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@ Introduction
@ Sparse representation



Sparse representation

y ~ x1dy + x2do + ... + z,d,;, = Dx  most z;'s are zero

@ Signal restoration:

De-noising (H = identity), inpainting

(H = random rows of identity), de-bluring
(H = blurring matrix), super resolution
(H = down sampling matrix), ...

y ~ Dx, x : sparse

min ||z — Hy|5 + ally — Dx|3 + Bllxllx
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Sparse recovery algorithms

@ Greedy. Pick atoms sequentially.

Set k=0, r’ =y, and 7y = @. Repeat:

Tor1 =Te U {i | |d¥r*| > T} (atom selection)
xékﬂ = argmin, |ly — Dz, ., x|z (projection)
=y - DIk+1X§k+1 (residual update)

k—k+1

Examples:

o OMP [Pati et al., 1993]: 7 = max; |d]r¥|.
e GOMP [Wang et al., 2012]: 7, = |d¥r*|y = Nth largest correlation.
@ SP [Dai et al., 2009]: 7 = |dr¥|2, = 2sth largest correlation (s = sparsity

level)+ pruning.
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Sparse recovery algorithms

@ Thresholding based algorithms

1 1
min 2y — Dx||z + Allx|l min 2 ly — Dx]|2 + Aflxlo
xk+1 = S#k)\(xk — ,U/k(ka — y)) ‘ ’Xk+1 = H#k)\(xk - /’l’k(ka - Y))
Sa(z) Halx)

pr € (0,1/0max(D))

Examples: IST [Daubechies et al., 2004], GPSR [Figueiredo et al., 2007], IHT
[Blumensath and Davies, 2009], ISP-Hard [Sadeghi and Babaie-Zadeh, 2016], TST
[Maleki and Donoho, 2010], NESTA [Becker et al., 2009]
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Sparse recovery algorithms

@ /y norm approximation. Approximate £y norm with a smooth function.

Smoothed LO (SLO) [Mohimani et al., 2009], SCSA [Malek-Mohammadi et al.,

2016]
_ . min F,(x) st. y=Dx
Fy(x) fn—Zfa(mi) x
i=1
a? k=0
fo (@) = exp(- 25) ;
o x0 = DTy
‘WhenaaO: Fo(x)%HxHo‘ Fori=1,2,...
Forj=1,2,...
— ll:fﬁll((ra; XM = xP — 5, V| [xk o,
— 11— (@) i ) i
—  lzllo XkJrl = )(kJrl — D‘ (DXk+1 — y)
k+—k+1
End
oit1=0i-¢ (0<c<1)
') End
0 x
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9 Proposed algorithm
@ Main idea



¢y minimization via soft-thresholding

@ Problem:

min[xo st [y - Dxl> <e

Main idea

Write £y norm as sum of absolute values of entries’ sign:

n

Ixllo = Isgn(zs)|

=1

or, equivalently:

1%[lo = [z, == sgn(x)

v
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© Proposed algorithm

@ Problem formulation



¢y minimization via soft-thresholding

o Equivalent problem:

{z = sgn(x)

min ||z]]; s.t.
x Iy — Ax|l2 < ¢

@ Final problem to solve:

Using penalty method, we solve the following approximate problem:

. 1
min [z + 1z — sgn(x) [} + 6, (x
b a

@ « > 0 is a penalty parameter
@ §.(x) =0if ||y — Dxl||2 < € and oo otherwise.
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9 Proposed algorithm

@ Smooth approximation of sign



¢y minimization via soft-thresholding

@ Smoothed sign function:

Because the sign function is non-smooth, we approximate it by a
smooth function:

exp(20z) — 1
exp(28x) + 1

1 ] =
—5=3 Rt
— =20 .
sgn(z)
0 /
-1 I

IS" Larger values of 3 give tighter approximation

J5(x) 2 tanh(Ba) =
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9 Proposed algorithm

@ Final problem



¢y minimization via soft-thresholding

o Final problem:

. 1
min: afzfly + S|z = f5(x)|3 + 6, (x)

o Algorithm:

We adopt a proximal alternating linearized minimization (PALM)
approach [Bolte et al., 2014]:

min {H(x,z) £ F(x,2z) + g(x) + h(z)}

X,z
F(x,z) = ||z — fa(x)||3 smooth, gradient Lipschitz part
g(x) =6.(x) non-smooth part
h(z) = oz non-smooth part
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9 Proposed algorithm

@ Algorithm



¢y minimization via soft-thresholding

e F(x,z) is gradient Lipschitz. That is, there exist some L, L, >0
such that Vx, z,u, v:

IVaF(x,2) = VaF(u,2)]2 < Lallx — ull
IV.F(x,2) - V.F(x,v)|2 < L]z v

1= |t can be shown that L, =1 and L, = (3 + 2|2|) - 52 satisfy the
above conditions.

e Final algorithm: Solve the following problem, using PALM, and for a
decreasing sequence of «:

. 1
min aflzl + 512~ S5 + 6, (x)
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¢y minimization via soft-thresholding

Algorithm 2 LOSoft for

0: Inputs: y, A, (xo,20), €, a1, w, ¢
cfor j=1,2,--- do

0
0
0:
0
0

(xj,2;) = PALM(y, A, (xj_1,2j-1), €, aj, w)

Q1 =C-Qj

. end for

Output: x; =0

Algorithm 1 PALM (with inertial)

0: Inputs: y, A, (xo,20), €, @, w
. for k=0,1,--- do

0
0
0:
0
0
0

Zi41 = Sp.a((1 = p2) - 21+ e - fa(x1))

Xk =X +w- (X — Xp—1)

X1 = Pe. (Xi — o - Vo F (X, 241))
: end for
: Output: (xj,2z;) =0
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© Experimental results



Experimental results

@ Synthetic data:
o Generate sparse signal, x, of length n = 1000 from a
Bernoulli-Gaussian distribution with s number of non-zero entries
o Generate a random measurement matrix A with entries from normal

distribution
e Take m = 400 measurements from x as y = Ax and add Gaussian
noise

o Apply different algorithms to estimate x from noisy y
@ Compressed image recovery:

o Take some 32 x 32 image X and vectorized it to 1024 x 1 vector x
o Take random measurements y = &x = ®Wa, & = Gaussian,

¥ = 1024 x 4096 = DCT matrix
o Estimate original image by solving:

%X =®-argmin|al]jp st y=®Pa
a
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Experimental results

Synthetic data:
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Figure: Average MSEs (dB) obtained by different algorithms versus number of
non-zeros (s), when recovering sparse signals of length n = 1000 from m = 400
(a) noiseless and (b) noisy (¢ = 0.001) Gaussian measurements.

@ LOSoft is better in the noiseless, less sparse as well as noisy, more sparse
cases
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Experimental results

Compressed image recovery:
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@ Conclusions



Conclusions

A new algorithm was introduced for £y minimization

The proposed algorithm relies on replacing ¢y function with an equivalent
definition based on absolute values of entries’ sign

Using penalty methods, ¢y minimization was converted to an £; minimization

Proximal algorithms were used to solve the new problem

Experimental results confirm the superiority of the proposed method over
existing algorithms
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