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ABSTRACT
In this paper, we focus on the mixing matrix estima-
tion which is the first step of Sparse Component Analy-
sis. We propose a novel algorithm based on Expectation-
Maximization (EM) algorithm in the case of two-sensor set
up. Then, a novel iterative Bayesian clustering is applied to
yield better results in estimating the mixing matrix. Also,
we compute the Maximum Likelihood (ML) estimates of the
elements of the second row of the mixing matrix based on
each cluster. The simulations show that the proposed method
has better accuracy and less failure than the EM-Laplacian
Mixture Model (EM-LMM) method.

1. INTRODUCTION

Sparse Component Analysis (SCA) [1] is a semi-blind source
separation approach, in which the prior information about the
sources is their sparsity. A sparse signal is a signal whose
most samples are nearly zero (say they are ‘inactive’), and
just a few percents takes significant values (say they are ‘ac-
tive’). This prior information enables us to separate sources
with less sensors than sources [2, 3, 4, 5, 6, 7, 8, 9]. The
mathematical model of the instantaneous underdetermined
Blind Source Separation (BSS) in the noisy case is:

x � As � v � (1)

where A ��� n � m is the mixing matrix, x and s are the obser-
vation and source vectors respectively. In underdetermined
case, the number of observations is less than the number of
sources (n � m). Therefore, estimating the mixing matrix is
not sufficient to recover sources, since the mixing matrix is
not invertible. Therefore, underdetermined SCA consists of
two steps. First, estimating the mixing matrix and then es-
timating the sparse sources. However, there are some meth-
ods that the mixing matrix estimation and source estimation
are done simultaneously [3, 4], but in the methods that sep-
arately estimate them, the mixing matrix estimation affects
the accuracy of the source estimation step. Hence, in those
methods accurate mixing matrix estimation is an important
preprocessing for the final source recovery stage. Therefore,
in this paper, we focus on the first step.
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Several approaches were proposed to address the mix-
ing matrix estimation in SCA. K-means clustering [2] is a
primary approach. A cluster-wise PCA method [5] and a
subspace clustering method [10] are also used as later clus-
tering methods to estimate the mixing matrix. Also, a time-
frequency-transform-based clustering method were proposed
in [7]. In [11], the Laplacian Mixture Model (LMM) is as-
sumed for the distribution of θ � arctan � x2

x1

	
in the case of

two-sensor set up. Then, an EM algorithm finds the ML es-
timation of the parameters of this LMM. So, this method is
called EM-LMM method. Moreover, a method called soft-
LOST was proposed in [12] which determine the line orien-
tations in the scatter plot by an EM algorithm.

In this paper, we estimate the mixing matrix in the two-
sensor case (similar to [11]). Our algorithm is an EM algo-
rithm applied directly to the second observation rather than
to θ � arctan � x2

x1

	
as in [11]. Moreover, we use an iterative

Bayesian clustering approach to yield better accuracy in our
estimations.

2. ESTIMATING THE MIXING MATRIX IN THE
TWO-SENSOR CASE: ITERATIVE EM

ALGORITHM

Consider the two-sensor case. In this case, our model in (1)
can be written as:

x1
� s1

� s2
� � � � � sm

� n1 � (2)

x2
� a1s1

� a2s2
� � � � � amsm

� n2 � (3)
where x1 and x2 are the two sensors, n1 and n2 are two in-
dependent Gaussian noises with variance σ 2

n . Moreover, we
assume a spiky model for the sparse sources which is a spe-
cial case of Bernoulli-Gaussian (BG) distribution (this model
has also been used in [8], [9]). So, the Probability Density
Function (PDF) of the sources is assumed to be:

p � si
	 � pδ � si

	 � � 1 
 p
	
N � 0 � σ 2

r
	 � (4)

where p is the probability of inactivity of the sources and
is near one, and σ 2

r is the variance of active samples of the
sources. We also define the source activity vector as an m-
tuple vector q � � q1 � q2 ��� � � � qm

	 T where the i’th component
shows the activity of the i’th source:

qi 
 � 1 if si is active
0 if si is inactive



In [8], we suggested a parameter estimation step, to es-
timate the parameters of this model, that are p, σr and σn.
This parameter estimation step is firstly applied to the first
mixture in (2). Then, the estimation of these parameters are
available and we can use them in the rest of our algorithm
in the present paper. To estimate the mixing matrix, which
is equivalent to estimating the second row of the mixing ma-
trix (a1 � a2 ��� � � � am), we compute the PDF of the second sensor
signal, which has a Mixture of Gaussian (MoG) density:

p � x2
	 � ∑

q
p � q 	 p � x2 � q 	 � (5)

where p � q 	 � p � m � na � � 1 
 p
	 na is the probability of q, in

which na is the number of active sources, and the summa-
tion is taken over 2m possible values for the source activity
vector. Since � 1 
 p

	 ��� 1, the terms with na � 1 can be
neglected. Therefore, the sparse approximation of the MoG
distribution of the second observation is:

p � x2
	��

pmN � 0 � σ 2
n
	 � pm � 1 � 1 
 p

	 m

∑
i � 1

N � 0 � a2
i σ2

r
� σ2

n
	 � (6)

So, the second observation has � m � 1
	

major Gaussian com-
ponents. If we apply the EM algorithm of [13] to the second
sensor, this EM algorithm calculates the ML estimates of the
MoG components iteratively. Then, from the estimated vari-
ances, the absolute value of the second row of the mixing
matrix will be obtained as follows:

� �ai � ��� �σ2
i 
 σ2

n

σr
� (7)

where σr and σn are obtained from the parameter estima-
tion step and �σi are obtained from the EM algorithm of [13]
applied to the second observation in (6). Initial values of the
parameters of the EM algorithm can be chosen randomly. We
can use the final solutions of the EM algorithm for the next
initialization of the parameters in the next EM algorithm.
Our simulations show that the EM algorithm converges in
50 to 100 iterations.

After finding the absolute values of all ai’s, a sign ambi-
guity can be resolved by counting the number of observation
slopes (of the observation points) around a vicinity of � ai’s
(for example in � � ai 
 ε � ai

� ε � ), and then select the sign
with the maximum counter.

This EM algorithm is applied only to the second obser-
vation, while the EM-LMM method is applied to the ratio of
the observations which depends to both observations. So,
our EM algorithm should give worse results compared to
EM-LMM, and this will be verified in the simulation results.
However, our simulations show the less sensitivity of our EM
algorithm to initializations. It may be due to exact mixture
of Gaussian model rather than heuristic mixture of Laplacian
model in the EM-LMM approach.

3. ITERATIVE BAYESIAN CLUSTERING

To yield better estimation of the mixing matrix, we propose
an iterative Bayesian clustering. In this method, at first the
hypothesis that at least one source is active is checked with a
Bayesian hypothesis testing. After detecting that at least one
source is active, we assume that only one source is active and

Active Source
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�x Mixing Matrix
Update
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Figure 1: The block diagram of iterative Bayesian-clustering

then find this unique active source (say the i’th source). Then,
the i’th column is updated iteratively. The block diagram of
this algorithm is shown in Fig.1.

3.1 Active source detection
In this stage, we perform a Bayesian hypothesis testing to
know at which instants, at least one of sources is active.
Then, assuming that only one source is active, we find which
one is active. Let Hi � i � 1 � 2 ��� � � � m denote the hypothesis that
only the i’th source is active and H0 is the hypothesis that all
sources are inactive. We do the hypothesis testing by com-
puting the posterior probability of p � Hi � x 	 � i � 0 � 1 ��� � � � m for
each hypothesis. Similar to computations in [8], the posterior
probabilities for i � 0 � 1 � 2 ��� � �m are:

p � Hi � x 	 ∝ P � Hi
	
p � x �Hi

	 � pm � 1 � 1 
 p
	

� det � 2πQqi

	 exp � 
 1
2

x  Q � 1
qi

x
	 �

(8)
where Qqi

� σ2
r AQiA  � σ2

n I and Qi
� diag � qi

	
, and qi � i !� 0

stands for the source activity vector in which only the i’th
term is one (active) and the others are zero (inactive) and q0 is
the all zero vector. Therefore, the aim of Bayesian hypothesis
testing (or Bayesian clustering) is to maximize p � Hi � x 	 over
Hi � i � 0 � 1 ��� � � � m.

3.2 Updating the mixing matrix
Knowing that the i’th source is the unique active source, we
can update the i’th column of the mixing matrix. We show
here that a "i � x2

x1
is the Maximum Likelihood (ML) estimate

of ai in (3) under hypothesis Hi which is:

Hi :
�

x1
� si

� n1
x2
� aisi

� n2

In fact, the ML estimate of ai knowing all the samples in the
i’th hypothesis (or cluster) is calculated in the appendix for
the general case as:

a "i � ∑k x2 � k 	
∑k x1 � k 	 � (9)

where x � � x1 � k 	 � x2 � k 	 � T is the k’th point of the i’th cluster.
Hence, where only one single point is in the cluster, the above
equation is equivalent to a "i � x2

x1
. Unfortunately, this ML es-

timate is sensitive to the outliers. To show that, we assume
that the ML estimate based on the first l point in the i’th clus-
ter is a "i # l and is approximately the true mixing matrix element
(a "il $ ai). Now, we consider that the � l � 1

	
’th point in this

cluster is an outlier where we have x2 � l % 1 �
x1 � l % 1 � � ai

� e. So, we
want to prove that this outlier point changes the ML estimate



significantly. To show that, we compute the ML estimation
based on the first � l � 1

	
points in the cluster (a "i # l % 1). This

estimate is equal to a "i # l % 1
� ∑l

k & 1 x2 � k � % x2 � l % 1 �
∑l

k & 1 x1 � k � % x1 � l % 1 � . After simpli-

fication based on knowing a "il � ∑l
k & 1 x2 � k �

∑l
k & 1 x1 � k � $ ai, we will have

a "i # l % 1 $ ai
� e x1 � l % 1 �

∑l
k & 1 x1 � k � . The error term which is e x1 � l % 1 �

∑l
k & 1 x1 � k �

can be large. This proves the sensitivity of the ML estimate
to the outliers. Therefore, for updating the mixing matrix, we
use the iterative equation:

a � k % 1 �
i

� αk
x2
x1

� � 1 
 αk
	
a � k �i � (10)

where we weight αk for the current estimate based on the last
single point in the cluster ( x2

x1
) and we weight � 1 
 αk

	
for the

previous estimate based on the total previous points in the
cluster. The sequence αk should be a decreasing sequence to
weight the new estimate and previous estimate. At first itera-
tions, the αk should be near one. But after some iterations, it
should be decreased and at final iterations it can be near zero.
We use αk % 1

� αk � r where r � 1. After convergence, to track
the small changes in the mixing matrix elements, we should
fix the value of αk to a small value. The value of r deter-
mines the speed of convergence. The greater the coefficient
r, the smaller the rate of convergence. But, the convergence
is assured. The smaller the value of r, the faster rate of con-
vergence. But, the convergence is not guaranteed.

4. SIMULATION RESULTS

This section investigates the result of our EM algorithm in
comparison with the EM-LMM algorithm in [11]. Moreover,
we will see that combination of our EM algorithm with iter-
ative Bayesian clustering results in better accuracy.

To view the results of the algorithm visually, we cre-
ated two artificial instantaneous observations as in the model
(2) and (3) from three artificial sparse sources. The sparse
sources are created from the model (4) with parameters p �
0 � 8 and σr

� 1. The variance of the additive Gaussian noises
in (2) and (3) are selected as σn

� � 01. Also, the second row
of the mixing matrix is assumed to be � 
 1 � 5 � 1 � 2 � . Figure.2
shows the scatter plot of the observation points and the three
clusters resulted from the iterative Bayesian method are de-
picted in Fig.3.

To test the algorithms quantitatively, we created two ob-
servations from four artificial sparse sources. Also, the sec-
ond row of the mixing matrix is assumed to be random.
The parameters of the sparse sources are � 8 ' p ' 0 � 94 and
σr
� 1. The variance of the additive Gaussian noises are se-

lected as σn
� � 01.

To evaluate and compare the accuracy of algorithms to
estimate the mixing matrix, we define a Mean Square Error
(MSE) of the mixing matrix estimation as:

MSE � A � Â 	 � 10log � 1
mn

n

∑
i � 1

m

∑
j � 1
� ai j 
 âi j

	 2 	 � (11)

To investigate the success of the algorithms to estimate
the true mixing matrix, we use the criteria MSE � A � Â 	 �(
 5.
For the cases where MSE � A � Â 	 � 
 5, we call that a failure is
happened and the rate of failure of each algorithm is reported.
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Figure 2: The scatter plot
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Figure 3: The three clusters from iterative Bayesian cluster-
ing

The simulations are repeated 100 times with new random
sparse sources and mixing matrix, and the resulting MSE’s
are averaged over these 100 experiments. The result of our
EM algorithm and our EM algorithm combined with iterative
Bayesian clustering are compared with EM-LMM algorithm
of [11].

The initialization of the EM-LMM is done with
θ � � 
 3 ��
 1 � 1 � 3 � T and α � � � 25 ��� 25 ��� 25 ��� 25 � T and ) �� � 5 ��� 5 ��� 5 ��� 5 � T (refer to [11]). The initialization of our EM
algorithm is done with σ � � σ̂n ��� 2 ��� 5 � 2 � 5 � 6 � T and p �� � 2 ��� 2 ��� 2 ��� 2 ��� 2 � T (refer to [13]).

The results for various values of p are displayed in Fig.4.
This figure shows that although the EM-LMM method has
better results than our EM algorithm, the combination of our
EM algorithm and iterative Bayesian clustering results in bet-
ter estimation than the EM-LMM method. It is seen that the
iterative Bayesian clustering improves the mixing matrix es-
timation.

Although the EM-LMM algorithm has better results than
our EM algorithm, its failure probability is higher than our
EM algorithm. In other words, its probability of not con-
verging to the true mixing matrix is higher than our EM al-
gorithm. The failure probability (in percent) is the number
of failed experiments (MSE � 
 5) in all 100 experiments.
The results for the failure probability is depicted in Fig.5.



0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94
−40

−35

−30

−25

−20

−15

−10

−5

0

p

M
S

E
(d

B
)

EM−LMM
Our EM + iterative Bayesian clustering
Our EM

Figure 4: The MSE results for the various algorithms

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94
0

10

20

30

40

50

60

70

80

90

100

p

Fa
ilu

re
 P

ro
ba

bi
lit

y(
%

)

EM−LMM
Our EM + iterative Bayesian clustering
Our EM

Figure 5: The failure probability for the various algorithms

This figure shows that our EM algorithm and our EM algo-
rithm combined with iterative Bayesian clustering have less
failures than the EM-LMM algorithm.

Note also that although our EM algorithm combined with
iterative Bayesian clustering is relatively better than the EM-
LMM algorithm (both in accuracy and failure), but in the
cases of less sparse signals (for example p '*� 82 in Fig.4
and Fig.5), the performance of our algorithm and EM-LMM
method (accuracy and failure) are relatively equivalent.

5. CONCLUSION

A new approach for estimating the mixing matrix in the two-
sensor SCA problem was presented. In this approach, an EM
algorithm is first applied directly to the second observation.
Then, a Bayesian hypothesis testing is used to Bayesian clus-
tering of the observation points. After the Bayesian cluster-
ing, an iterative mixing matrix estimation provides a better
accuracy of estimation. This proposed algorithm shows bet-
ter accuracy and less failure compared with the EM-LMM
method of [11].

In the cases where we have more than two observations,
there is still the mixture of Gaussian model for the observa-
tion vector in higher dimensions. So, some similar relations
may exist to express the dependency of MoG parameters to
the mixing matrix. But, in this case, it may be more sensitive
to outliers or may be more complex to obtain mixing matrix

elements from that estimated parameters.
Another approach is to apply the EM algorithm to each

of the observations. But, it seems to have scaling problems
and perhaps the accuracy of the estimations are low since we
neglect the information of other observations. Fortunately,
in the two sensor case, we consider the scaling ambiguity in
our simple model to solve the problem. However, the ap-
plication of the EM algorithm for mixing matrix estimation
in more than two observations is a subject of investion for
future works.

6. APPENDIX

We collect all the observations that lay in the i’th hypothe-
sis in a cluster. The ML estimation of ai should be obtained
based on the observations in this cluster. This cluster or hy-
pothesis is formulated as:

Hi :
�

x1
� si

� n1
x2
� aisi

� n2
(12)

where x1
� � x1 � 1 	 ��� � � � x1 � N 	 � T and x2

� � x2 � 1 	 ��� � � � x2 � N 	 � T
are the collection of N observations of the i’th cluster. The
vector si

� � si � 1 	 ��� � � � si � N 	 � T is the collection of the i’th
source for the observation points in this cluster. The like-
lihood based upon knowing si and ai is computed as:

L0 � x1 � x2 � si � ai
	 � ∏

k
fn1n2

� x1 � k 	 
 si � k 	 � x2 � k 	 
 aisi � k 	�	 �
(13)

Based upon the assumption of independency and Gaussianity
of the noises, the likelihood is proportional to:

exp � 
 1
2σ 2

n
∑
k
� x1 � k 	 
 si � k 	 � 2 � � x2 � k 	 
 aisi � k 	 � 2 	 � (14)

Therefore, the negative of the log likelihood can be written
as (after omitting the constant terms):

L � 
 logL0
� ∑

k
� x1 � k 	 
 si � k 	 � 2 � � x2 � k 	 
 aisi � k 	 � 2 � (15)

The above equation should be minimized at ML estimate.
So, setting the partial derivatives ∂ L

∂ si � k � and ∂ L
∂ ai

to zero, gives
the ML estimate of ai. Setting to zero the partial derivative

∂ L
∂ si � k � � 
 2 � x1 � k 	 
 si � k 	�	 
 2ai � x2 � k 	 
 aisi � k 	�	 � 0 results
in the ML estimate of si � k 	 as:

s "i � 1
1 � a2

i
x1
� ai

1 � a2
i

x2 � (16)

where the index k is omitted for simplicity. Setting to zero
the partial derivative ∂ L

∂ ai

� ∑k 
 2ai � x2 � k 	 
 aisi � k 	 � � 0 and
replacing (16) for si � k 	 , we have the following relation for
the ML estimate of ai:

a "i � ∑k x2 � k 	
∑k x1 � k 	 � (17)
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