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Abstract—Optimal sensor placement for a single source extrac-
tion has been studied recently. In the current paper, a criterion
to optimally placing the sensors for source separation of the
noisy mixtures is proposed. Moreover, it is described how a
blind source separation (BSS) method can be used to estimate the
spatial gains from the measurements of the already placed sensors
to enhance the placement of the remaining sensors. Numerical
simulations show that the proposed criterion outperforms the
previous criterion in source extraction from the noisy mixtures,
and illustrates its efficiency in sensor placement for source
separation.

Index Terms—source separation, optimal sensor placement

I. INTRODUCTION

Optimal sensor placement can be relevant in any application
of using sensors to collect data, and for which the spatial
positions of the sensors affect the performance of the mea-
surement system or the cost of the sensor placement. It has
drawn attentions in areas such as structural health monitoring
[1], [2], source localization [3], [4], municipal water networks
[5], [6] and wireless sensor networks [7], [8].

In a source separation problem, propagated signals from
several sources are measured by sensors, and the goal is to
estimate the latent source signals from the measured data. In
linear source separation with instantaneous mixtures, the mea-
sured signals are linear combinations of the source signals. The
coefficients of this combination typically depends on the signal
attenuation between the sources and the sensors. Consequently,
the spatial positions of the sensors determine the coefficients,
which we refer to as spatial gains. Various methods have been
developed to address this type of source separation problem
[9]. Even when the spatial gains are completely unknown and
the source separation is performed blindly, there are methods
called equivariant blind source separation (BSS) methods,
which lead to the performance independent of the spatial
gains. Examples of equivariant BSS methods include equiv-
ariant adaptive separation via independence (EASI) [10] and
equivariant nonstationary source separation [11]. Therefore, if
an equivariant method is employed, the sensor positions will
not affect the separation performance. However, such methods
are limited to noiseless measurements.

In many real-life applications, the signals measured by
sensors are subject to additive noise. For example, in electroen-
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cephalography (EEG), the recorded signals by the electrodes
contain not only the sources of interest, related to the special
brain events, but also non-event-driven ongoing brain activities
as well as the artifacts caused by irrelevant activities such as
eye blinking, which can be treated as additive noise [12]. In
such cases, by assuming the noise spatial covariance matrix
to be full rank, the sensor positions affect the performance
of source separation, regardless of whether the problem is
blind or not. In fact, considering the noise components as
additional sources, the number of source components exceeds
the number of sensors, violating the assumption required
for equivariant methods. Additionally, it makes the perfect
extraction of the sources impossible, even if the spatial gains
are known. Consequently, finding the optimal sensor positions
to improve the quality of source separation becomes interesting
when dealing with noisy measurements. This paper addresses
precisely this problem.

Recently, research has been conducted on sensor placement
for extracting a single source from noisy measurements. This
work introduces new criteria, based on the signal-to-noise ratio
(SNR) of the linearly extracted signal, that are optimized to
determine the optimal sensor positions [13], [14]. The results
demonstrate that the proposed criteria outperform classical
Kriging based sensor placement approaches in terms of the
output SNR of the extracted signal [14]. However, to the best
of our knowledge, the problem of sensor placement for source
separation of noisy mixtures has not been previously studied.

In this paper, by assuming the prior information about
the spatial gains of the sources to be given by a stochastic
Gaussian Process (GP) model, an optimization criterion based
on the expected value of the signal-to-interference-plus-noise
ratio (SINR) of the separated signals is proposed. Numerical
simulations demonstrate the efficiency of the proposed crite-
rion in sensor placement for source separation. In addition, the
paper illustrates how the recorded data from already placed
sensors can be utilized in the placement procedure to reduce
uncertainty regarding the spatial gains and help the placement
of the remaining sensors.

This paper is organized as follows. In Section II, we present
our proposed method for optimizing sensor placement and
describe the estimation method for the spatial gains using sen-
sor data. Section III provides numerical results and compares
the performance of the proposed method with another sensor
placement approach. Finally, Section IV concludes the paper.



II. PROPOSED METHOD

In this section, the problem statement, the proposed criterion
for the sensor placement and its optimization approach are
presented. Moreover, a method to estimate the spatial gains
using sensor data to help the placement procedure is described.

A. Linear source estimation model

Assume that P independent sources propagate their signals,
s(t) = [s1(t), s2(t), ..., sP (t)]

T , into a D-dimensional space
X ⊂ RD, and let ap(x) denote the spatial gain from the p-
th source to the sensor whose coordinates are x ∈ X . The
measured signal by a sensor at time t and coordinates x can
be written as

y(x, t) =

P∑
p=1

ap(x)sp(t) + n(x, t), (1)

where n(x, t) is additive noise. The measurements are as-
sumed to be an instantaneous noisy mixture of the sources,
meaning that the propagation delay from the sources to the
sensors is negligible, which is a realistic assumption in a
large number of applications, such as electroencephalography.
Let us assume that M sensors are placed at the positions
XM = {x1,x2, ...,xM}. The measured signals y(XM , t) =
[y(x1, t), y(x2, t), ..., y(xM , t)]

T can be rewritten as

y(XM , t) =

P∑
p=1

ap(XM )sp(t) + n(XM , t), (2)

where ap(XM ) ≜ [ap(x1), ap(x2), ..., ap(xM )]
T is the vector

of the spatial gains of the p-th source at the corresponding
positions, and n(XM , t) ≜ [n(x1, t), n(x2, t), ..., n(xM , t)]

T

is the vector of additive noise.
We assume that the l-th source is estimated linearly using

a vector fl ∈ RM , that is,

ŝl(t) = fTl y(XM , t) =

P∑
p=1

fTl ap(XM )sp(t) + fTl n(XM , t).

(3)
To choose the vector f optimally, one way is to find it such
that the SINR of the estimated source is maximized. The SINR
of the l-th estimated source is given by

SINRl(fl,XM ) =

E
[
(fTl al(XM )sl(t))

2
]

E
[(

fTl (
∑P

p=1,p̸=l ap(XM )sp(t) + n(XM , t))
)2

] . (4)

The additive noise is assumed to have zero mean and be
independent of the sources. The variances of the sources and
the covariance matrix of the noise vector (denoted by Cn

MM )
are assumed to be constant over time. Moreover, without
the loss of generality, the sources are assumed to have unit
variances (E[(sl(t))2] = 1), so their power is assumed to be

embedded in the spatial gains. Then, the SINR in equation (4)
can be simplified as

SINRl(fl,XM ) =

fTl al(XM )al(XM )T fl

fTl

(∑P
p=1,p̸=l ap(XM )ap(XM )T +Cn

MM

)
fl
. (5)

Assuming that the noise covariance matrix is full rank, the
vector f∗l = (

∑P
p=1,p̸=l ap(XM )ap(XM )T + Cn

MM )−1al
maximizes (5), and the maximum achievable SINR for the
l-th linearly estimated source is given by

SINRl(f
∗
l ,XM ) =

al(XM )T (

P∑
p=1,p̸=l

ap(XM )ap(XM )T +Cn
MM )−1al(XM ).

(6)

B. Sensor placement criterion

To optimally place the sensors, one can search for the sensor
positions that maximize the sum of the SINRs of the sources,
assuming the spatial gains are known. However, in practice,
perfect knowledge about the spatial gains may not be available.
To address this issue, similar to [14], we model the spatial
gains of each source as a realization of a stochastic Gaussian
Process (GP), that is,

âp(x) ∼ GP (map(x), Cap(x,x′)) . (7)

Here, map(x) represents the mean of the Gaussian random
variable âp(x), and Cap(x,x′) is a symmetric positive-definite
kernel function that specifies the covariance between âp(x)
and âp(x

′). It is assumed that the spatial gains for different
sources are independent of each other. Modelling both prior
information and uncertainty about the spatial gains, and the
ability to generate various signal shapes are from the powerful
properties of the GP. The mean and covariance function of
the GP model, along with the covariance function of the
noise, should be known in advance to utilize this model
for sensor placement. The noise covariance function can be
learned using measurements taken when the sources are not
active, and the GP parameters can be estimated either using
the prior information about the propagation properties of the
environment, or using some rough measurements combined
with the BSS methods and regression techniques.

By assuming a stochastic model for the spatial gains, the
SINR of (6) also becomes stochastic. Therefore, we use the
sum of the expected values of the SINRs of all the sources as
a sensor placement criterion, that is,

J(XM ) =

P∑
l=1

E
[

ˆSINRl(f
∗
l ,XM )

]
=

P∑
l=1

E

âTl ( P∑
p=1,p̸=l

âp(XM )âp(XM )T +Cn
MM )−1âl

 .

(8)

Even with the probability distributions of the spatial gains,
obtaining a closed-form expression for the expected values of



the SINR for each source is not straightforward. Therefore, in
this paper, averaging over the Monte Carlo realizations of the
SINR is used to numerically calculate its expected value. In
other words, using the probability distributions of the spatial
gains, L independent samples of them are generated, and for
each sample of the spatial gains, a sample of the SINR is
calculated using (6). Finally, the expected value of the SINR
is estimated by averaging these L independent samples.

C. Optimization approach

In order to find the points that optimize the criterion,
a practical approach is to perform a grid search over the
available space. Let us assume a grid of T points in the space,
XT = {x1,x2, ...,xT }, as candidate positions to place M
sensors. The set of M points that maximize the criterion (8)
should be found, that is,

X∗
M = argmax

XM⊂XT

J(XM ). (9)

Solving (9) requires a combinatorial search over
(
T
M

)
=

T !
M !(T−M)! possibilities, resulting in a significant computa-
tional cost. To address this issue, the greedy method introduced
in [14] can be employed. This method breaks down the
optimization into smaller sub-problems. In each sub-problem,
the previously placed sensors are assumed to be fixed, and
N new sensors are placed at the points that maximize the
criterion. While this greedy approach does not guarantee an
exact optimal solution, it makes the problem practically solv-
able in terms of computational cost. In each small optimization
problem, the number of possibilities to be explored is less than(
T
N

)
, which becomes feasible computationally for sufficiently

small values of N .
This step by step sensor placement method can be improved

by another idea, which is called sequential approach in [14]. In
this approach, at each step, the measurements obtained from
the already placed sensors are utilized to estimate the spatial
gains in the placed positions. This reduces the uncertainty
about the spatial gains in the whole available space, and
improves the placement of the remaining sensors. For the
remainder of this section, we assume that an estimation of
the spatial gains at the placed sensor positions is available. A
method for estimating the spatial gains is described in Section
II-D.

We begin with an empty set of the points, and at each
iteration, N < M new positions are selected to place the
sensors until the number of the placed sensors reaches M .
Assume that K sensors are placed at the positions XK =
{x1,x2, ...,xK} in previous iterations. We have an estimation
zp(XK) of the spatial gains for the p-th source obtained from
the data measured by the placed sensors. This estimation can
be expressed as

zp(XK) = ap(XK) + vp(XK), (10)

where ap(XK) is the vector of the true spatial gains and
vp(XK) is the measurement error. The error term is assumed
to be Gaussian with zero mean and independent of the spatial

gains. Therefore, for any N new points XN , the entries of
the vectors âp(XM ) = [âp(XK)T , âp(XN )T ]T and zp(XK)
are jointly Gaussian random variables all together. In order to
exploit the information given by the estimation zp(XK), the
conditional distribution of âp(XM ) given zp(XK) should be
determined. The conditional distribution is also a multivariate
Gaussian and can be fully characterized by the conditional
mean vector and covariance matrix, given by

m
ap

M |K = E[âp(XM )|zp(XK)] =

m
ap

M +C
ap

MK(C
ap

KK +Cv
KK)−1(zp(XK)−m

ap

M )
(11)

and

C
ap

M |K = E
[
||âp(XM )−m

ap

M |K ||22 |zp(XK)
]
=

C
ap

MM −C
ap

MK(C
ap

KK +Cv
KK)−1(C

ap

MK)T
(12)

Here, map

M denotes the mean of âp(XM ), and C
ap

KK , Cap

MM

and Cv
KK are the covariance matrices of âp(XK), âp(XM )

and vp(XK), respectively. Furthermore, Cap

MK represents the
cross-covariance matrix between âp(XM ) and âp(XK).

In the same manner, the criterion of (8) can be calculated
using Monte Carlo realization, but with the utilization of
conditional distributions to generate samples of the spatial
gains. Therefore, in each iteration, the optimization problem
to be solved is

X∗
N = argmax

XN⊂XT \XK

J(XK ∪XN |z{P}(XK)), (13)

where J(XK ∪ XN |z{P}(XK)) represents the criterion at
the points XK ∪XN , which is computed using the obtained
conditional distributions.

D. Estimating spatial gains using sensor data

In this section, we present a method for estimating the
spatial gains to help the placement procedure as described in
the previous section. To estimate the spatial gains of a source,
one can suggest inactivating all the sources except the desired
one, but controlling the activation of the sources is often not
available in many applications, e.g. in electroencephalography.
Moreover, it is a hard or inaccurate procedure to estimate the
spatial gains using the signal propagation properties of the
environment. In such applications, the only practical way is to
use sensors measured data. BSS techniques offer the advantage
of not only separating sources from an unknown mixing model
but also estimating the mixing coefficients. Hence, they can
serve as a powerful tool for estimating spatial gains using
sensor data.

The employed estimation approach consists of two stages.
Firstly, a method similar to the principal component analysis
(PCA) [15] is applied to reduce the dimensionality of the
measurements to match the number of sources while mini-
mizing the impact of noise. Secondly, a BSS method is used
to estimate the spatial gains.

Assume that K placed sensors are used to measure Ns

samples. Similar to (2), the measurements can be written as

y(XK , t) = AKs(t) + n(XK , t), t = 1, 2, ..., Ns, (14)



where AK = [a1(XK),a2(XK), ...,aP (XK)] ∈ RK×P is the
mixing matrix. This estimation is performed where the number
of the placed sensors is greater than or equal to the number
of the sources. In the first stage, our objective is to find a
transformation matrix H = [h1,h2, ...,hP ]

T ∈ RP×K with
orthonormal row vectors, in order to transform the measure-
ments into a P dimensional space, that is, ŷ(t) = Hy(t,XK).
To obtain the optimum H, the mean square error (MSE)
criterion,

JMSE(H) = E

∥∥∥∥∥AMs(t)−
P∑
i=1

(hT
i y(XM , t))hi

∥∥∥∥∥
2
 ,

(15)
is minimized, where

∑P
i=1(h

T
i y(XM , t))hi is the projection

of y(XM , t) onto the subspace spanned by the basis vectors
h1,h2, ...,hP . Assuming the identity covariance matrix for
the sources s(t), the MSE can be simplified as JMSE(H) =
Tr[AMAT

M ] −
∑P

i=1(h
T
i (C

y
KK − 2Cn

KK)hi), where Cy
KK

is the covariance matrix of the measurements, and can be
calculated using measured samples. Therefore, minimizing the
MSE leads to the maximizing

∑P
i=1(h

T
i (C

y
KK − 2Cn

KK)hi)
over the orthonormal vectors hi, i = 1, 2, ..., P . A classi-
cally known solution for this problem is the eigenvectors of
(Cy

KK − 2Cn
KK) that correspond to its P largest eigenvalues.

In the second stage, i.e. BSS, the modified fastICA algo-
rithm for noisy measurements [15] is applied to the trans-
formed measurements in order to separate the sources. For
successful separation, the sources should be independent of
each other and exhibit non-Gaussian distributions. Assume that
ŝ(t) denote the separated source signals. Knowing that the
spatial gains of the p-th source can be written as ap(XM ) =
E[y(XM , t)sp(t)], an estimate of the spatial gains of the p-
th source, â(XM ), is obtained using the sample mean of
y(XM , t)ŝp(t). This estimation can be modelled as zp(XK)
in (10) to be used in the placement procedure. In this paper,
we assume that the estimation error vp(XK) is negligible.
However, we know that it can be a rough assumption in
general, and obtaining the estimation error and studying its
effect in modelling is left as a future work.

III. NUMERICAL SIMULATIONS

In this section, the proposed criterion will be compared with
the expected SNR criterion of [13] in a single source extraction
task in Fig. 1. The performance of the proposed method will
be studied with two different estimation approaches and two
levels of the uncertainty in Fig. 2.

A. Simulation setup

The simulations are performed on either a 1D space with
a grid of 200 points in the interval [0, 1], or a 2D space
with a 40 × 40 grid of the points within a unit square.
The covariance functions of the noise and the GP model of
the spatial gains are assumed to have the form C(x,x′) =
σ2exp(−||x − x′||2/(2ρ2)). The GPs for the spatial gains of
each source, GP (map(x), Cap(x,x′)), share the same param-
eters. The mean function map(x) is generated using a GP with

Fig. 1: Comparing the performance of the proposed criterion
with expected SNR criterion and random placement according
to the improvement of the SINR of a single source versus the
number of the placed sensors, using sequential approach and
perfect estimation of the spatial gains in 1D space.

zero mean, variance parameter σa = 1, and the smoothness
parameter ρa = 0.05 which matches the smoothness parameter
of Cap(x,x′). The variance parameter of Cap(x,x′), which
determines the level of uncertainty, is denoted as σu and varies
across different simulations. The noise is assumed to have
zero mean, and its covariance function parameters are set as
σn = 1 and ρn = 0.2ρa. In each iteration of the sequential
sensor placement, N = 1 new sensor is added. To calculate the
expected value of the SINRs, averaging over L = 20 Monte
Carlo realizations is used. Moreover, for each plot, 100 Monte
Carlo simulations are repeated to obtain the mean and standard
deviation of the desired values.

B. One source extraction

In the first part of the simulations, proposed criterion is
compared with the expected SNR criterion of [13], which is
designed for the optimal sensor placement for a single source
extraction. The scenario assumes the extraction of one source
from a mixture of 5 sources plus additive noise. The criterion
of (8) is modified for the source extraction task, such that only
the expected SINR of the extracted source is used instead of
the sum of them. On the other hand, the expected SNR crite-
rion of [13] uses the SNR of the extracted source as a criterion,
neglecting the impact of other sources on the extracted signal.
Assuming the extraction of the first source, the expected SNR
criterion can be written as JSNR = E

[
âT1 (C

n
MM )−1â1

]
.

Fig. 1 illustrates the output SINR of the extracted source,
obtained from the sensors placed by these two criteria, and
also random placement of the sensors. In random placement,
the sensor positions are selected uniformly and independently
from the available space. The variance parameter of the
covariance function for the spatial gains is set to σu = 0.1.
The sensors are placed in a 1D space, the sequential approach
is used and the estimation of the spatial gains at the placed
positions is assumed perfect, without any error. The figure
demonstrates that the performance of the both criteria is better
than the random sensor placement. For 15 placed sensors,
proposed criterion and the expected SNR criterion of [13]
yield mean SINR of 25 and 15, respectively, indicating that the
proposed criterion outperforms the expected SNR criterion in



source extraction. That is because the proposed criterion uses
the information of the spatial gains of all the sources, instead
of just the desired one.

C. Performance of the proposed method in source separation

In this simulation, the performance of the proposed method
is studied in terms of the average of the output SINRs
of the separated sources. Two cases are considered: perfect
estimation of the spatial gains and estimation using the BSS
method, both employing the sequential optimization approach.
In the perfect estimation case, it is assumed that the spatial
gains are estimated perfectly without any error at the position
of the placed sensors. Whereas, in BSS estimation, the method
of Section II-D is used to update the estimation of the spatial
gains using the measurements of the placed sensors. For this
estimation, the sources and the noise are assumed to have
the uniform and Gaussian distributions, respectively, and 500
measured samples are used. The number of the sources is 3 and
the placement is performed over a 2D space. Fig. 2 presents
the improvement in the average output SINRs of the separated
sources as the number of placed sensors increases, considering
two levels of uncertainty: a) σu = 0.1, and b) σu = 0.8.
The blue and green curves show the performance of the
proposed method using perfect estimation and BSS estimation,
respectively. Two additional curves are included: The red
curve shows the average output SINRs obtained from the
random placement of the sensors, as explained in the previous
section, and the yellow curve indicates the performance of the
oracle experiment. In the oracle experiment, the spatial gains
are assumed to be deterministic and known throughout the
space, and the SINRs of the sources are not stochastic and
can be directly obtained using (6). This curve serves as an
upper bound for the performance of the proposed placement
method. As illustrated in Fig. 2a, the performance of the
placement using the proposed method is significantly better
than the randomly placing the sensors. For 15 placed sensors,
the average SINR of the proposed method using the BSS
estimation in a low level of the uncertainty ( σu = 0.1) is
43, whereas it is 13 for the random placement. Because of
the estimation error of the BSS estimation method, the green
curve is below the blue curve. In Fig. 2b, as the uncertainty
level increases from σu = 0.1 to σu = 0.8, the average SINR
of the proposed method decreases from 57 to 38 when using
the perfect estimation, and from 43 to 32 when using the BSS
estimation, for 15 placed sensors.

IV. CONCLUSION

In this paper, to tackle with the problem of optimal sensor
placement for linear source separation of the noisy mixtures,
we proposed an optimization criterion based on the expected
values of the SINRs of the separated signals. Moreover, to
improve the prior knowledge of the spatial gains given by the
stochastic GP models, we described a BSS method to update
the estimation of the spatial gains using the measurements of
the placed sensors. Numerical simulations show the efficiency

(a) σu = 0.1 (b) σu = 0.8

Fig. 2: The performance of the proposed criterion with sequen-
tial optimization approach, in two case of the BSS estimation
method and perfect estimation of the spatial gains is illustrated,
and compared with random sensor placement and Oracle
(completely known spatial gains). Two situations are studied:
(a) σu = 0.1, (b) σu = 0.8.

of the proposed method in source separation, and its outper-
forming results in source extraction compared to the criterion
proposed in [13].
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