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Introduction

Sparse representation

y ≈ x1d1 + x2d2 + . . .+ xndm = Dx most xi’s are zero

Signal restoration:

z = Hy + e

De-noising (H = identity), inpainting
(H = random rows of identity), de-bluring
(H = blurring matrix), super resolution
(H = down sampling matrix), ...

y ' Dx, x : sparse

min
y,x
‖z−Hy‖22 + α‖y −Dx‖22 + β‖x‖1
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Sparse recovery algorithms

Greedy. Pick atoms sequentially.

Set k = 0, r0 = y, and I0 = ∅. Repeat:
Ik+1 = Ik ∪

{
i | |dTi rk| ≥ τk

}
(atom selection)

xkIk+1
= argminx ‖y −DIk+1x‖2 (projection)

rk+1 = y −DIk+1x
k
Ik+1

(residual update)

k → k + 1

Examples:

OMP [Pati et al., 1993]: τk = maxi |dTi rk|.
GOMP [Wang et al., 2012]: τk = |dTi rk|N = Nth largest correlation.

SP [Dai et al., 2009]: τk = |dTi rk|2s = 2sth largest correlation (s = sparsity

level)+ pruning.
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Sparse recovery algorithms

Thresholding based algorithms

min
x

1

2
‖y −Dx‖2 + λ‖x‖1

xk+1 = Sµkλ(xk − µk(Dxk − y))

min
x

1

2
‖y −Dx‖2 + λ‖x‖0

xk+1 = Hµkλ(xk − µk(Dxk − y))

µk ∈ (0, 1/σmax(D))

Examples: IST [Daubechies et al., 2004], GPSR [Figueiredo et al., 2007], IHT

[Blumensath and Davies, 2009], ISP-Hard [Sadeghi and Babaie-Zadeh, 2016], TST

[Maleki and Donoho, 2010], NESTA [Becker et al., 2009]
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Sparse recovery algorithms

`0 norm approximation. Approximate `0 norm with a smooth function.

Smoothed L0 (SL0) [Mohimani et al., 2009], SCSA [Malek-Mohammadi et al.,

2016]

Fσ(x) = n−
n∑
i=1

fσ(xi)

fσ(x) = exp(−x
2

σ2
)

When σ → 0 : Fσ(x)→ ‖x‖0
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min
x
Fσ(x) s.t. y = Dx



k = 0

x0 = D†y

For i = 1, 2, . . .

For j = 1, 2, . . .

xk+1 = xk − µσi∇‖xk‖σi
xk+1 = xk+1 −D†(Dxk+1 − y)

k ← k + 1

End

σi+1 = σi · c (0 < c < 1)

End
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`0 minimization via soft-thresholding

Problem:

min
x
‖x‖0 s.t. ‖y −Dx‖2 ≤ ε

Main idea

Write `0 norm as sum of absolute values of entries’ sign:

‖x‖0 =
n∑
i=1

|sgn(xi)|

or, equivalently:

‖x‖0 = ‖z‖1, z = sgn(x)
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`0 minimization via soft-thresholding

Equivalent problem:

min
x,z
‖z‖1 s.t.

{
z = sgn(x)

‖y −Ax‖2 ≤ ε

Final problem to solve:

Using penalty method, we solve the following approximate problem:

min
x,z
‖z‖1 +

1

2α
‖z− sgn(x)‖22 + δε(x)

α > 0 is a penalty parameter

δε (x) = 0 if ‖y −Dx‖2 ≤ ε and ∞ otherwise.
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`0 minimization via soft-thresholding

Smoothed sign function:

Because the sign function is non-smooth, we approximate it by a
smooth function:

fβ(x) , tanh(βx) =
exp(2βx)− 1

exp(2βx) + 1
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� Larger values of β give tighter approximation

M. Sadeghi et al. L0Soft September 2019 8 / 15



1 Introduction

2 Proposed algorithm
Main idea
Problem formulation
Smooth approximation of sign
Final problem
Algorithm

3 Experimental results

4 Conclusions



`0 minimization via soft-thresholding

Final problem:

min
x,z

α‖z‖1 +
1

2
‖z− fβ(x)‖22 + δ

ε
(x)

Algorithm:

We adopt a proximal alternating linearized minimization (PALM)
approach [Bolte et al., 2014]:

min
x,z

{
H(x, z) , F (x, z) + g(x) + h(z)

}

F (x, z) = 1

2‖z− fβ(x)‖22 smooth, gradient Lipschitz part

g(x) = δε(x) non-smooth part

h(z) = α‖z‖1 non-smooth part
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`0 minimization via soft-thresholding

F (x, z) is gradient Lipschitz. That is, there exist some Lx, Lz > 0
such that ∀x, z,u,v:{

‖∇xF (x, z)−∇xF (u, z)‖2 ≤ Lx‖x− u‖2
‖∇zF (x, z)−∇zF (x,v)‖2 ≤ Lz‖z− v‖2

� It can be shown that Lz = 1 and Lx = (3 + 2|z|) · β2 satisfy the
above conditions.

Final algorithm: Solve the following problem, using PALM, and for a
decreasing sequence of α:

min
x,z

α‖z‖1 +
1

2
‖z− fβ(x)‖22 + δ

ε
(x)
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`0 minimization via soft-thresholding
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Experimental results

Synthetic data:

Generate sparse signal, x, of length n = 1000 from a
Bernoulli-Gaussian distribution with s number of non-zero entries
Generate a random measurement matrix A with entries from normal
distribution
Take m = 400 measurements from x as y = Ax and add Gaussian
noise
Apply different algorithms to estimate x from noisy y

Compressed image recovery:

Take some 32× 32 image X and vectorized it to 1024× 1 vector x
Take random measurements y = Φx = ΦΨa, Φ = Gaussian,
Ψ = 1024× 4096 = DCT matrix
Estimate original image by solving:

x̂ = Φ · argmin
a
‖a‖0 s.t. y = ΦΨa
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Experimental results

Synthetic data:
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Figure: Average MSEs (dB) obtained by different algorithms versus number of
non-zeros (s), when recovering sparse signals of length n = 1000 from m = 400
(a) noiseless and (b) noisy (σ = 0.001) Gaussian measurements.

L0Soft is better in the noiseless, less sparse as well as noisy, more sparse
cases
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Experimental results

Compressed image recovery:
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Conclusions

A new algorithm was introduced for `0 minimization

The proposed algorithm relies on replacing `0 function with an equivalent
definition based on absolute values of entries’ sign

Using penalty methods, `0 minimization was converted to an `1 minimization

Proximal algorithms were used to solve the new problem

Experimental results confirm the superiority of the proposed method over

existing algorithms
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