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Abstract. The problem of removing white zero-mean Gaussian noise
from an image is an interesting inverse problem to be investigated in this
paper through sparse and redundant representations. However, finding
the sparsest possible solution in the noise scenario was of great debate
among the researchers. In this paper we make use of new approach to
solve this problem and show that it is comparable with the state-of-art
denoising approaches.

1 Introduction

Being a simple inverse problem, the denoising is a challenging task and basically
addresses the problem of estimating a signal from the noisy measured version
available from that. A very common assumption is that the present noise is addi-
tive zero-mean white Gaussian with standard deviation σ. Many solutions have
been proposed for this problem based on different ideas, such as spatial adap-
tive filters, diffusion enhancement [1], statistical modeling [2], transfer domain
methods [3], [4], order statistics [5] and yet many more. Among these meth-
ods, methods based on with sparse and redundant representations has recently
attracted lots of attentions [8]. Many researchers have reported that such rep-
resentations are highly effective and promising toward this stated problem [8].
Pioneered by Donoho [5], sparse representations firstly examined with unitary
wavelet dictionaries leading to the well-known shrinkage algorithm [5]. A major
motivation of using overcomplete representations is mainly to obtain translation-
invariant property [6]. In this respect, several multiresolutional and directional
redundant transforms are introduced and applied to denoising such as curvelets,
contourlets, wedgelets, bandlets and the steerable wavelet [5] [8].

The aim of all such transforms is to provide a redundant sparse decomposi-
tion of the signal. In parallel, beside providing a suitable redundant transform,
representation of a signal with these transforms is also of high value, since such
a representation is not necessarily unique. Several methods are then proposed to
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find the best possible representation of a signal from a redundant, overcomplete
dictionary obtained by these transforms, namely Matching Pursuit(MP), Basis
Pursuit(BP), FOCUSS, and Smoothed �0- Norm (SL0) [7]. All these approaches
basically try to find the sparsest possible solution among all the possible rep-
resentations a signal can obtain. As an alternative point of view to obtain the
sparse representation, example-based dictionary learning of K-SVD which is in-
troduced by Aharon, et. al. [8] attempts to find the sparse dictionary over the
image blocks. When using the Bayesian approach to address this inverse problem
with the prior of sparsity and redundancy on the image, it is the dictionary to be
used that we target as the learned set of parameters. Instead of the deployment
of a pre-chosen set of basis functions like the curvelet or contourlet, this process
of dictionary learning can be done through examples, a corpus of blocks taken
from a high-quality set of images and even blocks from the corrupted image itself.
This idea of learning a dictionary that yields sparse representations for a set of
training image blocks has been studied in a sequence of works [8] and specifically
the one using K-SVD has shown to outperform in both providing the sparse rep-
resentation and capability of denoising. While the work reported here is based
on the same idea of sparsity and redundancy concepts, a different method is used
to solve the sparsest possible solution in presence of noise. An example-based
dictionary learning such as K-SVD along with here used technique can provide
better solutions in estimation of the original clean signal.

The paper is organized as follows. In section 2, we briefly present modeling of
the scenario in decomposing a signal on an overcomplete dictionary in the pres-
ence of noise. In section 3 we discuss this algorithm in the real image denoising
task. At the end we conclude and give a general overview to future’s work.

2 Finding the Sparse Representation in Presence of Noise

Consider the problem of estimation of x from the observed signal

y = x + n

where n denotes the observation noise. Assume that x has a sparse representation
over the dictionary Φ, i.e. x = Φα with a small ‖α‖0

0 (the number of nonzero
elements of a vector) and also assume that a good estimation on the energy of
the present noise, ‖n‖2

2 ≤ ε2 is provided.
The sparsest representation we are looking for, is simply

P0 : min ‖α‖0
0 subject to ‖y− Φα‖2

2 ≤ ε2 (1)

Note that the above-stated problem rarely has a unique solution [11], since
once the sparsest solution is found, many feasible variants of it sharing the same
support can be built. Since the above-stated problem is highly nonconvex and
hard to deal with, many researchers pursue a strategy of convexification with
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– Initialization: let α = λ(I + ΦT Φ)−1ΦT y
(This is equivalent to the solution when the σ tends to be infinity)
i.e.:

argminα ‖α‖2
2 + λ‖y − Φα‖2

2

– Choose a suitable decreasing sequence for σ, [σ1 . . . σJ ].
– for n = 1, . . . , J :

1. Let σ = σn.
2. find αopt

σ = argminα (m − Fσ(α)) + λ‖y − Φα‖2
2

using any kind of optimization tool ,
say steepest decent with fixed number of iterations

– Final answer is α = αopt.

Fig. 1. Algorithm for finding the sparse coefficients in presence of noise

replacing �0 norm with �1- norm. so simply try to solve the following problem
instead:

P1 : min ‖α‖1 subject to ‖y − Φα‖2
2 ≤ ε2 (2)

where ‖α‖1 =
∑

αi is the �1-norm of α. Note that the replacing �0-norm by
other convex cost functions such as �1-norm is only asymptotic and the equiva-
lence does not always hold [9]. Hereafter, motivated by the recently stated work
of Mohimani, et al. [7] we seek to find the sparsest possible answer without
such a replacement and instead, attempt to relax the replacing �0- norm by a
continuous, differentiable cost function, say Fσ(α) =

∑
i exp(−α2

i /2σ2).
This function tends to count the number of zero elements of a vector. So, as

stated in [7] the above problem can be converted to:

P0 : min
α

(m − Fσ(α)) subject to ‖y − Φα‖2
2 ≤ ε2 (3)

The above optimization task can be converted to optimizing the Lagrangian:

P0 : min
α

(m − Fσ(α)) + λ‖y − Φα‖2
2 (4)

So that the constraint becomes a penalty and the parameter λ is dependent
on ε. Solution toward this problem was recently proposed in [12] and it is shown
that for a proper choice of λ, these two problems are equivalent. The σ param-
eter determines the smoothness of the approximated cost function. By gradual
decrease in this parameter it is highly probable to skip trapping in local mini-
mum. The overall algorithm which is used through this paper is shown in Fig. 1
is a slight modification of the same idea presented in [12].

Once the sparsest solution of (3) has been found with the stated algorithm
summarized in Fig. 1, we can retrieve the approximate image by x̂ = Φα̂.
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3 Image Denoising

The problem of estimation of X from an observed noisy version of it under the
sparsity prior has two essential issues: first, to find a dictionary Φ which permits
a sparse representation regarding the fact that the sample are noisy and second
to find the coefficients of this sparse representation. The second phase was what
explained so far. As it was shown by Aharon [8], et. al., the K-SVD learning is
a very efficient strategy which leads to satisfactory results. This method along
with all other types of dictionary learning fails to act properly [8] when the size
of dictionary grows. Beside that, the computational complexity and thus time
needed for training will grow awesome.

When we are dealing with larger size images we are still eager to apply this
method but as stated it is computationally costly and both dictionary learning
and optimization to find the coefficients of sparse representation are sometimes
intractable. To overcome this difficulty, an image with size

√
N ×√

N is divided
to blocks of size of

√
n × √

n. These blocks are chosen highly overlapped for
two reasons: first, to avoid blockiness and second to have better estimate in
noise removal process. Then a dictionary is tried to be found over these blocks
and all these blocks are cleaned with algorithm of Fig. 1. Let Lij be a matrix
representing each block to be located in (ij )-th position of the image. Lij is
a matrix of size n × N which provides the location information of all possible
blocks of the images. So in this respect, the noise removal process changes to:

{X̂, α̂} = argminX,αλ‖Y − X‖2
2 +

∑

ij

γ‖αij‖0
0 +

∑

ij

‖Φα − LijX‖2
2 (5)

in which X is the original image to be estimated and the Y is the observed
available noisy version of it. This equation is similar to (1) with this slight dif-
ference that local analysis was taken into account and a linear combination of
�0-norm and �2-norm of all sparse representation and error between the original
signal and the reconstructed one tried to be minimized. In this process, visible
artifacts may occur due to blocking phenomena. To avoid this, we choose the
blocks with overlap and at the end average the results in order to prevent block-
iness artifact. After determining all the approximated coefficients, we estimate
the original image by solving the following equation:

X̂ = argminXλ‖Y − X‖2
2 +

∑

ij

‖Φα − LijX‖2
2 (6)

This quadratic equation has the solution:

X̂ = (λI +
∑

ij

LT
ijLij)−1(λY +

∑

ij

LT
ijΦα̂)−1 (7)

This estimated modified image can be interpreted as a relaxed averaging be-
tween the noisy observed image with the cleaned estimated one. The summarized
overall algorithm is shown is Fig. 2.



Image Denoising Using Sparse Representations 561

– Goal: denoise a given image Y from additive white Gaussian noise with variance
of ‖n‖2

2

– parameters:
n block-size ,k dictionary, λ Lagrangian multiplier.the task is to optimize

{X̂, α̂} = argminX,αλ‖Y − X‖2
2 +

∑
ij γ‖αij‖0

0 +
∑

ij ‖Φα − LijX‖2
2

– train a dictionary Φ of size n × k using K-SVD.

– find the sparse noisy coefficients of α using algorithm stated in Fig. 1.

– Final estimation is X̂ = (λI +
∑

ij LT
ijLij)

−1(λY +
∑

ij LT
ijΦα̂)−1.

Fig. 2. The final denoising algorithm

0 50 100 150 200 250 300

−200

0

200

OMP

0 50 100 150 200 250 300

−100

0

100 NSL0

Fig. 3. Coefficients of a sample block represented with OMP above and in bottom.
The latter, leads to the same result or sparsely superior one.

4 Experimental Results

In this work, the underlying dictionary was trained with the K-SVD method
and once the learning is done, the image blocks was represented sparsely via
Fig. 1. The algorithm of section 2 was used for such a representation. The overall
denoising method explained above was examined with numerous test images
mainly of size 256× 256 and 512× 512 with different noise levels. Blocks of size
8 × 8 was driven by the synthesis noisy image and a dictionary of size 64 × 256
was learned through this blocks using K-SVD method. Then we applied the
algorithm of Fig. 1 to represent each block on the provided dictionary, while
the similar approach done by Aharon [8] make use of Orthogonal Matching
Pursuit (OMP) [10] for this stage. The tested images are all the same ones as
those used in the denoising experiments reported in [8], in order to enable a fair
comparison. Table 1 summarizes the denoising results in the same database of
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Fig. 4. Coefficients of a sample block. From top to bottom: the original clean signal,
the signal corrupted with additive white Gaussian noise of ‖n‖2 = 20, recovered block
via OMP and the recovered block with the algorithm of Fig. 1.

Fig. 5. From left to right: original image, noisy image with zero-mean white gaussian
noise of ‖n‖2 = 20, the cleaned image via sparse representation described

images. In a quite large experiments we found sparser solution and better quality
of representations. Every result reported is an average over 5 experiments, having
different realizations of the noise. To show a comparison in sparsity yielded with
different methods coefficients in representations of a sample block with OMP
and the stated algorithm was depicted in Fig. 3. The quite same results is valid
for other blocks as well.

The denoised blocks were averaged, as described in Fig.2 .In Fig. 5 the results
of the overall algorithm for the image ”Barbara” for ‖n‖2 = 20 is shown. By
refereing to Table 1, as it is seen, when the level of noise grows, our approach
outperforms K-SVD with OMP and we can conclude the mentioned algorithm
is suitably designed for noisy cased with known energy.

Also a comparison was done with other types of sparse coding phase such
as FOCUSS and SL0 [8] and yet the proposed algorithm outperforms them. A
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Table 1. Summary of denoising PSNR results. In each column the bottom is corre-
sponding to our approach and the above is corresponding to the K-SVD with OMP.
the bold one corresponds with better response.

σ
PSNR

LENA BARBARA BOAT Fgrpt House Peppers Average σPSNR

2/42.11 43.58 43.67 43.14 42.99 44.47 43.33 44.47 43.33
42.11 42.38 42.17 41.85 42.92 42.51 42.92 42.51

5/34.15 38.60 38.08 37.22 36.65 39.37 37.78 39.37 37.78
38.18 37.41 36.68 36.17 38.25 37.08 38.25 37.08

10/28.13 35.47 34.42 33.64 32.39 35.98 34.28 35.98 34.28
35.42 34.51 33.62 32.31 35.60 34.53 35.60 34.53

15/24.61 33.70 32.36 31.73 30.06 34.32 32.22 34.32 32.22
33.91 32.79 32.13 30.258 34.40 32.79 34.40 32.79

20/22.11 32.38 30.83 30.36 28.47 33.20 30.82 33.20 30.82
33.46 32.01 31.29 29.16 34.19 31.58 34.19 31.58

25/20.17 31.32 29.60 29.28 27.26 32.15 29.73 32.15 29.73
32.72 31.01 30.46 28.90 33.61 30.83 33.61 30.83

50/14.15 27.79 25.47 25.95 23.24 27.95 26.13 27.95 26.13
28.98 26.93 27.30 24.43 28.69 27.70 28.69 27.70

75/10.63 25.80 23.01 23.98 19.97 25.22 23.69 25.22 23.69
26.93 24.71 25.33 21.69 26.83 24.28 26.83 24.28

100/8.13 24.46 21.89 22.81 18.30 23.71 21.75 23.71 21.75
26.32 23.55 24.36 22.19 25.08 23.14 25.08 23.14

sample comparison has been done in Fig. 4. In this experiment after providing
the dictionary, the sparse representation coefficients are found with different
approaches. The coefficients of the original clean signal, the signal corrupted
with additive white gaussian noise of v‖n‖2 = 20, recovered block via OMP and
the recovered signal via Fig. 1 is depicted in Fig. 4 and as it can be seen the our
recovered signal resembles more to the original signal.

5 Discussions and Conclusions

In this paper a simple algorithm for denoising application of an image was pre-
sented leading to state-of-the-art performance, equivalent to and sometimes sur-
passing recently published leading alternatives. It is basically on the basis of
sparse representation of an image in the presence of noise. The stated algorithm
considers local approach, splits the noisy observed image to several blocks and
learns a dictionary over these blocks and attempts to find the best possible sparse
representation of each block with this dictionary. In order to find the cleaned
image some averaging is needed to avoid the blocking effect in boundaries. Ex-
perimental results show satisfactory recovering of the image. Future theoreti-
cal work on the general behavior of this algorithm is on our further research
agenda.
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