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ABSTRACT

This paper proposes a very simple method for increasing
the algorithm speed for separating sources from PNL mix-
tures or inverting Wiener systems. The method is based on a
pertinent initialization of the inverse system, whose compu-
tational cost is very low. The nonlinear part is roughly ap-
proximated by pushing the observations to be Gaussian; this
method provides a surprisingly good approximation even
when the basic assumption is not fully satisfied. The linear
part is initialized so that outputs are decorrelated. Experi-
ments shows the impressive speed improvement.

1. INTRODUCTION

Blind Separation of independent sources (BSS) is a basic
problem in signal processing, which has been considered
intensively in the last fifteen years, mainly for linear (instan-
taneous as well as convolutive) mixtures. More recently, a
few researchers [1, 2, 3, 4, 5, 6, 7, 8] addressed the problem
of source separation in nonlinear mixtures, whose observa-
tions are e = f(s). Especially Taleb and Jutten [6] have
studied a special and realistic case of nonlinear mixtures,
called post nonlinear (PNL) mixtures which are separable.
As shown in Fig. 1, this two-stage system consists of a lin-
ear mixing matrix, followed by componentwise nonlinear
distortions. It then provides the mixing observations:

ei(t) = £i(D_ aijs;(t) @D

J

where s;(t) are the independent sources, e;(t) is the i-th
observation, a;; denotes the entries of the unknown mixing
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Fig. 1. The mixing-separating system for PNL mixtures.

matrix A, and f; is the unknown nonlinear mapping on the
component ¢.

With a suitable parameterization, it can be easily shown
that the problem of blind inversion of Wiener systems (Fig.
2) is equivalent to the source separation problem in PNL
mixtures [9]. Its output writes as

e(t) = fFOO_ h(k)s(t — k)) @
k

where s(t) is the independent and identically distributed
(iid) input, e(t) is the observation, h(k) denotes the entries
of the unknown filter H, assumed invertible, and f is the
unknown nonlinear mapping, assumed invertible and mem-
oryless.

Blind separation or inversion of the above models re-
quires first to estimate the inverse of the nonlinear mapping,
and then to inverse the linear part. This can be done by
minimizing the mutual information of the inversion struc-
ture output. However, it leads to slow algorithms, especially
with very hard nonlinearities, since the two parts are in cas-
cade and optimized with the same criterion.

In this paper, we use a simple and very fast method for
roughly estimating the inverse of the nonlinear mapping.
Moreover, the linear part can be initialized so that the output
vector y is spatially decorrelated (PNL case) or the output



process y is time decorrelated (Wiener case), which is a first
step to independence, very easy and fast to compute. These
tricks are then used for initializing the inverse system. Sec-
tion 2 and Section 3 explain the principles for initializing
the nonlinear part and the linear part, respectively. Section
4 and Section 5 propose the algorithms for nonlinear part
and linear part, respectively. Section 6 shows experimen-
tally the efficacy of the method.

2. NONLINEAR PART INVERSION

In the model (1), consider the signal just before the nonlin-
ear mapping. For the i-th component in the PNL mixture,
The signal z;(t) = >, a;;s;(t) is a weighted sum of ran-
dom variables. According to the Central Limit Theorem,
X; tends toward a Gaussian random variable. The nonlin-
ear mapping f; changes the distribution, and consequently
we can assume that the random variable E; = f;(X;) is
farther from a Gaussian than X;. Then, we propose to es-
timate the inverse of f;, as the nonlinear mapping g; which
enforces the random variable Z; = g;(E;) to be Gaussian.

Of course, the Gaussian assumption will be satisfied if
the number of sources s is large enough. For a small num-
ber of sources, the assumption is rough. The robustness of
the method, with respect to this assumption, will be dis-
cussed in Section 6.

Similarly, in the Wiener system, the filtered signal z(¢) =
> h(k)s(t — k), just before the nonlinearity, is a weighted
sum of random variables. According to the Central Limit
Theorem, the random variable X, associated to z(t), tends
to be closer to a Gaussian random variable than S. Of
course, the quality of the approximation to a Gaussian vari-
able depends on the filter, but X is closer to a Gaussian
distribution than the distribution of the original source S.
Moreover, the observed signal E = f(X) generally is far-
ther from a Gaussian than X. We then propose to approx-
imate the inverse of f by the function g such that g(E) is
Gaussian.

In the following, since the two problems are very simi-
lar, we drop the index i for simplifying the notations.

2.1. Cumulative density function

The simplest approach for computing g is based on the prop-
erty of the cumulative density function. Consider the ran-
dom variable E, and denote Fg(u) its cumulative density
function:

Fg(u) = Pr(E <wu) (3

where Pr() denotes the probability.

The random variable U = Fg(E) is then uniformly dis-
tributed in [0, 1]. Denoting ®(u) the Gaussian cumulative
density function, which transforms a unit variance Gaussian
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variable into a uniform random variable in [0, 1], it is clear
that =1 (U) is a unit variance Gaussian random variable.

Then, a simple approximation of the inverse g of the
nonlinear mapping f is:

g=20"'oFp (4)

2.2. Maximization of Shannon entropy

Consider now the Shannon entropy of the unit variance ran-
dom variable Z = g(E)

H(2) = [ ~lopz(wpz(u)du ©
where p(u) denotes the probability density function.

Since, for unit variance random variable, the Shannon
entropy H(Z) is maximum if Z is Gaussian [10], then ¢
can be estimated so that H(Z) = H(g(F)) is maximum
(under the constraint of unit variance).

3. LINEAR PART INVERSION

Since the objective of blind source separation is to recover
independent signals at the output, we initialize the separa-
tion matrix B (see Fig.1) in order to have decorrelated sig-
nals at the output, which is a first step toward independence.
This whitening process reduces the complexity of the prob-
lem, and has been used very often [11, 12, 13, 14] as a first
separation stage. Here, it is only use for initializing the sep-
aration matrix B. The whitening process can be summa-
rized as follow: after mean substraction, we multiply z by
the matrix B such that the covariance matrix of y is equal
to the identity matrix Eyy” = I. For determining By,
many algorithms exist since there are many matrices insur-
ing decorrelation.

For the Wiener system inversion (see Fig. 2 and Fig.
3), we propose a similar idea for initializing the filter w.
It consists in computing a Finite Impulse Response (FIR)
filter, which produces temporally uncorrelated output sam-
ples. This part is implemented by using linear prediction.
The estimate of the prediction coefficients (the initial filter
w) is done by minimizing the mean-square error between
the predicted signal and the actual signal.

4. NONLINEAR INVERSION ALGORITHMS

Using the previous results, one can propose two simple al-
gorithms for the rough estimation of the inverse of the non-
linear mapping f. The first algorithm is based on the for-
mula (4) derived in Subsection 2.1. The Matlab code is very
simple and very fast.

A second algorithm, based on the result on Subsection
2.2, consists in adjusting a nonlinear mapping g so that the
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Fig. 2. A Wiener system consists of a filter followed by a
distortion.
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Fig. 3. A Hammerstein system consists of a distortion fol-
lowed by a filter.

Shannon’s entropy of z is maximum under the constraint
Ez? = 1. Although the second idea is still quite simple, it
leads to an algorithm which is much more complicated and
longer to converge than the previous one.

Hence, in the following, we only give experimental re-
sults with the simplest and more efficient algorithm based
on (4).

5. LINEAR INVERSION ALGORITHMS

As explained in section 3, the objective of the linear part
(the matrix B or the filter w) is to decorrelate the output.

In the case of PNL mixtures, the algorithms to whiten
the outputs are simple and easy to implement. We have used
the method presented in [13], that writes as follows:

y « Bo(y — (v)) (6)

with
(7

after which (yy?) = L.

For the Wiener system inversion, the filter w is initial-
ized as the inverse of the prediction filter, i.e: a Moving
Average (MA) filter, in order to provide the innovation pro-
cess at the output of the Hammerstein system (the inverse
system), at the initialization. This can be done by using the
LPC routine in Matlab environment, as follows:

)

$ lpc filter coefficients
w lpc(z,Filter Lengt) ;

)

y = filter(w,1,z);

1X = /A is the positive definite square root of the matrix A, i.e.
X-X=A

% innovation process obtained by AR filtering
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Fig. 5. The inversion system.

6. EXPERIMENTAL RESULTS

In this section we present a few examples in order to show
the efficacy of the algorithm, for PNL mixtures or for Wiener
systems. We checked, as expected by theory, that the algo-
rithm is completely independent of f since, V f the function
&1 o Fg o f transforms the random variable X to a Gaus-
sian variable Z. If the compensation of the nonlinearity was
perfect, the function ® ! o Fiz o f should be the identity
function. Of course, it can be rigorously true, only if X is
Gaussian.

As a result, the efficacy of the method is only related on
the distribution of X, just before the nonlinearity f: closer
to the Gaussian the distribution X, better the approximation

ofg=f1

6.1. PNL mixtures

For testing the algorithm of PNL source separation, we did
experiments using two different separation methods, for mix-
tures of two uniformly distributed random sources. The first
method is the algorithm proposed by Taleb and Jutten [6],
denoted TJ, and the second method is the algorithm pro-
posed by Babaie-Zadeh et al. [15], denoted BJN. Although
the two methods are based on the minimization of the out-
put mutual information , TJ method uses the marginal score
function of the outputs while BJN uses the score function
difference, which involves joint probability density func-
tions (and consequently joint score functions). The two
methods are batch gradient algorithms, i.e. one iteration
means one adaptation step computed using the whole sig-
nals (500 samples). The mixing system is composed of:

®)
©)

This mixture leads to the following joint distribution
(Fig. 6), where the effect of the nonlinearities is clearly
visible. Fig. 7 shows the scatter plot after the initialization

L]

0.7 1
fi(z) = fo(x) = 0.1z + tanh(10x)
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Fig. 6. Scatter plot of the observed signals.
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Fig. 7. Scatter plot of the signals after initializing nonlinear
functions g.

of nonlinear functions g. Finally, Fig. 8 shows the scatter
plot of the initialized outputs y, where the signals are decor-
related. It is easy to see qualitatively the initialon provides
an estimation y(t) which is a mixture, simpler than e(t).

Quantitative performance is measured with the SNR ver-
sus iterations, where SNR is:

52
SNR; = 10log;, E 71}
' B0 { (yi — 54)?

Despite hard nonlinearities (0.05z+tanh(10x)) are used
in the experiments, the results obtained with the two meth-
ods are satisfactory. For TJ, the initialization process in-
creases the convergence speed of the algorithm, and some-
times gives a better result in terms of output SNR (Fig. 9).
For BJN, the initialization process also increases the con-
vergence speed and, as the algorithm without initialization
fails, can provide successful convergence (Fig. 10).

(10)
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Fig. 8. Scatter plot of the decorrelated output signals.
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Fig. 9. SNR evolution for TJ algorithm with initialization
process(solid line) and without (dashed line).
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Fig. 10. SNR evolution for BJN algorithm with initializa-
tion process(solid line) and without (dashed line).
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Fig. 11. SNR evolution for TSJ algorithm with initialization
(solid line) and without (dashed line).

6.2. Wiener systems

For testing the algorithm in Wiener system inversion, we did
experiments using two different methods. The first one, pro-
posed by Taleb et al. is denoted TSJ [9] and the second one
is derived from the algorithm proposed by Babaie-Zadeh et
al. for PNL mixtures, denoted BSJP [16]. The two methods
are based on the minimization of the output mutual infor-
mation rate, which is the natural extension of the mutual in-
formation for stationary random processes [10]. As for PNL
mixtures , TSJ method uses the marginal score function of
the output, and BSJP uses the score function difference.

Fig. 11 shows output SNR versus iterations for TSJ al-
gorithm, with a unit variance uniformly distributed random
signal s(t), filter h = [1,0.5,—0.2] and the nonlinearity
f(x) = z3. The initialization process always gives a good
inversion, while without the initialization the result is poor.

Fig. 12 shows SNR versus iterations for BSJP case,
with a unit variance uniformly distributed random signal
s(t), filter h = [1,0.5,—0.2] and the nonlinearity 0.1z +
tanh(10xz). We can observe the improvement of the speed
of convergence.

The robustness of the nonlinearity compensation method,
with respect to the distribution X, is studied in detail in [17]
for Wiener systems, using ten different filters, and many
sources s(t), with positive as well as negative kurtosis, whose
distributions are the averaged sum of two Laplacian distri-
butions:

b [exp(—b|x — a|) + exp(—b|z + a|)]

; (1)

p(z)
With such signals, examples of a good and a poor nonlinear
function compensation are shown in Fig. 13 and 14. The
good compensation corresponds to 0.0238 kurtosis (close
to a Gaussian kurtosis) and the poor case to —1.2631.
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Fig. 12. SNR evolution for BSJ algorithm with initialization
(solid line) and without (dashed line).
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Fig. 13. Best case of nonlinear function compensation: the

kurtosis of x(t) is equal to 0.0238.

7. METHOD IMPROVEMENT

Of course, if the source s(t) is very far from a Gaussian,
e.g. a discrete-valued signal or signal with heavy tails, the
method will give a crude approximation of g (see Fig. 14).
However, using weak priors, it is possible to improve the
compensation. For instance, if we know that z(¢) has heavy
tails, we can compute z so that its distribution is Laplacian
rather that a Gaussian. In fact, the algorithm will be quite
similar: we replace in formula (4) ®, the cumulative den-
sity function of the Gaussian distribution, by the cumulative
density function of the Laplacian distribution. The difficulty
is however that we don’t know the true source distribution
and even if we have some idea about this distribution, we
cannot reliably deduce the distribution of X since it is a
mixture of the sources with unknown mixing coefficients.
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Fig. 14. Worst case of nonlinear function compensation: the
kurtosis of z(¢) is equal to —1.2631.

8. CONCLUSION

In this paper, we propose a very simple and fast method
for blindly initialize the inversion structure for PNL source
separation and Wiener systems. For the nonlinear part, the
method based on the assumption that the input variable of
the nonlinear mapping is close to a Gaussian, leads to a
rough and fast approximation of the nonlinear mapping. The
linear part of PNL (or Wiener system, respectively) is ini-
tialize B (or w, respectively) so that the output random vec-
tor Y (random process y(t), respectively) is spatially (tem-
porally, respectively) whitened. This approach provides a
good starting point which increases convergence speed of
BSS or Wiener algorithms, with a very low computational
cost.
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