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Abstract. In this paper, the problem of multimodal soft coupling under
the Bayesian framework when variance of probabilistic model is unknown
is investigated. Similarity of shared factors resulted from Nonnegative
Matrix Factorization (NMF) of multimodal data sets is controlled in
a soft manner by using a probabilistic model. In previous works, it is
supposed that the probabilistic model and its parameters are known.
However, this assumption does not always hold. In this paper it is sup-
posed that the probabilistic model is already known but its variance is
unknown. So the proposed algorithm estimates the variance of the prob-
abilistic model along with the other parameters during the factorization
procedure. Simulation results with synthetic data confirm the effective-
ness of the proposed algorithm.

Keywords: Nonnegative matrix factorization, Bayesian framework, Soft
coupling

1 Introduction

Multimodal signals are recorded by different sensors viewing a same physical phe-
nomenon. These signals can be of the same type (different microphones recording
a same speech) or different types (audio and video recordings of a speech). Since
the physical origin of the multimodal signals are the same, some similarities
and correlations are expected among them. Utilizing this similarity by the joint
analysis of the multimodal signals is known as data fusion [1, 2]. Coupled fac-
torization of the multimodal data sets is a common approach for data fusion [3]
and can be achieved by coupled matrix factorization [4], coupled matrix-tensor
factorization [2] or coupled tensor factorization [5].

Factorization of matrix Vm (a 2-way array data set) can be achieved by
using Nonnegative Matrix Factorization (NMF). NMF is decomposing a data
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matrix with nonnegative elements as a product of two matrices with nonnegative
elements as [6]

Vm = WmHm, m = 1, ...,M (1)

where Vm ∈ RF×N+ is the m-th data set, Wm ∈ RF×K+ and Hm ∈ RK×N+

(K < min(F,N)) are the factorization parameters of the m-th data set and M
is the number of the data sets.

Due to the correlation among the multimodal data sets (Vm,m = 1, ...,M ),
one or some of their factorization parameters is (are) similar which is (are) called
shared factor(s). The other parameters which are different for each of the data
sets are called unshared factors [5, 7]. Since factorization of a data set is not
unique, joint (coupled) factorization of multimodal data sets and utilizing the
similarity of their shared factors can improve the quality of the factorization,
and especially can reduce the indeterminacies.

In some algorithms such as [8] the shared factors are assumed to be equal
among the data sets. These algorithms are usually named as the hard coupling
algorithms. The “equality” constraint of the shared factors is relaxed to their
“similarity” in algorithms such as [4]. These algorithms are known as the soft
coupling algorithms and are exploited in different applications such as source
separation [4] or speaker diarization [9]. The similarity of the shared factors is
usually controlled by using penalty terms. The penalty terms can be in the form
of `1 or `2 norms [4] or can be achieved in the Bayesian framework and based
on the joint distribution of the shared factors [7].

The soft coupling in the Bayesian framework is studied in [7] and is based
on the statistical dependence between the shared factors which is assumed to be
known. But this assumption does not always hold. The statistical dependence
between the shared factors can be unknown. Even if the kind of the statistical
dependence is known, its parameters such as its variance can be unknown. In
this paper, the soft coupling of the shared factors in the Bayesian framework
when the variance of the statistical model is unknown is studied. Factorization
parameters of a data set are computed by the help of the parameters of another
data set using soft coupling. It is supposed that the kind of the statistical model
between the shared factors (Gaussian) is known, but the variance of the model
is unknown. So the variance is also estimated along with the other parameters.
In this paper, the update rules for updating the parameters are derived by using
majorization minimization algorithm and exploiting auxiliary functions and an
stopping criterion for stopping the update of the variance is also defined.

The paper is organized as follows. Soft coupling for NMF is reviewed in
Section 2. The proposed algorithm is presented in Section 3, and finally Section 4
is devoted to the experimental results.

2 Soft coupling for NMF

2.1 NMF model

As mentioned in the introduction, NMF is decomposing a matrix V with non-
negative elements to the product of two matrices W and H with nonnegative
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elements. The decomposition is achieved by solving [6]

min
W≥0,H≥0

D(V‖WH), (2)

where D measures the difference between V and WH. Different functions are
used forD such as the Kulback-Leibler divergence or the Itakura Saito divergence
[8, 4]. The Itakura-Saito divergence is defined as [8]

DIS(V‖WH) =
∑
f,n

{
v(f, n)∑

k w(f, k)h(k, n)
− log

v(f, n)∑
k w(f, k)h(k, n)

− 1

}
, (3)

where v(f, n), w(f, k) and h(k, n) are the elements of V, W and H, respectively.
The parameters W and H in (2) are estimated during an update procedure.

Multiplicative update rules with nonnegative initialization which preserve the
nonnegativity of the elements of the final parameters are proposed for estimating
W and H in (3) as [8, 4, 10]

w(f, k)← w(f, k)×
∑
n h(k, n)v(f, n)/v̂2(f, n)∑

n h(k, n)/v̂(f, n)
, (4)

h(k, n)← h(k, n)×
∑
f w(f, k)v(f, n)/v̂2(f, n)∑

f w(f, k)/v̂(f, n)
, (5)

where v̂(f, n) is the (f, n)-th element of V̂ = WH.

2.2 Coupled NMF

Coupled factorization As mentioned in the introduction, the coupled fac-
torization of the multimodal data sets is a common approach for data fusion.
Coupled factorization of two multimodal data sets in a hard manner (hard cou-
pling) is modeled as [8]

min
W1,W2,H

λ1D(V1‖W1H) + λ2D(V2‖W2H), (6)

where V1 and V2 are the multimodal data sets, H is the shared factor, W1 and
W2 are the unshared factors, and λ1 and λ2 are the weights of each term. For
coupled factorization in a soft manner (soft coupling) the above cost function
changes to [4]

min
W1,W2,H1,H2

λ1D(V1‖W1H1) + λ2D(V2‖W2H2) + λ3`p(H1,H2), (7)

where H1 and H2 are the shared factors, `p(H1,H2) is the penalty term which
controls the similarity of the shared factors, and λ3 weights the penalty term.
As mentioned before, the penalty term can be for example in the form of `1 or
`2 norms or can be obtained in the Bayesian framework which will be discussed
in the next subsection.
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Soft coupling in the Bayesian framework The problem of estimating W
and H given S can be modeled as the Maximum A Posteriori (MAP) estimation
of the parameters as [8, 7]

argmax
θ

p(θ,S) = argmin
θ
{− log p(S|θ)− log p(θ)}, (8)

where θ = {W,H} and p denotes the probability density function. The joint
estimation of the parameters of the two multimodal data sets S1 and S2 can also
be modeled as [7]

argmax
θ

p(θ,S1,S2) = argmin
θ
{− log p(S1|θ1)− log p(S2|θ2)− log p(θ1,θ2)},

(9)

where θ = {W1,H1,W2,H2}, θ1 = {W1,H1} and θ2 = {W2,H2}. The third
term, log p(θ1,θ2), is the logarithm of the joint density of θ1 and θ2. In (9) it
is assumed that the data sets S1 and S2 are conditionally independent given θ1

and θ2. H1 and H2 are the shared factors and W1 and W2 are the unshared
factors.

Similar to [7], it is assumed that H1 is random but H2, W1 and W2 are
deterministic, and H1 only depends on H2 (shared factors). So the last term of
(9) can be written as

− log p(θ1,θ2) = − log p(H1|H2). (10)

So, the joint estimation of the parameters in the Bayesian framework is modeled
as [7]

argmin
θ
{− log p(S1|θ1)− log p(S2|θ2)− log p(H1|H2)}, (11)

where− log p(H1|H2) relates the shared factors and is the soft coupling term. For
modeling − log p(Si|θi)(i = 1, 2), in [8], it is assumed that Si is the Short Time
Fourier Transform (STFT) matrix of a source (F × N matrix) whose elements
at discrete time “n” and frequency “f”, (si(f, n)), have the complex Gaussian
distribution: si(f, n) ∼ Nc(0,

∑
k wi(f, k)hi(k, n)), where wi(f, k) and hi(k, n)

are the elements of Wi and Hi, respectively. Under this assumption, it is shown
in [11] that:

− log p(Si|θi) = − log p(Si|WiHi) = DIS(Vs
i‖WiHi) + cst, (12)

where Vs
i ∈ RF×N+ is a matrix whose elements are vsi (f, n) = |si(f, n)|2. In [7],

it is assumed that the coupling model (− log p(H1|H2)) and its parameters are
known. In this paper we assume that although the statistical model between the
shared factors is known, the variance of the model is unknown. So the variance
should also be estimated along with the other parameters. This will be discussed
in the next section.
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3 The Proposed algorithm

In this paper, it is assumed that the second data set, Vs
2 = |S2|2, is factorized

beforehand and H2 has been computed and kept constant during the updating
procedure. In addition, the variance of the model is unknown and should be
estimated along with the other parameters. So the problem is computing the
parameters W1, H1 and the variance of the statistical model given S1 and H2.
The problem is formulated as the MAP estimation of the parameters as

argmax
W1,H1,σ

p(S1,H2,W1,H1, σ) =

argmin
W1,H1,σ

{
− log p(S1|W1H1)− log p(H1|H2, σ)

}
,

(13)

where σ2 is the variance of the statistical model which is unknown. In the above
model, σ is the same for all of the elements of H1 and H2, but the problem can
also be investigated when each element has a particular variance. Recall that it
is assumed that S1 only depends on W1 and H1 and W1 and σ are assumed to
be deterministic. Supposing that p is the Gaussian probability density function
and

(h1(k, n)|h2(k, n), σ) ⊥⊥ (h1(k′, n′)|h2(k′, n′), σ), (k, n) 6= (k′, n′)

where ⊥⊥ shows the independence between two random variables, and h1(k, n)
and h2(k, n) are the (k, n)-th elements of H1 and H2, respectively. So the soft

coupling term can be written as − log p(H1|H2, σ) =
∑

k,n ‖h1(k,n)−h2(k,n)‖2

2σ2 +∑
k,n{

1
2 log 2π + log σ}. By considering (12), (13) can be written as

argmin
W1,H1,σ

{
DIS(Vs

1‖W1H1) +

∑
k,n ‖h1(k, n)− h2(k, n)‖2

2σ2
+
∑
k,n

log σ

}
. (14)

The parameters are updated sequentially in each iteration using update rules.
We use (4) for updating W1, but new update rules are needed for updating H1

as well as σ which will be discussed in the following subsections.

3.1 Update rule for updating H1

The update rule for estimating H1 is derived using the majorization minimiza-
tion approach and auxiliary functions [6, 12]. For minimizing F (h), an auxiliary
function G(ht, h) is defined as

G(ht, h) ≥ F (h),

G(ht, ht) = F (ht),
(15)

where G(ht, h) is an auxiliary function for F (h) and ht is the point that G(ht, ht)
is equal to F (ht). G(ht, ht) has the property that F (h) is nonincreasing under
the following update [6]

ht+1 = argmin
h

G(ht, h).
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It means that F (ht+1) ≤ F (ht). So an update rule for minimizing F (h) can
be achieved by using a proper auxiliary function (details can be found in [6]).
An auxiliary function for minimizing the Itakura Saito divergence of (3) with
respect to H is proposed in [12] as

G(H|Ht) =
∑
k,n

{
ht

2
(k, n)

h(k, n)

∑
f

w(f, k)
v(f, n)

v̂2(f, n)
+ h(k, n)

∑
f

w(f, k)

v̂(f, n)

}
+ cst,

(16)

where v̂(f, n) is the (f, n)-th element of V̂ = WHt. Since the above auxiliary
function is convex with respect to H (noting that h(k, n) ≥ 0 ∀k, n), its mini-
mum can be found by finding the roots of its derivative. In (14), the Itakura Saito
divergence is coupled with the penalty term. So the convex auxiliary function
for minimizing the cost function (14) with respect to H1 is

G2(H1|Ht
1) = G(H1|Ht

1) +

∑
k,n ‖h1(k, n)− h2(k, n)‖2

2σ2
. (17)

The derivative of the above auxiliary function with respect to h1(k, n) is

−h
t
1
2
(k, n)

h21(k, n)

(∑
f

w1(f, k)
vs1(f, n)

v̂21(f, n)

)
+

(∑
f

w1(f, k)

v̂1(f, n)

)
+

(h1(k, n)− h2(k, n))

σ2
.

(18)
The above equation should be solved with respect to h1(k, n). Denoting a(k, n) =

−ht1
2
(k, n)

(∑
f w1(f, k)

vs1(f,n)

v̂21(f,n)

)
, b(k, n) =

(∑
f
w1(f,k)
v̂1(f,n)

)
− h2(k,n)

σ2 and c(k, n)

= 1
σ2 , (18) changes to

a(k, n) + b(k, n)× h12(k, n) + c(k, n)× h13(k, n)

h1
2(k, n)

, (19)

where v̂1(f, n) and vs1(f, n) are the (f, n)-th elements of V̂1 = W1H1 and Vs
1,

respectively, and a(k, n) < 0, c(k, n) > 0 and b(k, n) can be positive or negative.

One of the roots of the numerator of (19) is 1
3

(
z(k, n) + 1

z(k,n) − 1) b(k,n)c(k,n) where

z(k, n) is equal to (for the sake of simplicity, (k, n) is removed in the rest of the
equations)

z =
3
√

3
√

3
√

27a2c4 + 4ab3c2 − 27ac2 − 2b3

b 3
√

2
. (20)

For
√

27a2c4 + 4ab3c2 being real, the condition b ≤ 3

√
− 27

4 ac
2 (noting that a < 0)

should be held. Simple calculation shows that if b ≤ 3

√
− 27

4 ac
2, then −27ac2−2b3

is also positive. So if b ≤ 3

√
− 27

4 ac
2, the numerator of (20) is positive and the

sign of z is the same as the sign of b. The sign of z+ 1
z −1 is the same as the sign

of the z and the sign of z is the same as the sign of b, therefore if the constraint

b ≤ 3

√
− 27

4 ac
2 holds, 1

3

(
z+ 1

z −1) bc is positive. So h1(k, n) = 1
3

(
z+ 1

z −1) bc is the
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positive root of (18). For when the condition b ≤ 3

√
− 27

4 ac
2 does not hold, for

decreasing the auxiliary function and consequently the proposed cost function,
if (18) > 0 then ht1(k, n) decreases by dividing by 1 + β. Otherwise ht1(k, n) is
increased by multiplying to 1 +β where β is a small positive constant. Based on
this discussion, the update procedure of H1 is summarized below:

Algorithm 1 Update procedure for H1 ((t+ 1)-th iteration)

1: if b ≤ 3

√
− 27

4
ac2 then

2: ht+1
1 (k, n)← 1

3

(
z + 1

z
− 1) b

c

3: else
4: if (18) > 0 then
5: ht+1

1 (k, n)← ht
1(k, n)/(1 + β)

6: else
7: ht+1

1 (k, n)← ht
1(k, n)× (1 + β)

8: end if
9: end if

3.2 Update rule for updating σ

Similar to H1, we use auxiliary function for updating σ (at point σt) as

G(σ|σt) =

∑
k,n ‖h1(k, n)− h2(k, n)‖2

2σ2
+ (log σt +

σ − σt

σt
)K ×N, (21)

where “log” function is replaced by its tangent [12] which is the same for all of
the elements of H1. So the last summation in (14) changes to the product of

(log σt+ σ−σt

σt ) by (K×N), the entry number of H1. The auxiliary function (21)
is convex with respect to σ and the root of its derivative with respect to σ is

σ =
3

√∑
k,n ‖h1(k, n)− h2(k, n)‖2σt

K ×N
. (22)

So σ is updated using (22). Updating σ without any additional constraint re-
sults in the convergence of σ to zero (very small values) and H1 will become
equal to H2 and finally the cost function (14) converges to −∞. So updating σ
should be stopped after some iterations. In this paper, σ is updated as long as
DIS(Vs

1‖W
t+1
1 Ht+1

1 ) ≤ DIS(Vs
1‖W

t
1H

t
1), where Wt

1 and Ht
1 are the parameters

of the t-th iteration and Wt+1
1 and Ht+1

1 are the parameters of the (t + 1)-
th iteration. DIS(Vs

1‖W
t
1H

t
1) is the cost function of (14) without the coupling

penalty term in the t-th iteration. Excessive reduction in σ gives a significant
weight to the coupling term which results in too much similarity of H1 and H2.
This makes DIS(Vs

1‖W1H1) to increase (instead of decrease), especially when
H1 and H2 are not very similar. This can be used as a criterion for stopping the
update of σ. So updating σ stops and σ is kept fixed in the rest of the updating
procedure as soon as DIS(Vs

1‖W
t+1
1 Ht+1

1 ) ≤ DIS(Vs
1‖W

t
1H

t
1) is violated.
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Fig. 1. The estimated σ (continuous line) using the proposed algorithm and the actual
σ (dashed line).

Fig. 2. Comparing the estimation errors using the proposed algorithm (continuous line)
and the situation when the variance is known (dashed line).

4 Experimental results

In this section, the effectiveness of the proposed algorithm is investigated. In the
first simulation, the quality of the proposed algorithm in estimating the variance
is investigated. The matrices W1 ∈ R100×10

+ and H2 ∈ R10×100
+ are produced

with random nonnegative elements. H1 is produced by adding Gaussian noise
to H2 as p(H1|H2, σ) = N (H2, σ

2) where N (H2, σ
2) is the Gaussian noise with

the mean = H2 and the variance = σ2. The negative elements of H1 are replaced
with zero. The data matrix (Vs

1) is produced by multiplying W1 and H1. β is
set to 0.1, the initial value for the estimation of σ is set to 10 and all of the
other parameters are initialized randomly with positive values. The results for
the estimation of σ are shown in Fig. 1. It is clear from the results that the
algorithm has the ability to estimate σ.

The estimation error of H1 is calculated as
‖H1−Ĥ1‖2F

K×N where Ĥ1 is the es-
timation of H1. The estimation errors for the proposed algorithm and for the
situation when the variance is known are shown in Fig. 2. The results show that
except for some large values of the actual σ, the proposed algorithm and the
situation in which the variance is known has nearly the same estimation errors.
Note that when the actual variance (σ2) is known, only W1 and H1 are updated
using (4) and Algorithm 1.
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Fig. 3. The decrease of the proposed cost function during the iterations.

Table 1. The estimation errors of H1 for the proposed algorithm and the hard coupling
situation.

actual σ 1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10

1
11

1
12

Proposed algorithm 0.073 0.055 0.041 0.031 0.024 0.019 0.016 0.0134 0.0111 0.0099

Hard coupling 0.087 0.062 0.045 0.034 0.026 0.021 0.017 0.0139 0.0116 0.0099

Table 2. The estimation errors of H1 for the proposed algorithm and when σ is chosen
arbitrarily.

actual σ
chosen σ

proposed algorithm
3 1 0.3 0.1 0.03

0.3 0.0733 0.0308 0.0481 0.0714 0.0794 0.0471

0.1 0.0357 0.0027 0.0069 0.0087 0.0093 0.0087

0 0.0460 0.0019 5.477× 10−6 2.816× 10−9 3.715× 10−12 9.969× 10−21

The decrease of the cost function (14) during the iterations under the pro-
posed update rules is shown in Fig. 3. The proposed algorithm is executed for
the actual σ equal to 0.1 and β = 10−3.

In Table 1, the estimation errors of the proposed algorithm are compared
to the hard coupling situation in which Ĥ1 = H2. It is clear from the results
that the proposed algorithm has lower estimation errors comparing to the hard
coupling situation, especially for the larger variances. But by decreasing the
actual variance the estimation errors become closer to each other.

And finally, we have compared the proposed algorithm with the situation
when the variance is not estimated but is chosen arbitrarily (not necessarily
equal to the actual variance) for several values of the actual σ. The estimation
errors are presented in Table 2 (the estimation errors of the proposed algorithm
is presented in the last column). It is clear from the results that choosing an
incorrect variance, especially when the actual σ = 0, can result in a significant
estimation error. But this error is reduced using the proposed algorithm.
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5 Conclusion

In this paper, we have proposed an algorithm for the soft coupling of the shared
factors in the Bayesian framework. As mentioned before, for the soft coupling of
the shared factors in the Bayesian framework the statistical model between the
shared factors should be known. But this assumption does not always hold. In
this paper, it is assumed that the general statistical model between the shared
factors is known but the variance of the model is unknown. So the proposed
algorithm estimates the variance of the model along with the estimation of the
factorization parameters. The presented results show the ability of the proposed
algorithm in the estimation of the model variance.
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