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ABSTRACT

Finding the sparse solution of an underdetermined system of
linear equations (the so called sparse recovery problem) has
been extensively studied in the last decade because of its ap-
plications in many different areas. So, there are now many
sparse recovery algorithms (and program codes) available.
However, most of these algorithms have been developed for
real-valued systems. This paper discusses an approach for
using available real-valued algorithms (or program codes) to
solve complex-valued problems, too. The basic idea is to con-
vert the complex-valued problem to an equivalent real-valued
problem and solve this new real-valued problem using any
real-valued sparse recovery algorithm. Theoretical guaran-
tees for the success of this approach will be discussed, too.

On the other hand, a widely used sparse recovery idea is
finding the minimum ¢' norm solution. For real-valued sys-
tems, this idea requires to solve a linear programming (LP)
problem, but for complex-valued systems it needs to solve
a second-order cone programming (SOCP) problem, which
demands more computational load. However, based on the
approach of this paper, the complex case can also be solved
by linear programming, although the theoretical guarantee for
finding the sparse solution is more limited.

1. INTRODUCTION
Consider the underdetermined system of linear equations
As =x, n

where the n X m matrix A and the n x 1 vector x are known,
s is the m x 1 vector of unknowns, and m > n. Such a system
has generally infinitely many solutions. The goal of a sparse
recovery algorithm is then to find a solution for which ||s||o
is minimum, where || - ||o stands for the £° norm of a vector,
that is, the number of its nonzero entries. In the case that s
is block-sparse (i.e., where the nonzero elements of s occur
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in clusters), a block-sparse recovery algorithm aims to find
a solution of (1) with minimum number of blocks having at
least one nonzero element.

Sparse solutions of underdetermined linear systems have
been extensively studied in the last decade due to their ap-
plications in many different problems such as compressed
sensing [1], atomic decomposition on overcomplete dictio-
naries [2], image deconvolution [3], direction-of-arrival esti-
mation [4], underdetermined sparse component analysis and
source separation [5].

It has been shown [4, 6, 7] that the sparsest solution of (1)
is unique, provided that it is sparse enough. More precisely,
let Spark(A) denote the minimum number of columns of A
that are linearly dependent [7]. Then [6, 7]:

Theorem 1 (Uniqueness Theorem). If (1) has a solution s*
for which [|s*|jo < §Spark(A), it is its unique sparsest solu-
tion.

Although the sparsest solution of (1) may be unique, find-
ing this solution requires a combinatorial search and is gen-
erally NP-hard. Hence, many algorithms have been devel-
oped so far trying to estimate the sparsest solution, for exam-
ple, Basis Pursuit (BP) [8], Matching Pursuit (MP) [2], and
Smoothed LO (SLO) [9]. The idea of BP, as one of the most
successful sparse recovery ideas, is replacing the £° norm by
¢! norm, that is, finding the solution of (1) for which |[|s||; £
>, |si| is minimized. It is then guaranteed that this solution
is the sparsest solution provided that it is sparse enough [6, 7].
More precisely, assume that the columns of A are of unit /2
norm, and let M (A) denote the mutual coherence of A, i.e.
the maximum correlation between its columns. Then:

Theorem 2. If (1) has a solution s* for which [|s*[|g < (1+
M(A)~1), it is the (unique) solution of both ¢ and ¢° mini-
mization problems.

However, many of existing sparse recovery algorithms
have been developed for real-valued systems. But, there
are many applications, e.g. where the sparsity is in the fre-
quency domain, in which (1) is complex-valued (see for



example [10, 11, 12]). For the case of BP approach, although
it works' also for complex domain [6, 7], it is more com-
plicated, both in theory and in computational load. This is
because minimizing ¢! norm for real-valued systems requires
only to solve a linear programming (LP) problem, while for
complex-valued systems it needs to solve a second-order
cone programming (SOCP) problem. A SOCP problem can
be solved for example using “SeDuMi” toolbox [13], which
is the solver used in [10, 12], and is also one of the solvers
used by CVX MATLAB package [14].

In this paper, we introduce a simple approach for directly
using a real-valued sparse recovery algorithm (or computer
program) for solving the complex-valued case. The basic idea
is to construct a real-valued system such that its sparse solu-
tion determines the sparse solution of the original complex-
valued system, and then to use the real-valued sparse recov-
ery algorithm. A problem with this approach is that the sparse
solution of the complex system can be found only if its £°
norm is less than a limit which is half of the limit guaran-
teeing the uniqueness of the sparsest solution. So, we also
present a modified approach that even if the ¢° norm of the
sparse solution is above this limit (but of course less than the
limit guaranteeing the uniqueness), it lets to find it with prob-
ability one.

When used with BP, this approach will result to solving
the complex-valued case by linear programming instead of
SOCP. However, we will see that the sparsity limit guaran-
teeing that it finds the sparse solution is (at worst) half of
the sparsity limit required by complex-valued BP (based on
SOCP).

The paper is organized as follows. The proposed approach
is presented in Section 2, and Section 3 focuses on solving
complex-valued problems using linear programming.

2. THE APPROACH

2.1. Main Idea

Definition 1. We define the operator R for complex-valued
matrices and column vectors as follows:

IThere are some inconsistencies in the literature about these points.
In [11] it has been stated based on a counter-example that in the complex
case, £1 norm minimization is no longer equivalent to £0 norm minimization
(this claim has also been repeated in [12]). This is, however, not correct,
because the proofs of [6] and [7] to Theorem 2 have both been stated for
the complex case. In fact, in the counter-example of [11], the sparsest so-
lution does not satisfy the condition of Theorem 2 (i.e. it does not satisfy
[[s*]lo0 < %(1 + M(A)~1), where columns of A are normalized). On the
other hand, it has been mistakenly stated in both [6] and [7] that £ mini-
mization problem can be casted as a linear program, which is not true for the
complex case.
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where Ze and Zm stand for the real and imaginary parts.

Note also that the operator R is invertible.

Lemma 1. For any n X m matrix A and m x k matrix B
(k = 1 for column vectors), R(AB) = R(A)R(B).

Proof. The proof is straightforward from the definition. [

Letnow A £ R(A),5 2 R(s), and X 2 R(x). It is easy
to see that s is a solution of the complex-valued system (1) if
and only if S is a solution of the real-valued system

AS=x. (2
Hence, the basic idea to find the sparse solution of (1) is:

Approach 1.

Step 1) Find the sparsest solution of the real-valued sys-
tem (2) using a real-valued sparse recovery algorithm;

Step 2) The sparsest solution of (1) is s = R~1(8), where
S is the vector obtained in the previous step.

Does this approach necessarily give the sparsest solution
of (1)? The answer is positive provided that the sparse solu-
tion of (1) is sparse enough:

Theorem 3. If (1) has a solution s* with [|s*||o < 1Spark(A),

then §* £ R(s*) is the unique sparsest solution of (2).

Proof. First note that for any vector s:
Isllo < IR (s)llo < 2{slo- 3)

Now, let s be any other solution of (2). We have to show that
[8*llo < lI8llo- We write [[8*[lo = [|R(s*)]lo < 2[ls*[lo <
1 SparkA < [s|lo < ||R(s)llo = ||S]|o, where the inequalities
are respectively due to (3), assumption, Theorem 1, and again
(3). O

2.2. A modified approach

Note that the sparsity bound in Theorem 3 is half of the spar-
sity bound for uniqueness (Theorem 1). So, if the complex-
valued system (1) has a solution with 1 Spark(A) < [|s*||o <
1 Spark(A), although it is its unique sparsest solution (The-
orem 1), it is not guaranteed by Theorem 3 that Approach 1
can find it. In this subsection, we practically eliminate this
limitation by modifying Approach 1 to guarantee that such a
sparse solution can also be found with probability one.



Let’s first call a vector strictly complex if none of its
nonzero elements are either real or pure imaginary. If s is a
strictly complex vector, then:

IR(s)llo = 2lIs]lo- O]

Using this equation (instead of (3)) in the last inequality of
the proof of Theorem 3 gives:

Lemma 2. Suppose that (1) has a solution s* for which
[s*llo < 3Spark(A), and let s be any other solution of (1). If
s is strictly complex, then ||R(s*)||o < ||R(s)||o-

Proof. We can write |R(s*)|lo < 2|[s*[|o < Spark(A) <
2|Isllo = ||R(s)]|o, where the inequalities are respectively due
to (3), assumption, Theorem 1, and (4). O

However, it is not guaranteed that a solution s of the deter-
ministic system (1) is strictly complex. But, we can add some
‘randomness’ to solve this problem. Note that (1) is equiva-
lentto A - (as) = (ax) for every nonzero complex scalar a.
In other words, s is a solution of (1) if and only if s, £ asis
a solution of

As, = Xq, ®)]

where x, 2 ax. Now, if we choose a nonzero « randomly
using a complex density (e.g., uniformly on the unit circle),
then for a fixed s, s, would be strictly complex with proba-
bility one. Thus, by applying Approach 1 to system (5), we
arrive to the idea of using the following modified approach:

Approach 2.

Step 1) Randomly choose a complex number « (e.g., using
a uniform distribution on the unit circle).

Step 2) Find the sparsest solution of the real-valued sys-
tem _

As, = X,, ©6)

where A = R(A) and %, = R(ax).

Step 3) The sparsest solution of (1) is s = R™(8,)/a,
where §,, is the vector obtained in the previous step.

Note that the above reasoning was only a first justification
to obtain the modified approach, not a proof. The problem is
that although for a fixed s, s, is strictly complex with proba-
bility one, the above reasoning requires that for all solutions
s of (1), s, is strictly complex, which is not true, because (6)
has infinitely many solutions s, that are not strictly complex
(for example, fix one of the entries of s,, to a real number and
solve the system for the remaining unknowns). So, we need
to state a formal proof for validity of the above approach. The
following theorem guarantees for Approach 2 the same bound
of uniqueness as Theorem 1.

Theorem 4. If (1) has a solution s* for which |s*||p <
1 Spark(A) (that is the whole uniqueness range), then R(s?,),
where s¥, £ as*, is the unique sparsest solution of the real-
valued system (6) with probability one.
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The main point for proving the above theorem is that we
will not need that as is strictly complex for all solutions of
(1); we will need this property only for solutions with ||s||o <
Spark(A)), which is guaranteed by the following lemma.

Lemma 3. If « is a randomly chosen complex number, then
for all solutions s of (1) satisfying ||s|jo < Spark(A), as is
strictly complex with probability one.

Proof. The point is that (1) can have only a finite number
of solutions that satisfy ||s|o < Spark(A). To prove this
claim, let p £ Spark(A) — 1, and note that for any set of
indices I = {i1,42, - ,ip}, 1 < i < m, there is at most
one solution of (1) whose support is a subset of /. This
can be shown by contradiction: suppose that s; and s; are
two solutions of (1), and their supports both lie in /. Then
A(s; —s3) = x — x = 0, while the support of s; — sy
is in I. In other words, we have found less than or equal p
columns of A that are linearly dependent, which contradicts
the definition of Spark(A). Now, since only (7;) number of

such I’s exist, (1) has at most (’;) number of solutions with
Isllo < Spark(A).

Now, since the number of such solutions is finite, mul-
tiplying them by a randomly chosen complex number «;, all
of the products would be strictly complex with probability
one. O

Proof of Theorem 4. Let §,, = R(s,) be any other solution
of (6). Then, s, is a solution of the complex-valued system
(5) and s = s, /« is a solution of (1). There are two possibil-
ities (note that Vs, ||as|lo = ||s||o):

o ||s|lo > Spark(A): Inthis case, [|R(s%)]lo < 2[/sk|lo <
Spark(A) < ||sallo < ||R(sa)|lo. where the inequalities are
respectively due to (3), assumption, assumption, and (3).

e ||s|lo < Spark(A): Here, according to Lemma 3, s,, is
strictly complex with probability one, so, applying Lemma 2
to (5) gives [ R(s5)]lo < [R(sa)o- O

3. COMPLEX-VALUED SPARSE RECOVERY BASED
ON LINEAR PROGRAMMING

Approaches 1 and 2 aim to obtain the sparse solution of a
complex-valued system from the sparse solution of a real-
valued system. However, the true sparse solution of this new
real-valued system is not itself known, and real-valued sparse
recovery algorithms are providing only estimations of it. In
this section, we focus on the combination of Approach 1 (or
2) and BP for estimating the sparse solution of (2), as an ap-
proach for estimating the sparse solution of (1), and we study
the condition that this estimator gives the true sparse solution
of (1). It is interesting to note that this approach estimates the
sparse solution of the complex-valued system (1) using linear
programming, not SOCP.



Remark 1. One can also exploit the equivalence of the real-
valued system (2) (or (6)) and the complex-valued system (1)
by looking at S (or S,,) as a block sparse vector, with blocks
of size 2, and then to use block sparse recovery algorithms
for solving the real-valued system. This approach, however,
does not use real-valued ‘sparse recovery’ algorithms, and re-
quires more complicated real-valued ‘block sparse recovery’
algorithms. For example, the mixed l5/]; minimization block
sparse recovery [15] needs again to solve a SOCP.

Note that the proposed method in the previous sections
can utilize any real-valued sparse recovery algorithm such as
OMP and SLO. However, these two algorithms have sophis-
ticated complex-valued versions [16, 17] (i.e., with the same
complexity as their real-valued versions), and there is no need
to use the proposed approach to handle the complex case.
Note also that the dimension of the real-valued system (2)
to be solved is twice as the dimension of the original complex
system.

3.1. Theoretical guarantee

In this section, we assume that the columns of A have unit £2
norms. So, Theorem 2 guarantees that BP can find the spars-
est solution if its £° norm is less than (1 + M (A)~1)/2. The
next lemma states a relation between M (A) and M (R(A)).

Lemma 4. Let A be a complex-valued n x m matrix (n <
m), and let A = R(A). Then M(A) < M(A).

Proof. It can be easily seen that the columns of A have also
unit /2 norms. Let C £ A" A. Then, according to Lemma 1:

C2R(C)=RAFR(A)

2
i,5+m

=R(A)HR(A) = AHA

2

2 2, 2 -
=cij|" =¢; + ¢ = Citm,j T Citm, j+m

= ‘ék:,ll S |Ck (mod m), | (mod m)la 1 S kal S 2m7 (7)

where ¢;; and ¢;; stand for the (4, j)’th elements of C and
C, respectively. The mutual coherences, M(A) and M(A),
are the largest magnitude non-diagonal elements of C and C,
respectively. According to (7), the largest magnitude non-
diagonal element of C is not less than the largest magnitude

non-diagonal element of C, and hence M (A) < M(A). O

The fact that the mutual coherence of A is smaller than
that of A is a desirable property, because it increases the
(1 + M~1)/2 bound. However, ||R(s)|lo can be as large
as 2|s||op, which decreases the sparsity bound guaranteeing
sparse recovery:

Theorem 5. If the complex-valued system (1) has a sparse
solution s* satisfying [|s*[lo < (1 + M(A)~1), then it is
guaranteed that the minimum ¢! norm solution of the real-

valued system (2) gives this sparse solution.
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Proof. Let §* £ R(s*). Then |50 < 2[|s*[jo < (1 +
M(A)™) < L(1 4+ M(A)™'), where the inequalities are
respectively due to (3), assumption, and Lemma 4. Therefore,
Theorem 2 guarantees that the minimum ¢! norm solution of
(2) is equal to 3%, which gives s* = R~1(5%). O

3.2. Experiment

The bound given in Theorem 5 to guarantee finding the sparse
solution by applying LP-based BP on the real-valued sys-
tem (2) is half of the bound given in Theorem 2 to guarantee
this by applying SOCP-based BP directly on the complex-
valued system (1). However, note that these are theoretical
‘guarantees’ and do not reflect necessarily the performance in
a typical scenario. This is both because the bound of Theo-
rem 2 does not itself show the typical behavior, and because
Lemma 4 does not show how much M (A) is smaller than
M(A) in a typical case.

In this subsection, a simple experiment is done for com-
paring the bounds that these two approaches fail to estimate
the sparsest solution. We used CVX MATLAB software [14]
(Version 1.21) based on SeDuMi for both applying SOCP-
based BP on (1) and applying LP-based BP on (2). As the per-
formance measure, we computed the Percentage Of Failures
(POF) of the algorithms, where a failure means ||Sg —s*|| oo >
€, in which s* is the true sparsest solution, § is its estimation,
and ¢ is a fixed threshold.

In our simulation, a random matrix A of size 50 x 100 and
an original sparse vector s* (with random support) were gen-
erated with elements whose real and imaginary parts are in-
dependently drawn from uniform distribution on (—0.5,0.5).
Then, we calculated x 2 As*, and gave A and x to both
sparse recovery algorithms to solve (1) and produce an esti-
mation of s*. Fig. 1 shows the resulted POF’s (using ¢ =
0.01) and the run-times of both algorithms on the same ma-
chine (as a rough comparison of complexities) versus ||s*||o
(each point is averaged over 500 runs of the simulation with
different A and s*). It is seen that the sparsity range in which
the real-valued approach has failed is not as small as half of
the sparsity range of the complex-valued approach. It is also
noticeable that although the real-valued approach has to solve
a problem with double size, because of the simplicity of LP
compared to SOCP, it has performed essentially faster?.

4. CONCLUSIONS

In this paper we introduced an approach which enables us
to use any real-valued sparse recovery algorithm (or avail-
able computer program) for solving complex-valued sparse

20One may argue that the speed advantage obtained here is not worth a new
algorithm. Note however that: 1) This speed advantage has been obtained by
using an even simpler algorithm, not by using a more complex algorithm (LP
instead of SOCP); 2) the main objective of the paper is not to obtain a ‘faster’
algorithm, it is to obtain an approach for using available real-valued sparse
recovery algorithms and program codes to solve complex-valued problems.
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Fig. 1. Comparison of applying SOCP-based BP on the com-
plex system (1) and applying LP-based BP on the real system
(2). The figures depict Percentage of Failure (POF) and esti-
mation time versus sparsity.

recovery, too. We saw that with a simple randomization trick,
this approach can be applied for the whole sparsity range that
guarantees the uniqueness of the sparsest solution. It was in-
teresting that where BP is used to estimate the solution of the
new real-valued system, the final sparse recovery algorithm
would solve a complex-valued problem using linear program-
ming, not SOCP which is usually needed. However, the guar-
antee that this LP-based BP can find the true sparsest solution
is more limited compared to the usual SOCP-based BP.
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