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One-Dimensional Sparse Representation

min
x
‖x‖0 s.t. y = Dx

I y ∈ Rn → One-Dimensional Signal

I D = [di], D ∈ Rn×m → Dictionary, di ∈ Rn → atom

I x ∈ Rm → Sparse Signal Representation

I m > n→ Underdetermind Linear System of Equations
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One-Dimensional Dictionary Learning

I Y , [y1,y2, . . . yL] ∈ Rn×L → Training Signals

I X , [x1,x2, . . . xL] ∈ Rm×L → Sparse Representation matrix

(D∗,X∗) = argmin
D∈D,X∈X

‖Y −DX‖2F

D ,
{
D : ∀i, ‖di‖22 = 1

}
X , {X : ∀i, ‖xi‖0 ≤ τ}

I X ∈ X → Impose Sparsity

I D ∈ D → Avoid scaling ambiguity

I General approach: Alternating Minimization → MOD (Engan et al., 1999) -
KSVD (Aharon et al., 2006)
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Vectorizing and its consequent problems

Two-Dimemsional Signals?
I vectorize each signal and use usual 1D methods

I Yi ∈ R20×20 −→ yi ∈ R400

I D ∈ R400×1600

Problems:

I Memory Consumption

I Computational Cost
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Two-Dimensional Signal Representation

Y =

m1∑
i=1

m2∑
j=1

xijΦij

I Y ∈ Rn1×n2 I X ∈ Rm1×m2 I Φij ∈ Rn1×n2

Separable Structure of 2D atoms in DIP1

Φij = aib
T
j −→ Y = AXBT ⇐⇒ y = Dx

I A = [a1,a2, ...,am1 ] ∈ Rn1×m1

I B = [b1,b2, ...,bm2 ] ∈ Rn2×m2

I D = B⊗A ∈ Rn1n2×m1m2 , y ∈ Rn1n2 , x ∈ Rm1m2

1Ghaffari, Babaie-Zadeh and Jutten, “Sparse decomposition of two dimensional signals”, ICASSP,
2009
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Two-Dimensional Sparse Representation

Find the sparse representation of signal Y in separable dictionaries A and B2

min
X
‖X‖0 s.t. Y = AXBT

Methods:

1 2D-SL02

2 2D-OMP3

2Ghaffari, Babaie-Zadeh and Jutten, “Sparse decomposition of two dimensional signals”, ICASSP,
2009

3Fang, Wu and Huang, “2D sparse signal recovery via 2D orthogonal matching pursuit”, SCIS, 2012
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Two-Dimensional Dictionary Learning

I Y = (Y1,Y2, ...,YL) I X = (X1,X2, ...,XL)

(A∗,X∗,B∗) = argmin
Xi∈Xi,A∈A,B∈B

L∑
i=1

‖Yi −AXiB
T ‖2F (1)

I A ,
{
A : ∀i, ‖ai‖22 = 1

}
I Xi , {Xi : ‖Xi‖0 ≤ τ}

I B ,
{
B : ∀i, ‖bi‖22 = 1

}

o The first two constraints avoid scaling ambiguity

o The last constraint impose the sparsity of representations

* SeDiL Algorith4

4Hawe, Seibert and Kleinsteuber, “Separable Dictionary Learning”, CVPR, 2013
F. Shahriari-Mehr, J. Parsa, M. Babaie-Zadeh, C. Jutten 8/22 EUSIPCO 2020



Introduction Proposed Methods Experimental Results

2D-MOD

Using Alternating Minimization:
1 Update Xi’s: Use usual 2D sparse Rep. methods

X
(k+1)
i = argmin

Xi∈Xi

L∑
i=1

∥∥Yi −AXiB
T
∥∥2
F

2 Update A: Use Gradient Projection

normalize
{( L∑

i=1

YiBXT
i

)( L∑
i=1

XiB
TBXT

i

)−1}
(2)

3 Update B: Use Gradient Projection

normalize
{( L∑

i=1

YT
i AXi

)( L∑
i=1

XT
i ATAXi

)−1}
(3)
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2D-CMOD Idea

Convexification Idea5 
A = Aa + A−Aa

B = Ba + B−Ba

X = Xa + X−Xa

AXBT = AaXaB
T + AXaB

T
a + AaXBT

a − 2AaXaB
T
a+

Aa(X−Xa)(B−Ba)
T + (A−Aa)Xa(B−Ba)

T+

(A−Aa)(X−Xa)B
T
a + (A−Aa)(X−Xa)(B−Ba)

T

AXBT ≈ AaXaB
T + AXaB

T
a + AaXBT

a − 2AaXaB
T
a

5Sadeghi, Babaie-Zadeh and Jutten, “Dictionary learning for sparse representation: A novel
approach”, SPL, 2013
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2D-CMOD Problem

New Cost function for 2D Dictionary Learning

(A∗,X∗,B∗) = argmin
Xi∈Xi,A∈A,B∈B

L∑
i=1

‖Yi + 2AaXa,iB
T
a

−AaXa,iB
T −AXa,iB

T
a −AaXiB

T
a ‖2F

I Jointly Convex over A,B and Xi’s

I Aa,Ba and Xa,i are parameters (previous values of variables)

I Different approaches exist to choose these parameters6

6Parsa, Sadeghi, Babaie-Zadeh and Jutten, “A new algorithm for dictionary learning based on
convex approximation”, EUSIPCO, 2019
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2D-CMOD Algorithm (cntd.)

Using Alternating Minimization:
1 Update Xi’s: Use usual 2D sparse representation methods for each Zi

Aa =A(k−1),A = A(k)

Ba =B(k−1),B = B(k)

Xa =X(k)

Zi =Yi − (A(k) −A(k−1))X
(k)
i (B(k−1))T

−A(k−1)X
(k)
i (B(k) −B(k−1))T

X
(k+1)
i =argmin

Xi∈X

L∑
i=1

‖Zi −A(k−1)Xi(B
(k−1))T ‖2F
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2D-CMOD Algorithm

Using Alternating Minimization:

2 Update A {
Xa = X = X(k+1)

Ba = B = B(k)

I The same problem as 2D-MOD for updating A, use (2)

3 Update B

{
Xa = X = X(k+1)

Aa = A = A(k+1)

I The same problem as 2D-MOD for updating B, use (3)
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2D-CMOD Pseudo-Code
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Recovery of Known Dictionary

Generating synthetic data

* Assume Y ∈ Rn×n

1 A ∈ Rn×2n,B ∈ Rn×2n −→ N (0, 1)

2 Xi’s are generated randomly with s non-zero elements

3 Yi = AXiB
T + Ni

Metrics

1 Successful Recovery Percentage of the Kronecker Dictionary.
max(dT

i Dt(:, j) > 0.99

2 Root Mean Square Error defined as:

RMSE =

√
L∑
i=1
‖Yi −AXiBT ‖2F

/
n2L
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Some Details

I For all algorithms, Orthogonal Matching Pursuit (OMP)7 has been used as the
sparse coding algorithm

I All the simulations were performed in MATLAB 2018b environment on a system
with 4.0 GHz CPU, and 16 GB RAM, under Microsoft Windows 10 64-bit
operating system

7Troop and Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit”,
TIT, 2007
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Recovery of Known Dictionary

Figure 1: Successful Recovery Percentage and RMSE.
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Recovery of Known Dictionary

Figure 2: Average time each algorithm’s iteration. s = n, L = 1000n.
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Recovery of Known Dictionary

Table 1: Average Number of iterations and required times to achieve 80 percent recovery(times
in seconds, reported between braces). sparsity level s = n, and L = 1000n.

Signals size n = 10 n = 15 n = 20 n = 25

1D-MOD 62(90) 59(584) 70(5110) —

1D-KSVD 52(527) 48(3339) 65(18720) —

2D-MOD 59(47) 36(72) 34(146) 40(352)

2D-CMOD 24(20 ) 23(49) 28(129) 25(235 )
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Image Denoising8

I 40000 patches, size 12× 12

I A ∈ R12×24, B ∈ R12×24, D ∈ R144×576

8Elad and Aharon, “Image denoising via sparse and redundant representations over learned
dictionaries”, TIP, 2006
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Conclusion

1 A new jointly convex objective function was introduced for 2D DL problem.

2 Two new algorithms were proposed to solve the 2D DL problem.

3 Experimental results show that the proposed methods have much less
computational complexity than 1D methods. Moreover, they need fewer training
signals and fewer iterations to converge.
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