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ABSTRACT
In this paper we propose a new algorithm for learning low-
dimensional linear subspaces. Our proposed algorithm per-
forms by sequentially finding some low-dimensional sub-
spaces on which a set of training data lies. Each subspace
is found in such a way that the number of signals lying on
(or near to) it is maximized. Once we found a subset of the
training data that is sufficiently close to a subspace, then we
omit these signals from the set of training signals and repeat
the procedure for the remaining signals until all training sig-
nals are assigned to a subspace. This data reduction procedure
results in a significant improvement to the runtime of our al-
gorithm. We then propose a robust version of the algorithm
to address the situation in which training signals are contam-
inated by additive white Gaussian noise. Our simulations on
synthetic data and image denoising problem show the appli-
cability and the promising performance of our algorithm.

Index Terms— Linear subspace learning, iterative sub-
space identification, dictionary learning, sparse residuals

1. INTRODUCTION

In many signal processing applications, e.g. pattern recogni-
tion, linear regression, image enhancement, and so on, there
are a huge amount of data with very high dimensions. Deal-
ing with these high dimensional data makes the processing
tasks very difficult. However, despite of their very high di-
mensions, it is well-known that many natural signals such as
images can be well approximated as a linear combination of
a few basis functions [1]. In other words, the intrinsic dimen-
sion of many natural signals is much less than their length.
This fact has led to many dimension reduction algorithms [2].

Consider now a set of L signals, all with dimension n, as
the columns of the matrix Y = [y1,y2, . . . ,yL]. Assume
that Y can be partitioned as:

Y = [Y1,Y2, . . . ,YK ], (1)
∗This work has been partially funded by the Iran National Science Foun-

dation (INSF) and by the European project ERC-2012-AdG320684-CHESS.

where each Yi is a subset of signals that lies on the same
low-dimensional subspace. Denoting the basis functions for
the ith subspace as the columns of the matrix Di ∈ Rn×ni ,
then we have:

Yi = DiXi, (2)

where Xi is the coefficient matrix. In the case of many natu-
ral signals we have ni � n, ∀i. In other words, it is assumed
that the set of signals lie on a union of low-dimensional sub-
spaces. This simple model for the data is very appealing in
many signal processing tasks [3].

Principal Component Analysis (PCA) [4] is a well-known
tool used for capturing the intrinsic low-dimensional structure
of the data. PCA finds a single low-dimensional subspace to
represent all training signals, i.e. in the above model it as-
sumes that K = 1. As a generalization of PCA, Generalized
PCA (GPCA) [5] has been introduced that finds multiple low-
dimensional subspaces for a set of signals.

GPCA is a member of a broad class of dimensionally re-
duction algorithms, known as the subspace clustering algo-
rithms [6]. As its name suggests, these algorithms cluster the
set of signals into a number of subspaces. K-means [7] is a
simple algorithm that clusters the training signals into some
ball-shaped (spherical Gaussian) clusters, where all signals of
each cluster are represented with a single vector known as the
cluster centroid. To deal with the more realistic case in which
data clusters are generally hyper-planes, the K-subspace al-
gorithm [8] has been proposed. K-subspace starts with a set
of K initial orthonormal matrices, Di, i = 1, . . . ,K, and
iteratively assigns each training data to its nearest subspace
and then updates each subspace using its own data members
by performing Singular Value Decomposition (SVD). This al-
gorithm however, is very sensitive to outliers. Moreover, in
very high-dimensional setting it suffers from the high compu-
tational load because of performing SVD. Another approach
to infer the low-dimensional structures of signals is known
as dictionary learning in the field of sparse signal processing
[9]. In this approach it is assumed that each training signal
can be well approximated as a linear combination of a few
basis functions. Each basis function is called an atom and
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their collection as the columns of the matrix D is called dic-
tionary. Thus, in the dictionary learning problem we actually
have D = ∪iDi. More precisely, a dictionary learning algo-
rithm solves the following minimization problem:

min
D,X

‖Y −DX‖2F subject to ∀i : ‖xi‖0 ≤ T, (3)

where ‖.‖F denotes the Frobenius norm, ‖.‖0 is the so-called
`0 pseudo-norm that counts the number of nonzero compo-
nents, and T is a constant. After finding the dictionary, a
clustering step is performed using the found coefficient ma-
trix to determine Yi’s [6]. This approach however, has the
drawback that the number of atoms need to be known in ad-
vance. Thus one should assume a certain number of atoms,
which is not necessarily optimum.

Iterative subspace identification (ISI) [10] is a new ap-
proach for subspace clustering. This algorithm is based on
the idea that a signal can be represented using a linear com-
bination of the other signals in its own cluster. ISI first se-
lects a signal from the set of training data and finds its sparse
representation in terms of the other signals. In this way one
subspace is found. The algorithm then proceeds by removing
all signals that lie on the found subspace and repeats the same
procedure for the remaining signals. This approach is very
fast but its accuracy is not acceptable in noisy setting. Like
K-subspace, ISI is also very sensitive to outliers, since it tries
to represent outliers in terms of a set of non-outlier (inlier)
training signals, and thus makes a false cluster.

Up to our best knowledge, many subspace clustering al-
gorithms can be divided into two general categories. The first
category iteratively performs a two-stage procedure. The first
stage is to assign the training data to their closet subspace. In
the second stage, all the found subspaces are updated using
their own signals. The algorithms in the second category are
based on sequentially finding one subspace on which only a
subset of data lies. Once a subspace is found, the signals that
are sufficiently close to it are omitted and the same procedure
is repeated for the remaining signals. K-subspace belongs to
the first category while ISI belongs to the second category.

In this paper we propose to sequentially find a number of
linear subspaces for the training data1. It is assumed that the
dimensions of these subspaces are known in advance. Our
algorithm belongs to the second category of subspace cluster-
ing algorithms discussed in the previous paragraph. Unlike
ISI, our algorithm is robust to noise and especially outliers.

This paper is organized as follows. In Section 2 we de-
scribe our algorithm in details. Section 3 presents the results
of the simulations.

1It is worthwhile mentioning that our algorithm is mathematically sim-
ilar to [11], which is in the field of robust sensor networks, but these two
algorithms are conceptually very different.

2. THE PROPOSED ALGORITHM

We assume, without loss of generality, that the dimensions of
the subspaces are all equal to s, i.e. ni = s, ∀i. Firstly, we
find a subspace Ds for some of the training data, Y. To this
aim, we solve the following general minimization problem:

min
Ds,X

∑
i

ρ(‖yi −Dsxi‖2), (4)

where ρ(.) is a loss function. A well-known option for this
function is ρ(x) = x2. In this way however, all residuals, i.e.
ei = ‖yi − Dsxi‖2 ∀i, would be relatively small. In other
words, the subspace Ds is fitted averagely to all data. But we
want to identify a subspace with the highest population. To
this aim, we firstly assume the following model for the data:

∀i : yi = Dsxi + oi, (5)

where oi = 0 if yi ∈ span(Ds) and oi 6= 0, otherwise. In
this way, those signals that have a large distance from Ds are
treated as outliers. We consider the following loss function:

ρ(x) =

{
0 if x = 0
1 if x 6= 0

. (6)

This function has the desired property that it penalizes equally
all signals that do not lie on Ds, i.e. out-of-subspace signals,
while it has no loss for the on-the-subspace signals. By sub-
stituting this function in (4), we actually obtain a special form
of M-estimators [12]. A well-known approach to solve these
types of estimation problems is to use the idea of iteratively
re-weighted least squares [13]. More precisely, we solve the
following iterative minimization problem:{

D(k+1)
s ,X(k+1)

}
= argmin

Ds,X

∑
i

w
(k)
i ‖yi −Dsxi‖22, (7)

where2

∀i : w(k)
i =

1

‖yi −D
(k)
s x

(k)
i ‖22

. (8)

By starting with ∀i : w
(0)
i = 1, and an initial D(0)

s , each
data that has a relatively low distance from D

(0)
s will be more

likely to belong to it and in the next iteration will have a larger
contribution to the objective function.

2.1. Solving the Minimization Problem

In order to solve (7), we use an alternating-minimization ap-
proach, that is, we iteratively minimize (7) over one variable
and set the other fixed. The minimization over X is straight-
forward and results in the following solution:

X(k+1)
s = D(k)†

s Y, (9)

2To prevent the division by zero, we can add a small positive number to
the denominator of w(k)

i .
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• Task: Learning some low-dimensional subspaces from Y.

• Subspace finding: Set r = 1, Z = Y and repeat the follow-
ing steps until Z becomes empty:

a. Set Ds = D
(0)
s and do the following steps:

1- Xs = D†sZ

2- W = diag(wi = ‖zi −Dsxi‖22)
3- Ds = (ZWXT

s )(XsWXT
s )−1, normalize

Ds

4- If stopping condition is not met go back to step 1.

b. w = {i : ei > τ}
c. Z = Z(:, w)

d. Dr
s = Ds, r = r + 1 and go back to a.

• Output: Dr
s, r = 1, 2, . . .

Fig. 1. The proposed algorithm. By Z(:, w) we mean those
columns of Z indexed by w.

where † denotes the Moore-Penrose pseudo inverse, which is
defined as A† = (ATA)−1AT . By defining the diagonal
matrix Wk = diag(w(k)

i ), it can be easily verified that the
minimization of (7) over Ds results in the following solution:

D(k+1)
s = (YWkX

T
s )(XsWkX

T
s )
−1, (10)

where Xs = X
(k+1)
s . After a few iterations, we identify the

first found subspace, D1, as D1 = D
(k+1)
s .

2.2. Sequential Subspace Finding

Once we found D1, we omit those data that are relatively near
to it from the set of training data and repeat the same proce-
dure to find D2 and similarly the other subspaces. We can use
a simple threshold, τ , on the representation errors to decide if
a data belongs to a subspace. Another option is to use the first
jump rule [14]. To explain this method, we define the error
vector as e = [ei], i = 1, . . . , L, and ei = ‖yi − Dsxi‖2.
We also define ẽ = [e[1], . . . , e[L]] where the entries are sorted
increasingly and e[i] denotes the ith largest component of e.
This rule then looks for the smallest i such that:

e[i+1] − e[i] > ε, (11)

where ε is a small positive constant. We then choose τ = e[i].
Figure 1 summarizes the main steps of our proposed al-

gorithm. The initial subspace, i.e. D(0)
s , can be made by ran-

domly choosing from the set of current training data followed
by a normalization. However, as we saw in our simulations, it
is better to run the whole algorithm several times and use the
subspaces found in each run to initialize the next run.

2.3. Robustness Against Noise

The above algorithm works well only when the data are clean
and perfectly satisfy the union of subspaces model. In real

Fig. 2. Graphs of the function in (14) for some values of λ.

applications however, data are usually imperfect. This imper-
fection may be for example the instrumental inaccuracies, the
man-made noise, and the quantization noise. We assume that
the imperfection is additive white Gaussian noise (AWGN),
and we modify our model to the following form in order to
handle the noise:

∀i : yi = Dsxi + oi + ni, (12)

where ni ∼ N (0, σ2I). We consider the following loss func-
tion for this situation:

ρ(x) = min(x2, λ2) =

{
x2 if x ≤ λ
λ2 if x > λ

, (13)

where λ is a threshold to distinguish between the on-the-
subspace and the out-of-subspace signals. This parameter is
set according to this fact that for the signals on the same sub-
space, the error vectors i.e. ei = yi −Dsxi, i = 1, . . . , L,
are multivariate Gaussian. Thus, for these signals we should
have ρ(x) = x2, and for the others ρ(x) = λ2, which are
treated equally. The value of λ should be large enough to en-
sure that the real on-the-subspace signals are assigned to one
subspace while it should be small enough to prevent the out-
of-subspace (outliers) to be included in that subspace. As a
rule of thumb, which is suggested in [11], we set λ according
to λ = 1.34

√
nσ.

The function in (13) is non-smooth and thus non-
differentiable. We use the following function instead:

ρ(x) =
x2

x2 + λ2
. (14)

This function behaves like `2 norm for small residuals while
it ignores large residuals by assigning to them a constant cost.
Figure 2 shows some graphs of this function.

We solve the resulting problem in the same way as in (7)
and (8) using the following weights:

∀i : w(k)
i =

1

‖yi −D
(k)
s x

(k)
i ‖22 + λ2

. (15)

With the previous explanations in mind, (8) is a special form
of (15), which corresponds to the noise-free case (i.e. λ = 0).
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Fig. 3. Percentage of successful clustering versus number of
signals in each subspace.

3. EXPERIMENTAL RESULTS

We evaluate the efficiency of our proposed algorithm with
two sets of experiments, one on synthetic data and the other
on real data. Our simulations were performed in MATLAB
R2010b environment on a system with 3.21 GHz CPU and 3
GB RAM, under Microsoft Windows XP operating system.
As a rough measure of complexity, we will mention the run
times of the algorithms.

3.1. Synthetic Data

In this experiment, we produced 5 disjoint subspaces in R20

all with dimension of 4. The basis for each subspace was gen-
erated randomly with independent and identically distributed
(i.i.d.) Gaussian zero mean and unit variance entries followed
by a normalization. We then produced a certain number of
signals all of dimension 20 in each subspace as the training
data. To evaluate the robustness of the algorithms against
noise, we added AWGN with a certain Signal to Noise Ra-
tio (SNR) to the training signals. We say that a clustering is
successful if more than 95% of the signals are correctly as-
sign to their associated subspaces. We repeated each trial 100
times and averaged the results.

Figure 3 shows the percentage of successful clustering
versus the number of signals in each subspace where SNR
is fixed and equal to 25 dB. As can be seen, K-subspace is
very sensitive to the number of signals. In contrary, the num-
ber of signals per each subspace has nearly no effect on the
successful recovery of ISI and our algorithm. The effect of
noise on the successful clustering is plotted in Fig. 4, where
the number of signals in each subspace is fixed and equal to
80. This figure shows that ISI is very sensitive to noise while
it is not the case for our algorithm. From these two figures
we can deduce that the main limitation for ISI is noise while
for K-subspace it is the number of signals per each subspace.
Also the performance of ISI and our algorithm are similar
for relatively high SNR’s. The average execution times of
K-subspace, ISI, and our algorithm (for Fig. 3) were 0.251,
0.015, and 0.017 seconds, respectively.

Fig. 4. Percentage of successful clustering versus SNR.

Fig. 5. Original, noisy, and denoised images of Barbara by
K-SVD and our algorithm.

3.2. Image Denoising

In this experiment we consider the problem of image denois-
ing via sparse approximation [15]. In this approach, an over-
complete dictionary is firstly trained using some blocks of the
noisy image as the training data. Then the blocks of the noisy
image are denoised over the learned dictionary. We compared
our algorithm with K-SVD [15]. Four test images, all of size
256× 256, were used in this experiment. For both algorithms
we used 15000 blocks of each test image. For our algorithm a
number of subspaces with dimension of 5 were learned. Num-
ber of atoms was set equal to 256 in both algorithms (for our
algorithm the found atoms were firstly sorted according to
their variances and then the first 256 sorted atoms were se-
lected). We used Peak Signal to Noise Ratio (PSNR) as the
measure of the quality of denoising. Each experiment was
repeated 5 times and the averaged results were reported.
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Fig. 6. Some of the atoms learned by our algorithm (left) and
K-SVD algorithm (right) for Barbara.

Table 1 summarizes the final results. This table shows
the capability of our algorithm in this experiment. Figure 5
shows the original, noisy and denoised images of Barbara by
K-SVD and our algorithm. Some of the atoms learned by our
algorithm and K-SVD are shown in Fig. 6. As can be seen, the
atoms in the dictionary learned by our algorithm successfully
recovered the main textures of the original image.

Table 1. Image denoising PSNR results in dB. In each cell
two results are reported. Top: results of the K-SVD, and Bot-
tom: results of our proposed algorithm.

σ, PSNR House Boat Lena Barbara

5, 34.16
39.44 37.41 38.86 38.13
39.52 37.53 38.91 38.25

10, 28.11
36.08 33.32 35.02 34.10
36.16 33.48 35.14 34.21

20, 22.11
33.27 29.54 30.26 30.17
33.46 29.68 30.34 30.28

50, 14.15
28.07 24.81 26.14 25.33
28.26 24.97 26.49 25.71

4. CONCLUSION

In this paper we proposed an algorithm to learn low-
dimensional subspaces embedded in a set of training data.
Our algorithm works with sequentially finding a number of
low dimensional subspaces for the data. In this way, our algo-
rithm is indeed a robust clustering algorithm that treats those
signals that have a relatively large distance from a subspace as
outliers. In order to make the algorithm robust in the presence
of AWGN, we proposed a robust version of it. Simulation re-
sults on both synthetic and real data show the applicability
and efficiency of our algorithm. Theoretical analysis of the
proposed algorithm is a subject for the future works.
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