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Abstract—We propose a new algorithm for finding sparse
solution of a linear system of equations using `0 minimization.
The proposed algorithm relies on approximating the non-smooth
`0 (pseudo) norm with a differentiable function. Unlike other
approaches, we utilize a particular definition of `0 norm which
states that the `0 norm of a vector can be computed as the `1
norm of its sign vector. Then, using a smooth approximation of
the sign function, the problem is converted to `1 minimization.
This problem is solved via iterative proximal algorithms. Our
simulations on both synthetic and real data demonstrate the
promising performance of the proposed scheme.

Index Terms—Compressed sensing, sparse representation, it-
erative hard thresholding, iterative soft thresholding, proximal
algorithms

I. INTRODUCTION

Finding sparse solutions of linear systems of equations
has gained a lot of interest during the past decade [1].
This problem has appeared in a wide range of areas such
as signal processing and computer vision, with applications
ranging from signal enhancement and recovery [1] to pattern
recognition and classification [2]. Compressed sensing [3],
[4] and sparse signal representation [1] are two important
applications of this problem. The sparsity seeking problem
is usually formulated as

min
x
‖x‖0 s.t. ‖y −Ax‖2 ≤ ε (1)

where, y ∈ Rm, A ∈ Rm×n, ε ≥ 0, and ‖.‖0 denotes
the `0 (pseudo) norm. Considering the fact that problem (1)
is NP-hard [5], numerous alternative problems have been
proposed [6], including `1 norm minimization [7], with various
solvers yielding approximate solutions to (1); see [8]–[14].
For instance, consider the regularized version of (1), which is
expressed as

min
x

1

2
‖y −Ax‖22 + λ‖x‖0, (2)

with λ > 0. This problem can be attacked by proximal
algorithms [15], as utilized by the popular iterative hard-
thresholding (IHT) algorithm [16]. This amounts to performing
the following iterative procedure

xk+1 = Hλ·µ
(
xk − µAT (Axk − y)

)
, (3)
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where, µ > 0 is a step-size, and the entry-wise function Hλ(.)
denotes the hard thresholding operator [16], defined as

Hλ(x) ,

{
x |x| ≥

√
2λ

0 |x| <
√
2λ
· (4)

In this paper, we propose a new solver for (1), which is
based on approximating the discontinuous `0 norm function
with a differentiable one. Although there are several algorithms
based on the same underlying idea, e.g., smoothed `0 (SL0)
algorithm [17], here, we take a different path by utilizing
a special definition of `0 norm based on the sign function,
and approximating the sign function with a smooth one. This
converts (1) into an `1 minimization problem which ends up
with an iterative soft thresholding [1] algorithm. Simulation
results on synthetic as well as real data demonstrate the
promising performance of the proposed algorithm.

The rest of this paper is organized as follows. Section II
presents the main idea and algorithmic description of the
proposed solver. Then, Section III reports and discusses the
results of our simulations.

II. PROPOSED METHOD

A. Problem formulation

As our main motivation, note that the `0 function can be
defined as

‖x‖0 =

n∑
i=1

|sgn(xi)|, (5)

where, “sgn” denotes the sign function and sgn(0) , 0.
Equivalently, we can write

‖x‖0 = ‖z‖1, z = sgn(x), (6)

with sgn acting entry-wise. Our main idea for solving (1) is
then to make use of the above relation between x and z. In
this way, we arrive at the following equivalent form of (1)

min
x,z
‖z‖1 s.t.

{
z = sgn(x)
‖y −Ax‖2 ≤ ε

. (7)

The following subsection presents our proposed algorithm for
solving (7)



B. Algorithm details

To solve (7), we consider the following regularized version
of it, which is based on penalty methods [18]

min
x,z
‖z‖1 +

1

2α
‖z− sgn(x)‖22 + δCε(x), (8)

where, δCε(x) is the indicator function of Cε(x) =
{x ∈ Rn : ‖y −Ax‖2 ≤ ε} (taking a value of 0 when x ∈ Cε
and +∞ otherwise), and α > 0 is a penalty parameter. Note
that problems (7) and (8) become equivalent when α → 0.
Since the sign function is not differentiable, we use a smooth
approximation of it. To this end, we consider the following
hyperbolic tangent function:

fβ(x) , tanh(βx) =
exp(2βx)− 1

exp(2βx) + 1
. (9)

The sign function along with its smooth approximation for
different values of β is plotted in Fig 1. As can be seen, larger
values of β give tighter approximations to the sign function.
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Fig. 1: Plots of the sign function and its smooth approxima-
tions, fβ defined in (9), for different values of β.

Therefore, in problem (8), we replace sgn with its smooth
approximation. Doing so, we would have

min
x,z

α‖z‖1 +
1

2
‖z− fβ(x)‖22 + δCε(x), (10)

in which, fβ acts entry-wise. Let us define
F (x, z) = 1

2‖z− fβ(x)‖22
g(x) = δCε(x)

h(z) = α‖z‖1
(11)

Then, our target problem (10) can be rewritten as

min
x,z

{
H(x, z) , F (x, z) + g(x) + h(z)

}
. (12)

In order to solve the above problem, we adopt a proximal
alternating linearized minimization (PALM) approach [19].
This method assumes that the smooth part of the cost function
is gradient Lipschitz with respect to each variable. That is,

for problem (12), we should show that there exist some
Lx, Lz > 0 such that ∀x, z,u,v:{

‖∇xF (x, z)−∇xF (u, z)‖2 ≤ Lx‖x− u‖2
‖∇zF (x, z)−∇zF (x,v)‖2 ≤ Lz‖z− v‖2

. (13)

To meet this objective, first note that{
∇xF (x, z) = f ′β(x)� (fβ(x)− z)

∇zF (x, z) = z− fβ(x)
. (14)

Here, � denotes Hadamard (entry-wise) product, and f ′β , the
derivative of fβ , is given by

f ′β(x) = β sech2(βx), sech(x) =
2

exp(x) + exp(−x) ·
(15)

It is easy to verify that Lz = 1. To prove the existence of some
Lx, consider the scalar function J(x) = f ′β(x)·(fβ(x)−z). We
then derive an upperbound on the magnitude of its derivative

J ′(x) = −2β2 · sech2(βx) · tanh(βx) · (tanh(βx)− z)+
β2 · sech4(βx). (16)

Noting that ∀x, | tanh(βx)| ≤ 1, and using the identity
sech2(βx) = 1 − tanh2(βx), we arrive at |J ′(x)| ≤ β2(3 +
2|z|). Finally, it is straightforward to show that

Lx = (3 + 2|z|) · β2 (17)

satisfies (13).
Utilizing the PALM technique, the proposed algorithm

starts with some (x0, z0) and then generates a sequence
{(xk, zk)}k≥1 to update x and z. The details are given in
the following subsections.

1) Updating z: The update problem for z is

zk+1 = argmin
z
〈∇zF (xk, zk), z− zk〉+

1

2µz
‖z−zk‖22+h(z),

(18)
where, 〈 , 〉 denotes inner-product, and µz ∈ (0, 1/Lz].
Problem (18) can be simplified to

zk+1 = argmin
z

1

2
‖z− z̃k‖22 + µz · h(z) (19)

where, z̃k = zk − µz∇zF (xk, zk) = (1− µz)zk + µzfβ(xk).
The optimal solution of (19) is characterized via the soft-
thresholding operator [1] defined as

Sλ(x) ,


x− λ x > λ

0 |x| ≤ λ
x+ λ x < −λ

· (20)

The final update formula for z would then be

zk+1 = Sµz·α
(
(1− µz) · zk + µz · fβ(xk)

)
. (21)



2) Updating x: To update x, the following problem should
be solved

xk+1 = argmin
x
〈∇xF (xk, zk+1),x− xk〉+

1

2µx
‖x−x̂k‖22+g(x),

(22)
where, µx ∈ (0, 1/Lx] and x̂k = xk + w · (xk − xk−1) with
w ∈ [0, 1). Here, we have used a momentum, also called
inertial, technique to improve the convergence behavior [20].
It is straightforward to show that the solution of (22) is given
by

xk+1 = PCε
(
x̂k − µx · ∇xF (xk, zk+1)

)
, (23)

in which, PCε denotes projection onto the set Cε. This projec-
tion can be implemented by the algorithm proposed in [21].
The overall solver of (10) is summarized in Algorithm 1,
whose convergence is guaranteed using recent results on
convergence of PALM technique with inertial acceleration; see
[20], [22], [23].

Algorithm 1 PALM (with inertial) for solving (10)

0: Inputs: y, A, (x0, z0), ε, α, w
0: for k = 0, 1, · · · do
0: zk+1 = Sµz·α

(
(1− µz) · zk + µz · fβ(xk)

)
0: x̂k = xk + w · (xk − xk−1)
0: xk+1 = PCε

(
x̂k − µx · ∇xF (xk, zk+1)

)
0: end for
0: Output: (xk, zk) =0

Now, in order to obtain an approximate solution to (7), we
should solve (10) for a decreasing sequence of α, as done
in standard penalty methods [18]. To this end, we consider a
sequence {αj}j≥1, where αj+1 = c · αj for some 0 < c < 1.
Algorithm 2 gives a description of the overall algorithm to
solve (7).

Algorithm 2 L0Soft for solving (7)

0: Inputs: y, A, (x0, z0), ε, α1, w, c
0: for j = 1, 2, · · · do
0: (xj , zj) = PALM(y,A, (xj−1, zj−1), ε, αj , w)
0: αj+1 = c · αj
0: end for
0: Output: xj =0

C. Implementation details

To initialize the algorithm, we set x−1 = 0, x0 = A†y,
and z0 = fβ(x0), where A† denotes the Moore–Penrose
pseudoinverse of A. Moreover, we choose α1 = 1, which
was empirically found to work well.

Additionally, for µz , a value close to 1, say 0.95 leads to
good performance. For setting µx, we first prove the following
lemma.

Lemma 1. In Algorithm 1 and with the initialization of z0 as
described above, we have

∀i, k : |zik| ≤ 1, (24)

where zik denotes the i-th entry of zk.

Proof. First, note that ∀x and ∀λ, β ≥ 0 we have |Sλ(x)| ≤ |x|
and |fβ(x)| ≤ 1. So, from (21) we can write

∀i, k : |zik+1| ≤ (1− µz) · |zik|+ µz. (25)

Then, recursive application of the above inequality yields

∀i,K : |ziK+1| ≤ (1− µz)K +

K∑
k=0

µz · (1− µz)k

≤ (1− µz)K + µz
1− (1− µz)K
1− (1− µz)

= 1.

(26)

Therefore, we can further bound Lx in (17) as Lx ≤ 5β2, and
since µx ∈ (0, 1/Lx], we can deduce an admissible range for
µx.

III. SIMULATION RESULTS

In this section, the performance of L0Soft is evaluated and
compared with ISP-Hard [21], which is an iterative proximal-
projection method for solving (1), IHT, and SL0 [17], as they
all aim at solving `0 minimization, i.e., problems (1) or (2). For
ISP-Hard1 and SL02, we have used their available MATLAB
codes. Furthermore, for IHT we have used its optimally tuned
implementation3 proposed in [24], which does not require the
tuning parameter λ in (2) as an input. In addition to IHT,
we have also used a more sophisticated variant of it, called
two stage thresholding (TST) [24]. ISP-Hard and SL0 were
run with their default parameters, which performed well. The
parameters of L0Soft were chosen as β = 5, w = 0.9,
and c = 0.9. Other parameters were set as suggested in
Subsection II-C. Moreover, all the algorithms were run for 300
iterations, which ensured convergence. As a rough measure of
computational complexity, we report average runtimes of the
algorithms. Our simulations were conducted using MATLAB
on a 64 bit Windows 7 operating system with 16 GB RAM
and an intel core i7 CPU.

We have performed two sets of sparse recovery simulations:
one on synthetic data and the other on real data. The details
are given in the following subsections.

A. Synthetic data

As a common practice, we generated a sparse signal, x,
of length n = 1000 from a Bernoulli-Gaussian distribution.
Then, we took a number of m = 400 random measurements by
using a measurement matrix, A, whose entries are generated
according to a normal distribution. We varied the number of
non-zeros entries, denoted by s, in the sparse signal. After
adding zero-mean Gaussian noise with standard deviation
of σ to the obtained measurement vector, we applied the
competing algorithms on these noisy measurements to get an
estimation of the underlying sparse signal. Each experiment

1https://sites.google.com/site/msaadeghii/publications
2http://ee.sharif.edu/∼SLzero/
3http://sparselab.stanford.edu/OptimalTuning/code.htm
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Fig. 2: Results of reconstructing some 32 × 32 natural images from underdetermined Gaussian measurements with different
sampling ratios (m/n).
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Fig. 3: Average MSEs (dB) obtained by different algorithms
versus number of non-zeros (s), when recovering sparse sig-
nals of length n = 1000 from m = 400 (a) noiseless and (b)
noisy (σ = 0.001) Gaussian measurements.

(corresponding to a fixed s) was repeated 300 times and then
the average normalized mean squared error (MSE) between
the estimated signal, denoted by x̂, and the original one was
computed as: MSE(x, x̂) = 20 log(‖x− x̂‖2/‖x‖2).

The results, for both noiseless and noisy (σ = 0.001)
recovery, and different sparsity levels are shown in Fig. 3.
As can be seen, ISP-Hard, SL0, and L0Soft perform much
better than IHT and TST, especially for larger values of s.
Furthermore, L0Soft reaches a lower MSE than ISP-Hard and
SL0 when recovering less sparse signals.

B. Real data

In the second experiment, we considered recovery of natural
images from underdetermined Gaussian measurements. More
precisely, let X ∈ R

√
n×
√
n be a natural image, and x ∈ Rn

denote its vectorized version. Then, the goal of this experiment
is to recover x from y = Φx, where Φ ∈ Rm×n with m < n
is a random matrix with i.i.d. entries drawn from a normal
distribution. A key property of natural images utilized here is
that they have sparse representation in appropriate dictionaries.
That is, assuming Ψ ∈ Rn×p (p > n) to be a well-chosen
dictionary and x = Ψa, then it is expected that a is sparse.
Therefore, the recovery problem is to estimate the sparsest
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Fig. 4: Average runtimes (in second) of the algorithms.

solution of y = ΦΨa = Aa. Let the sparsest solution be â.
Then, an estimate of the underlying image would be x̂ = Ψâ.

Testing images were chosen from the publicly available
CIFAR-10 dataset4, which consists of 32× 32 natural images
of different categories. So, here n = 1024. The sparsifying
dictionary, i.e., Ψ, was chosen as an overcompete DCT
matrix of size 1024 × 4096. The competing algorithms were
applied on underdetermined Gaussian measurements, y = Φx,
with different sampling ratios, defined as m/n. It should be
noted that the optimally tuned iterative thresholding algorithms
designed by [24] do not work here. This is because in this
case the (effective) measurement matrix A does not have
the structure assumed in [24]. So, we used IHT by manually
tuning its regularization parameter, λ, for different scenarios.
We computed peak signal to noise ratio (PSNR) between the
original image and the estimated one. The results for some
sample images are shown in Fig. 2.

Inspecting Fig. 2 reveals that ISP-Hard, SL0, and L0Soft
have much better reconstruction PSNR than IHT. Furthermore,
L0Soft can reconstruct images more reliably than ISP-Hard
and SL0, outperforming them by 2 − 3 dB in some cases.
Figure 4 compares the runtime of the algorithms, averaged
over different test images, versus sampling rate. As shown

4https://www.cs.toronto.edu/∼kriz/cifar.html



in this figure, ISP-Hard, SL0, and L0Soft have comparable
runtimes. IHT, on the other hand, has the lowest runtime,
however, as observed in Fig. 2, it does not perform well in
terms of PSNR.

IV. CONCLUSION

In this paper, we proposed a new solver for `0 minimization.
The main idea is based on the fact that for a vector, the
`0 norm can be computed as the `1 norm of the sign of
that vector, where the sign function is applied entry-wise.
Using this, the `0 minimization problem was converted to an
equivalent `1 minimization problem. The new problem was
then solved via proximal algorithms, leading to an iterative
soft-thresholding scheme. Simulation results on recovery of
synthetically generated sparse signals, as well as natural
images, from underdetermined random measurements showed
that the proposed algorithm performs better than some other
approaches to solving `0 minimization problem.
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[23] R. Ioan Boţ, E. R. Csetnek, and S. C. László, “An inertial forward–
backward algorithm for the minimization of the sum of two nonconvex
functions,” EURO Journal on Computational Optimization, vol. 4, no.
1, pp. 3–25, 2016.

[24] A. Maleki and D. L. Donoho, “Optimally tuned iterative reconstruction
algorithms for compressed sensing,” IEEE Journal of Selected Topics
in Signal Processing, vol. 4, no. 2, pp. 330–341, 2010.


