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Abstract—Ellipse fitting is widely used in computer vision and
pattern recognition algorithms such as object segmentation and
pupil/eye tracking. Generally, ellipse fitting is finding the best
ellipse parameters that can be fitted on a set of data points,
which are usually noisy and contain outliers. The algorithms
of fitting the best ellipse should be both suitable for real-time
applications and robust against noise and outliers. In this paper,
we introduce a new method of ellipse fitting which is based on
sparsity of outliers and robust Huber’s data fitting measure. We
will see that firstly this approach is theoretically better justified
than a state-of-the-art ellipse fitting algorithm based on sparse
representation. Secondly, simulation results show that it provides
a better robustness against outliers compared to some previous
ellipse fitting approaches, while being even faster.

I. INTRODUCTION

Ellipse fitting solutions are followed in two main classes:
clustering-like methods [1] and least squares (LS) meth-
ods [2], [3]. Since an ellipse is determined by five parameters,
clustering-like methods, e.g. Hough transform [1], [4] and its
variants, will require heavy computations because of this five
dimensional search space [5]. LS techniques focus on finding
the best ellipse parameters, which minimize the sum of the
squares of the errors, that is, the distances of data points
from the estimated ellipse. Depending on the definition of
the distance, these methods are divided into two approaches:
geometric methods and algebraic methods [5]. Geometric
methods are mainly based on the geometric distance, which
is defined as the orthogonal distance of a point from an
ellipse. These methods require non-linear optimization and
heavy computations [6].

Algebraic methods are based on minimizing “algebraic
distances” of data points from the ellipse. The “algebraic
distance” is described in Section II in details, but in brief,
it is the conic equation value for each data point. Some of
the algebraic methods such as direct least squares (DLS) [3]
intend to find the best ellipse parameters based on using all
data points. On the other hand, some other methods select
specific data points, and use them to estimate the parameters.
Recently, a new method of this group, which is based on the
sparse representation theory [7], is proposed in [5]. However,
as will be explained in Section II-B, we believe that ellipse
parameters cannot be represented as a sparse combination of
data points. To verify this point, in addition to the theoretical

discussions of Section II-B, we design some simulations in
Section IV.

Then in this paper, we develop a new ellipse fitting ap-
proach, which is based on algebraic distance minimization.
Our new algorithm uses the well-known robust Huber function
as a data fidelity measure [8]. In [9], it has been shown that
minimizing the sum of Huber functions evaluated on resid-
uals is equivalent to adding variables for modeling outliers.
These variables are responsible for distinguishing outliers from
inliers. Thus, ellipse parameters can be determined from the
inliers detected through the algorithm. Our proposed algorithm
is a least squares approach based on sparse representation
theory. It will be seen that our algorithm is highly faster than
Hough Transform approach of [1], [4] and the algorithm of [5].
Moreover, our algorithm is more robust than [5] to the number
of data points or their locations.

The rest of this paper is organized as follows. The problem
formulation of ellipse fitting and a brief review on the previous
methods are stated in Section II. Our proposed method is
presented in Section III, while Section IV is devoted to
experimental results.

II. ELLIPSE FITTING

A. Problem Formulation

Consider an ellipse in the xy-plane, centered at (cx,cy)
having semi-axes with lengths rx and ry and a counter-
clockwise rotation, θ. In the rest of the paper, we refer to
[cx, cy, rx, ry, θ] as ellipse characteristics vector.

So, in the xy-coordinate system a general ellipse has the
following form

((x− cx) cos θ + (y − cy) sin θ)2

rx2
+

(−(x− cx) sin θ + (y − cy) cos θ)2

ry2
= 1.

(1)

A general conic equation in inhomogeneous coordinates is
F (a,x) = aT . x = ax2 + bxy + cy2 + dx + ey + f = 0,
where a , [a, b, c, d, e, f ]T and x , [x2, xy, y2, x, y, 1]T. By
defining xi , [x2i , xiyi, y

2
i , xi, yi, 1]

T , the value of F (a,xi)
is called the “algebraic distance” of the point (xi, yi) from
the conic F (a,x) = 0 [10]. The use of algebraic distances for
conic-fitting was first introduced by Bookstein [10]. Bookstein



showed that although the conic-fitting based on minimizing
the algebraic distances is not geometrically or statistically
intuitive, this approach with an appropriate choice of normal-
ization can give suitable results.

B. Previous Methods

In this subsection, the methods that use the minimization of
algebraic distances to fit the best ellipse on the 2D data points
are briefly reviewed. Mathematically, the underlying problem
is [3]

min
a

I∑
i=1

F 2(a,xi), (2)

where I is the total number of data points.
In order to ensure that any multiple of the optimized vector

a corresponds to the same conic, and to avoid the trivial
solution [a, b, c, d, e, f ]T= 06×1, a normalization constraint
such as ‖a‖2 = 1, a+c = 1 [11], [12], a2+ 1

2b
2+c2 = 0 [10],

f = 1 [11], or f = −1 [5] have been proposed to be added
to (2).

In this paper, for the normalization constraint, we use
f = −1 as in [5]. Furthermore, similar to [5], the vectors a
and x are re-defined as

a , [a, b, c, d, e]T , (3)

x , [x2, xy, y2, x, y]T . (4)

Moreover, we refer to a as ellipse parameters vector.
In matrix form, (2) is re-written as

min
a
‖Xa− 1I×1‖22, (5)

where X , [x1x2 . . .xI ]
T,xi , [x2i , xiyi, y

2
i , xi, yi]

T, and
1I×1 is a vector whose elements are all equal to one. The
optimal solution of (5) is given as

a = (XTX)
−1

XT1I×1. (6)

Sensitivity to outliers is a common disadvantage of (5) and
its variants (LS methods) [2], [5]. Since (6) implies that the
ellipse parameters vector is the combination of all data points,
Liang et. al. [5] proposed that the ellipse parameters vector is
obtained through linear combination of “more accurate” data
points. In other words the authors of [5] proposed to write

a =

I∑
i=1

bixi = XTb, (7)

where b is a sparse vector. Then by substituting (7) in (5),
they obtained

min
b
‖Xb− 1I×1‖

2

2,

where
X , XX

T
. (8)

So, taking into account the sparsity constraint of b, the
authors of [5] proposed the minimization problem

min
b
‖Xb− 1I×1‖

2

2 + λ‖b‖1. (9)

As mentioned in [5], (9) works well under the assumption
that the noise of the data points follows a Gaussian distribu-
tion, but it is sensitive to random outliers with extreme noise
values. Hence, they proposed to use `1 term instead of `2 term
to reduce this sensitivity:

min
b
‖Xb− 1I×1‖1 + λ‖b‖1. (10)

We call this method, that is, using (10) where X is defined
as (8), “Liang’s method” throughout the rest of the paper.

We believe that the underlying justification of (7) in this
method is not relevant. Indeed, even forgetting the sparsity of
b, (7) implies that the ellipse parameters vector (defined in (3))
is stated as a linear combination of the data points xi (defined
in (4)). However, such a property does not necessarily hold
for an ellipse. Actually, we believe that (7) does not inherently
use the “data” matrix XT as the sparsifying dictionary, and
that the dictionary XT can be replaced by almost any other
overcomplete dictionary D of the same size. In other words,
we claim that one can use the following equation instead of (7)
without meaningful changes in final results:

a = Db, (11)

where D is an almost arbitrary matrix with the same size as
XT. This results in the same optimization problem as in (10),
with the re-definition of X as

X , XD. (12)

Besides the above theoretical justification, this claim will be
experimentally studied by simulation results in Section IV-C.

III. OUR PROPOSED METHOD

One of the well-known robust functions against outliers
and large residuals is the robust least squares or Huber
function [13]:

φhub(u) ,

{
u2 |u| ≤M
M(2|u| −M) |u| > M,

(13)

where M is a breaking point.
Therefore, we propose using the robust Huber function in

estimating an ellipse parameters vector. In other words, we
propose the following cost function to estimate the vector a:

min
a

I∑
i=1

φhub(ri), (14)

where ri , xT
i a−1. Problem (14) is convex, and iterative re-

weighted methods can be used to solve it [13]. In addition, [9]
has shown that utilizing the Huber function in a way that is
used in (14) is equivalent to adding variables for modeling
outliers. Thus, (14) is equivalent to the following minimiza-
tion:

min
a,o

I∑
i=1

1

2
(xT

i a− 1− oi)2 + λ|oi|, (15)

where oi is a variable to model outliers, and λ is a parameter
to tune the sparseness of o, [o1, o2, . . . , oI ]

T . Note that the

coefficient
1

2
was added to simplify subsequent equations.



In matrix form, (15) can be re-written as

min
a,o

1

2
‖Xa− 1I×1 − o‖22 + λ‖o‖1, (16)

where X, [x1x2 . . .xI ]
T . Since o should be a sparse vector,

(16) is based on both the sparsity of outliers and the least
squares of the residuals. Problem (16) is convex, and can
be solved using several effective numerical methods [13].
For example, CVX, a package for specifying and solving
convex programs [14], [15], can solve (16). However, since
solving (16) with the CVX package is relatively slow (as
will be seen in our numerical simulations of SectionIV-B),
we propose to use an alternating minimization approach (also
known as block coordinate descent1) for solving it [17].

Algorithm 1 Proposed Method
Input: 2D data point set, λ
Output: Ellipse parameters vector, vector o

1: procedure
2: Form data vector as follows:

xi = [x2i , xiyi, y
2
i , xi, yi]

T

3: Construct the matrix X like the following form:
X = [x1x2 . . .xI ]

T (I is the total number of points)
4: Initialize o vector with e.g. the zero vector
5: repeat
6: a = X†(o+ 1I×1)
7: oi = xT

i a− 1− λ sign(oi),o = [o1, . . . , oI ]
8: until convergence
9: end procedure

IV. EXPERIMENTAL RESULTS

A. Generating test samples

In order to form this kind of data, an ellipse with known
characteristics should be considered. After producing data
points on the ellipse, a white Gaussian noise with zero mean
and variance σ2 is added to them. Then, in order to create
outliers, some of the data points are selected randomly, and a
white Gaussian noise, which has zero mean and a variance
highly larger than σ2, is added to them. Fig. 1 shows an
example of the first set of test samples. It contains I = 40
data points of an ellipse with the ellipse characteristics vector
[2, 12, 5, 2, 60◦] which corresponds to an ellipse with rx = 2,
ry = 12, (cx, cy) = (5, 2), θ = 60◦, corrupted by a Gaussian
noise with zero mean and variance 0.05. Finally, eight points
of data are selected randomly, and are converted into outliers
by adding a Gaussian noise with zero mean and variance 20
to them.

B. Experiment I: Running time

As a rough measure of the complexities of the algorithms,
their running times are compared in this subsection. In this
experiment, 28 data points including 20 inliers and 8 outliers,

1The convergence of block coordinate descent approaches has been dis-
cussed in [16].
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Fig. 1. An example of the first set of test samples. It has 40 data points
corrupted by an additive Gaussian noise with zero mean and variance 0.05.
Eight of these data points are randomly selected, and are converted to outliers
by adding a Gaussian noise with zero mean and variance 20.

TABLE I
COMPARISON OF THE AVERAGE OF COMPUTATION TIMES

Method Our method
with alternating
minimization

Our method
with the CVX
package

Liang’s method

Average of run-
ning time (sec)

0.0223 0.9029 0.3513

of a known ellipse are considered. Then, a white Gaussian
noise with zero mean is added to them. The variance of the
noise is gradually increased from 0.0005 to 0.03 during 30
trials of this experiment, and the average of computation times
is given in Table I.

This experiment is done on a computer with an Intel(R)
Core(TM) i5 CPU, 4GB RAM, Win7, and MATLAB 2013b.
Table I compares the average of running times of the two
approaches (alternating minimization and the CVX package)
for solving (16). Since alternating minimization solves (16)
much more faster than the CVX package, we choose this
approach for solving our proposed method in the rest of the
experiments. In addition, Table I compares the speed of our
method and Liang’s method2. As can be seen in Table I,
computing times of our method is much less than that of
Liang’s method. Since Liang’s method is faster than ellipse
fitting based on Hough Transform and Bayesian algorithm [5],
our method would be faster than those, as well.

C. Experiment II

As mentioned in Section II-B, Liang’s method in (7) implies
that an ellipse parameters vector is written as a linear combina-
tion of xi vectors [5]. In the current subsection, we suggest the
following experiment to show that Liang’s method does not
inherently utilize the set of the data points as a sparsifying
dictionary in (7), and actually almost any dictionary D can be
used in (7) instead of XT .

2The authors would like to thank Mr. J. Liang for sending us the MATLAB
implementation of his method.



TABLE II
COMPARISON OF ESTIMATED ELLIPSE PARAMETERS USING (10) WITH

DEFINITIONS IN (8) AND (12)

Parameters Exact values with X as defined in (8) with X as defined in (12)
a −0.0157 −0.0155 −0.0154
b −0.0489 −0.0486 −0.0486
c −0.0440 −0.0437 −0.0438
d 0.2551 0.2530 0.2527
e 0.4203 0.4199 0.4201

x

y
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Fig. 2. The results of solving (10), once with X as defined in (8) correspond-
ing to Liang’s method; and once with X as defined in (12) in which D is a
random matrix.

In other words, given a particular set of data points, we
estimate the best fitted ellipse parameters using (10), once with
X as defined in (8) which corresponds to Liang’s method; and
once with X as defined in (12) in which the entries of D
are drawn from a random variable uniformly distributed over
(0, 1).

The final results are given in Table II and Fig. 2. It is seen
that the fitted ellipses using these two approaches are almost
the same, which emphasizes that (7) does not inherently use
the “data” matrix XT as the sparsifying dictionary.

As stated before (7), another justification behind (7) is
that the a vector is stated as a linear combination of “more
accurate” data points. To verify this justification, in another
ellipse fitting simulation using Liang’s method which is shown
in Fig. 3, the data points that correspond to large values of the
b vector are marked by circles. It is seen that these data points
are not “more accurate”, and in fact, they are mostly outliers
in this simulation.

D. Experiment III

To reach a desired accuracy, if a fitting algorithm requires
less number of data points compared to other methods, that
algorithm is considered stronger and more efficient. In the
current subsection, we compare other methods with ours from
this perspective. To this end, the ellipse parameters vector is
obtained for each number of data points, and the norm of the
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Fig. 3. Data points marked with circles are recognized as accurate points by
Liang’s method. Although Liang’s algorithm call these points accurate, they
are mostly outliers.
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Fig. 4. The error of the estimation of the ellipse parameters vector versus the
number of data points. Data points are contaminated by an additive Gaussian
noise with zero mean and variance 0.005. Approximately 20% of data points
are outliers.

error vector (i.e. the difference between the estimated and the
original vectors) is computed.

Fig. 4 shows the norm of the error vector versus the number
of data points for Liang’s method and ours. As it is seen in this
figure, the estimation error of Liang’s method increases when
the number of data points decreases. In contrary, our algorithm
almost has a constant performance versus the number of data
points. Therefore, Fig. 4 emphasizes on the strength of our
method as compared to Liang’s method when the number of
data points is small.

E. Experiment IV

In this subsection, the performance of ellipse fitting algo-
rithms for long ellipses is evaluated. For this experiment, long
ellipses are prepared such that the ratio of semi-major axis
to semi-minor one is in the range of 6 to 60. As before, the
ellipse parameters vector is obtained, and the norm of the error
vector is computed.

Fig. 5 shows the result for this experiment. As can be seen,
the estimation error of Liang’s method is larger when the ratio
of semi-axes is high (corresponding to longer ellipses). In
fact, as the high ratio of semi-axes is equivalent to a large
condition number of matrix XT , Liang’s method is sensitive
to the condition number of XT , which is composed of data
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Fig. 5. The error of the estimation of the ellipse parameters vector versus
the ratio of semi-axes. Data points are contaminated by an additive Gaussian
noise with zero mean and variance 0.005. Approximately 20% of data points
are outliers.
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Fig. 6. The error of the estimation of the ellipse parameters vector versus the
proportion of outliers to data points. The proportion of outliers to data points
varies from 10% to 60%.

points. On the other hand, our method is almost not sensitive
to the ratio of the semi-axes.

F. Experiment V

This experiment is to compare the performance of the
algorithms according to the amount of outliers. There are 10
data points contaminated by an additive Gaussian noise with
zero mean and variance 0.005 and considered as inliers. In
addition, there are some other data points corrupted by an
additive Gaussian noise with zero mean and variance 20 to
be considered as outliers. During the experiment, the number
of outliers varies from 1 to 6. Fig. 6 shows the result of
this experiment. It is seen that when the number of outliers
increases, the estimation error of Liang’s method increases.
Indeed, when the number of inliers is small, Liang’s method
is more affected by the outliers than ours.

V. CONCLUSION

In this paper, we proposed a new method of ellipse fitting,
which unlike most of the previous methods such as DLS [3],
is robust against outliers. In addition, we discussed that the
underlying justification of Liang’s method [5] as a state-of-
the-art method, is not convincing enough.

Experimental results in [5] had approved the strength of
Liang’s method in terms of running time and robustness to
outliers as compared to previous methods of ellipse fitting.
Hence, considering our experimental results which showed
superiority of our method over Liang’s method, we can assert

that our method would have better performance in the sense
of sensitiveness to outliers and complexity comparing to
previous methods such as DLS, ellipse fitting based on Hough
Transform, and Bayesian algorithm.
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