) is better to be changed
in a way that each frequency component has the same weight in the
objective function, which can be done by replacing Li = ViΛiV

T
i

with L̃i = Vidiag(0, w2, . . . , wN )VT
i , for i = 1, . . . ,K, where

w2, . . . , wN are positive weights (as stated in [1], this case can also
be used for source signals that are not necessarily smooth but have
the same known sparse frequency support). Let x∗1, . . . ,x

∗
K denote

the unique solution of (1). The following theorem gives these signals
in closed form.

Theorem 1. The closed-form solution of (1) is given by

x∗j = L†j(

K∑
i=1

L†i )
†x , j = 1, . . . ,K. (2)

Moreover, the optimum value of (1) is equal to xT (
K∑
i=1

L†i )
†x.

Proof. Based on Appendix A in [1], L1x
∗
1 = . . . = LKx∗K . Since

the DC value of x∗i is zero and Gi is connected, x∗i ∈ range(Li),
and therefore from Lemma 1, each x∗i can be represented as
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x∗i = L†iLjx
∗
j , i = 1, . . . ,K. Therefore, x =

∑K
i=1 x∗i leads to

(
∑K
i=1 L†i )Ljx

∗
j = x. Both

∑K
i=1 L†i and Lj are positive semidefi-

nite matrices and have only one zero eigenvalue with corresponding
eigenvector 1. Applying again Lemma 1 gives rise to the closed-form
solution (2). Finally, putting (2) in the objective function is simplified
as the mentioned optimum value.

The above theorem enables us to calculate the estimation error,
which had remained open in [1]. This is given by the following
corollaries, whose proofs are simple and are left to the reader.

Corollary 1. Let x1, . . . ,xK be the original source signals. The
error between xj and x∗j is equal to

‖x∗j − xj‖22 = ‖(L†j(
K∑
i=1

L†i )
† − I)xj + L†j(

K∑
i=1

L†i )
†
K∑
i=1
i 6=j

xi‖22.

(3)

Corollary 2. Let xi’s be independent random vectors with covari-
ance matrix Ci = E{xixTi }. Moreover, suppose that for each of the
samples of these random vectors 1Txi = 0. The expected value of
the error between xj and x∗j is equal to

E{‖x∗j − xj‖22} =tr((I− L†j(

K∑
i=1

L†i )
†)Cj(I− (

K∑
i=1

L†i )
†L†j))

+

K∑
i=1
i 6=j

tr(L†j(

K∑
i=1

L†i )
†Ci(

K∑
i=1

L†i )
†L†j). (4)

B. Approximate decomposition

In the case of approximate decomposition x ≈
∑K
i=1 xi (useful

in the presence of noise), the optimization problem proposed in [1]
is

minimize
x1,...,xK

‖z−
K∑
i=1

xi‖22 +
K∑
i=1

γix
T
i Lixi

s.t. 1Txi = 0 , i = 1, . . . ,K ,

(5)

where z = x−(1
T x
N

)1 and γi’s are regularization parameters. Similar
to the exact decomposition, the uniqueness of the solution of (5) is
proved in [1], and it is also shown that (5) can be generalized to the
case of using L̃i’s instead of Li’s.

Theorem 2. The closed-form solution of (5) is given by

x∗j =
1

γj
L†j(I +

K∑
i=1

1

γi
L†i )
−1z , j = 1, . . . ,K. (6)

Moreover, the optimum value of (5) is equal to zT (I+
K∑
i=1

1
γi

L†i )
−1z.

Proof. Based on Appendix B in [1], γ1L1x
∗
1 = . . . = γKLKx∗K =

z −
∑K
i=1 x∗i . Similar to the proof of Theorem 1, since x∗i ∈

range(Li), x∗i =
γj
γi

L†iLjx
∗
j , i = 1, . . . ,K. Therefore, the equation

γjLjx
∗
j = z−

∑K
i=1 x∗i leads to γj(I+

∑K
i=1

1
γi

L†i )Ljx
∗
j = z. Since

I+
∑K
i=1

1
γi

L†i is invertible, applying again Lemma 1 gives rise to the
closed-form solution (6). Finally, putting (6) in the objective function
is simplified as the mentioned optimum value.

In the next theorem, it is shown that in the case of Gaussian sources
with additive Gaussian noise, problem (5) without its constraints
(problem (4) in [1]) is equivalent to the MAP estimation of the
sources. So, the solution of (5) will also be a MAP estimation of
the sources (since it is a special case of problem (4) in [1], for which
the DC’s are zero).

Suppose xi on the graph Gi with the Laplacian matrix Li =
ViΛiV

T
i is generated as xi = Vihi, where hi’s are independent

Gaussian random vectors, i.e. hi ∼ N (0,Λ†i ). This is equivalent
to xi ∼ N (0,L†i ), which, as stated in [6], is a verified assumption
for many common networks and graph databases. Moreover, suppose
x =

∑K
i=1 xi + n, where n ∼ N (0, σ2I).

Theorem 3. Under the above assumptions, problem (5) without its
constraints (problem (4) in [1]) is equivalent to the MAP estimation.

Proof. Based on the assumptions,

ln(P{x|h1, . . . ,hK}P{h1} . . .P{hK}) =

c− 1

2σ2
‖x−

K∑
i=1

Vihi‖22 −
1

2

K∑
i=1

hTi Λihi,
(7)

where c is a constant. So, considering xi = Vihi leads to

max
h1,...,hK

P{h1, . . . ,hK |x} ≡

max
h1,...,hK

ln(P{x|h1, . . . ,hK}P{h1} . . .P{hK}) ≡

min
x1,...,xK

‖x−
K∑
i=1

xi‖22 + σ2
K∑
i=1

xTi Lixi.

(8)

Remark: All theorems can be generalized to the case that instead
of Li’s, L̃i’s are used.

IV. CONCLUSION

Estimating smooth graph signals from their summation can be
done by smooth graph signal decomposition, which has been shown
that has a unique solution up to the indeterminacy of the average
values of the source signals. In this correspondence, we obtained the
closed-form solutions of both exact and approximate decompositions,
which calculates the estimation error that had been left open in [1].
Moreover, we showed that in the case of Gaussian sources with
additive Gaussian noise, the proposed approach of [1] for estimating
the sources provides their MAP estimation.

In cases where graphs are unknown, the problem of joint graph
learning and blind separation of smooth signals (similar to [5], but
with only one observation) is an interesting future research. Moreover,
investigating the dependency of the estimation error on the structures
of the graphs and signals, and considering the estimation error as
a regularization term to improve estimation, would be subjects for
future research.
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