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ABSTRACT

This paper presents a method to solve hyperspectral unmix-
ing problem based on the well-known linear mixing model.
Hyperspectral unmixing is to decompose observed spectrum
of a mixed pixel into its constituent spectra and a set of corre-
sponding abundances. We use Nonnegative Matrix Factor-
ization (NMF) to solve the problem in a single step. The
proposed method is based on a projected gradient NMF al-
gorithm. Moreover, we modify the NMF algorithm by adding
a penalty term to include also the statistical independence of
abundances. At the end, the performance of the method is
compared to two other algorithms using both real and syn-
thetic data. In these experiments, the algorithm shows in-
teresting performance in spectral unmixing and surpasses the
other methods.

Index Terms— Spectral unmixing, linear mixture model
(LMM), non-negative matrix factorization (NMF), hyper-
spectral imagery.

1. INTRODUCTION

Hyperspectral imagery is an imaging technique which ac-
quires information across the electromagnetic spectrum [1].
Due to low spatial resolution, which is predominant in hy-
perspectral images, each pixel represents a combination of
different materials. A simple but sufficiently informative
model, known as linear mixture model (LMM), assumes
that each pixel is a linear combination of distinct materials,
namely endmembers [2].

Different approaches based on LMM have been intro-
duced in the literature to unmix every “mixed pixel” into its
constituent endmembers and their corresponding fractions,
called abundances [3]. Some of them are a two-step approach
for solving the unmixing problem: at the first step, endmem-
bers are extracted using endmember extraction algorithms
(EEA), e.g., pixel purity index (PPI) [4], N-Finder [5], and
vertex component analysis (VCA) [6]. Then given the ex-
tracted endmembers, abundances are determined generally
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using least square approaches, e.g., full constrained least
square (FCLS) [3].

However considering different additional statistical hy-
pothesis for modeling the unmixing problem, some ap-
proaches such as independent component analysis (ICA) and
nonnegative matrix factorization (NMF) have been proposed
to extract endmembers and determine abundances in a single
step procedure. The abundances’ independence assumption
in each pixel has led to usage of ICA as a tool to decompose
a mixture into its independent component [7, 8], but this tool
didn’t show acceptable results in this application [9]. On the
other hand, nonnegative nature of abundances and endmem-
bers spectral signatures motivates researchers to use NMF as
a tool for spectral unmixing [10, 11, 12].

NMF decomposes a mixed nonnegative matrix into a
product of two nonnegative matrices. Unfortunately, NMF
decomposition is not unique [13] and also due to non-
convexity of NMF cost function, it is likely that the algorithm
gets trapped into local minima. Therefore, in order to es-
cape from these spurious solutions, prior information should
be used [13]. Different methods based on constrained non-
negative matrix factorization have been recently proposed to
unmix hyperspectral data [10, 11, 12]. In this paper, we are
going to constrain nonnegative factorization using abundance
independence assumption. More precisely, we are going to
propose a projected gradient based NMF algorithm which is
enhanced by abundance independence constraint to unmix
hyperspectral mixtures. This method somehow covers ad-
vantages of both ICA and NMF based approaches. In [14],
a related method has been proposed for enforcing NMF to
produce independent components for spectrogram dimen-
tionality reduction, but not as constraint for hyperspectral
unmixing problem. This paper is organized as follows. The
proposed method is presented in Section 2. Then in Section 3
experimental results in both synthetic and real data are stated,
and the algorithm is compared to two reference methods of
hyperspectral unmixing.
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2. THE PROPOSED APPROACH

To present our proposed algorithm, we first overview the
problem statement of hyperspectral unmixing using NMF.

2.1. Hyperspectral unmixing using NMF

Let X be the L x M matrix of observed spectra of a hy-
perspectral image in which each column shows observed
spectrum of the corresponding pixel in L bands of imaging.
Based on the LMM the hyperspectral unmixing problem can
be stated as [3]:

X =AS+N, (1)

where A is an L x P matrix in which each column is a spectral
signature of an endmember, and each column of the P x M
matrix S shows the corresponding abundances of each pixel,
and the matrix IN stands for additive observation noise. So,
P shows the total number of endmembers while L and M
show the number of spectral bands and the number of pixels
respectively. The goal of spectral unmixing is to estimate the
matrices A and S, just by observing X, under the following
conditions:

e Elements of A and S are nonnegative,

e Abundance coefficients of a pixel or each column of
matrix S should sum to one (sum-to-one abundance
constraint).

Under the constraints of non-negativity of A and S, (1) may
be regarded as a general NMF problem which tries to factor-
ize the non-negative matrix X into two nonnegative matrices
A and S, while N represents the estimation error. The sim-
plest and frequently used similarity measure for NMF prob-
lemis [13]:

Dr(X||AS) £ ||IX — AS|%, 2

in which the ||.|| 7 represents the Frobenius norm. Then, an
alternating projected gradient algorithm updates matrices A
and S as follows:

0Dr(A,S

S [ - s PrS)) 3)
0Dr(A,S

A (A 2PPAS) )

where [.]; denotes component wise projection onto the feasi-
ble nonnegative subset of real numbers.

The proposed algorithm As mentioned in section 1, some
prior information should be considered as additional con-
straints to prevent the algorithm from getting trapped into
local minima.

The assumption of the independence of the abundances of
different endmembers in a pixel is the main assumption which
supports ICA for spectral unmixing [7, 8]. We here consider

this assumption as a prior information to enhance NMF. This
assumption can be regarded as independence of the rows of
S. It has been shown in [14] that canceling the second order
statistics in NMF is sufficient to make the rows of S inde-
pendent (see Lemma 1 and 2 of [14]). So, in [14], authors
have proposed using Frobenius norm of energy-normalized
correlation matrix of S, as a penalty term in NMF problem
statement to achieve the independence of the rows of S. This
penalty term is defined as follows:

J(S) = || Cs][%, where Cs = P§ 2)SSTPL ) (5)

in which Pg is the diagonal matrix of sums of squares of the
rows of S.

In contrast to the multiplicative method of [14], here we
use J(S) in (5) as a penalty term to enhance a gradient pro-
jection based NMF algorithm. The cost function (2) and the
update rules (3) and (4) are changed as follows:

D(X||AS) = | X — AS||%2 + \sJ(S) (6)
aJ(S
S« I[S— ,us(2AT(AS —X)+ s 8(S ))]+ @)
A [A—pa(2(AS - X)ST)]4 ®)
As it has been shown in [14], 6‘({,(85) can be computed as fol-
lows:
6J(S) - 8cij
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where c¢;;, s;j, my; and b;; represent the elements of matri-
ces C, S, M, B respectively; 1, indicates a column vector in
which all the elements are equal to zero, except the b*? ele-
ment which is equal to one; and s! represents the b row of
matrix S, while s’ represents the ™ column of S, gy shows
the b*" element of column vector g, vector 8iny represents the
element-wise inverse of vector g.

Finally, in order to satisfy sum-to-one abundance con-
straint we modify the update rule (7) as:

8.J(S)

S« [S—pus(2A" (AS —X) + s 6

N+ an
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in which A and X are defined as follows:
— Al <= X
A= LT} , X £ LT] (18)

where 1 represent a vector with all elements equal to one.

The step-sizes ua and pg are adaptively updated us-
ing the approach proposed in [11], and Ag is fixed to a value
chosen by trial and error. The algorithm uses VCA extracted
endmembers as an initial point (this initiation setup is preva-
lent in similar approaches [11, 10, 15]). The algorithm stops
when the maximum change in estimated matrices elements is
less than a pre-assumed threshold, and/or algorithm reaches a
maximum number of iterations.

In the following, we refer to our algorithm as Projected
Gradient NMFICA (PG-NMFICA).

3. EXPERIMENTAL RESULTS

In this section, the performance of the proposed algorithm
is studied experimentally using both synthetic and real data.
Based on simulation results, the regularization parameter \g
has been empirically set to 5.

3.1. Synthetic data

For constructing synthetic data, endmembers have been ex-
tracted from United States geological survey (USGS) [16]
library. The abundances have been randomly chosen for each
pixel to be between 0 and 1, also a normalization have been
done to guarantee the sum-to-one property. Then a white,
zero centered, Gaussian noise with variance o2 has been
added to the data to model the observation noise!. The addi-
tive noise variance is defined according to input data signal to

noise ratio in dB (SNR) as follows: SNR = 10 log( ‘,B(V‘EE ).

We have assumed that the true number of endmembers
(P) is known a priori. We have compared the accuracy of
our algorithm in estimating A and S with minimum spectral
dispersion and minimum spatial dispersion NMF (MDMD-
NMF) [10] and VCA [6] . The comparison measure for esti-
mating A was spectral angle distance (SAD) [11], and the
comparison measure for estimating S was signal to recon-
struction error ratio (SRE) [17]%.

Figure 1 shows SAD for estimation of A, as well as SRE
for estimation of S, averaged across 20 trials, as a function of
the number of endmembers (in all the above-mentioned ex-
periments, the number of observed pixels have been fixed to
10000). The results show that the proposed algorithm sur-
passes both VCA and MDMD-NMEF, and has improved the
abundance matrix (S) estimation especially when the number
of endmembers increases. Figures 2 and 3 shows the above-
mentioned values as a function of input SNR and number of

! Although assumption of white zero mean Gaussian noise is naive for
positive data, because of simplicity, it has been widely used in the field [6, 3].
2The VCA algorithm merely gives an estimation of endmembers [6].
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(a) SAD for spectra estimation.

= PG-NMFICA MDMD-NMF
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(b) SRE for S estimation.

Fig. 1. Comparison between PG-NMFICA, MDMD-NMF
and VCA. Spectral angle distance for spectra estimation and
signal to reconstruction error for matrix S estimation as a
function of number of endmembers.

observed pixels respectively. The PG-NMFICA algorithm
shows better performance in this case, too. As it was ex-
pectable, when SNR increases, all methods show better per-
formance (see Fig. 2). Increasing the number of observed
pixels will also increase the performance of the methods (see
Fig. 3). Furthermore, in our simulations, the run times of
both PG-NMFICA and MDMD-NMF were more or less the
same (around 200 seconds on our machine with a 2.3GHz In-
tel quad core CPU and 2GB RAM, by using MATLABO.2,
with 5 Endmembers and 10000 observed pixels).

3.2. Real data

The experiment has been done on “Cuprit” data, which ac-
quired by airborne visible/infrared imaging spectrometer
(AVIRIS), and is freely available from [18]. The data has 224
spectral bands with nominal distance of 10nm from 0.4xm to
2.5pum, and spatial resolution is 10m. After eliminating the
corrupted bands, 188 bands remain. A sub-image of 100x 100
pixel was chosen, and results of the proposed algorithm are
compared to MDMD-NMF. A list of ground-truth minerals
of the cuprit scene is available at [19]. Since the MDMD-
NMF algorithm performance decreases when the number of
endmembers is set more than 13 [10], we set the number of
endmembers equal to 10. The performance detailed results
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Fig. 2. Comparison between PG-NMFICA, MDMD-NMF
and VCA. Spectral angle distance for spectra estimation and
signal to reconstruction error for matrix S estimation as a
function of number of input data SNR.

of our PG-NMFICA algorithm and the MDMD-NMF has
been shown in Table 1. Each extracted endmember is defined
by its closest neighbour in SAD sense in USGS spectral li-
brary. Accuracy of different methods are compared by the
number of those extracted endmembers which correspond to
the ground truth minerals [19].

As it has been shown in Table 1, PG-NMFICA algorithm
extracts 6 ground truth endmembers, while MDMD-NMF
algorithm is able to extract only 3 endmembers. Although
the mean SAD for Cuprit endmembers are approximately the
same for both methods, the total mean SAD of the proposed
algorithm for all endmembers is less than that of MDMD-
NMF. These results show that the proposed algorithm gives
better results than MDMD-NMF algorithm in analyzing the
real data.

4. CONCLUSION

In this paper, we proposed a new algorithm to unmix hyper-
spectral data to its constituent endmembers and their corre-
sponding abundances. The algorithm was based on a pro-
jected gradient NMF method enhanced by the independence
assumption of abundances in each pixel of the data.

The performance of the proposed algorithm was com-
pared to similar methods versus the number of endmembers,
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Fig. 3. Comparison between PG-NMFICA, MDMD-NMF
and VCA. Spectral angle distance for spectra estimation and
signal to reconstruction error for both matrix S estimation as
a function of number of observed pixels.

input data SNR and the number of observed pixels. Our
experiments indicate that PG-NMFICA shows better perfor-
mance than other algorithms. An experiment has also been
done on real data and the results of the proposed algorithm
has been compared to MDMD-NMF algorithm. The pro-
posed method shows acceptable performance in processing
real data too, and overcome the other methods.

Although the proposed method shows better performance
than investigated similar methods, unmixing of real data does
not seem very successful. This can be regarded as the disabil-
ity of the LMM to interpret the unmixing problem.
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