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ABSTRACT

In this paper, we propose a new algorithm for learning over-
complete dictionaries. The proposed algorithm is actually a
new approach for optimizing a recently proposed cost func-
tion for dictionary learning. This cost function is regularized
with a term that encourages low similarity between different
atoms. While the previous approach needs to run an iterative
limited-memory BFGS (1-BFGS) algorithm at each iteration
of another iterative algorithm, our approach uses a closed-
form formula. Experimental results on reconstruction of a
true underlying dictionary and designing a sparsifying dictio-
nary for a class of autoregressive signals show that our ap-
proach results in both better quality and lower computational
load.

Index Terms— Compressed sensing, sparse signal ap-
proximation, overcomplete dictionary learning

1. INTRODUCTION

1.1. Sparse signal approximation

Sparse approximation of signals has received a lot of attention
during the last decade due to its applications in many different
areas such as compressed sensing [1] and image processing
[2]. Let D £ [d;,ds,...,d,,] be a set of m vectors, called
atoms, each with dimension n, and y be a signal of the same
dimension. D is called a dictionary or a collection of atoms
and it is overcomplete, i.e. m > n. The sparse approximation
problem is then to represent y as a linear combination of as
few as possible atoms. This amounts to solve the following
minimization problem:

x* = argmin ||x||p subjectto |y —Dxllz <€, (1)
X

where ||.||o is the so-called /5 pseudo-norm that counts the
number of nonzero components. The above problem needs
a combinatorial search and is generally NP-hard [2]. So, al-
ternative methods are used to solve it [2, 3]. One of the most
successful ideas is to replace the non-convex sparsity measure
II]lo with its best convex approximation ||.||; [4] which leads
to the following convex problem:

x* = argmin ||x[|; subjectto [y —Dx|2<e.  (2)
X

1.2. Dictionary learning

In the above sparse approximation problem, the overcomplete
dictionary, D, is assumed to be known. However, the impact
of a suitable dictionary for a given class of signals, i.e. the
one that provides sufficient sparse approximation for all of
the signals of that class, is crucial in many applications such
as image enhancement and compression [2]. This dictionary
can either be chosen as a predetermined set of atoms such as
overcomplete DCT dictionary for natural images, or learned
from a given set of training signals. The later can be better
fitted to a particular class of signals and leads to more promis-
ing results in many applications such as image denoising [5],
classification tasks [6], and so on.

During the last few years, many dictionary learning algo-
rithms have been introduced to address the problem of learn-
ing overcomplete dictionaries [7]. These algorithms can be
considered as a generalization of the well-known K-means
clustering algorithm [8]. While in K-means, we restrict each
signal to use only one atom (called centroid), in the sparse
approximation case, each signal is allowed to use more than
one atom provided that it uses as few as possible atoms.

Consider a set of signals {y;}~ , where Vi : y; € R™.
Putting these signals, called training data, as the columns of
the matrix Y, the dictionary learning problem is then to solve
the following minimization problem:

(D*,X*) = argmin [|Y — DX||%, 3)
DeD,XEX

where ||.||r is the Frobenius norm, and D and X" are admis-
sible sets of the dictionary and the coefficient matrix, respec-
tively. In this paper, D is the set of all dictionaries with unit
column-norm. Since we require that each signal has a sparse
approximation, X is the set of all matrices X with sparse
columns.

Note that problem (3) is non-convex with respect to both
D and X. Up to our best knowledge, almost all dictionary
learning algorithms solve (3) alternatively: Starting with an
initial dictionary and coefficient matrix, the following two
stages are repeated several iterations,

1. Sparse approximation: with a fixed D, solve (3) for
X,



2. Dictionary update: with a fixed X, update the dictio-
nary to reduce the approximation error.

The first stage is simply an ordinary sparse approximation
problem where the dictionary is known. So, the main differ-
ence between dictionary learning algorithms is their approach
for performing the second stage. Generally, this dictionary
update problem is as follows:

. - 2
min |[Y — DX )

One of the simplest dictionary learning algorithms is the
Method of Optimal Directions (MOD) [9] which firstly finds
the unconstrained minimum of ||Y —DX||% and then projects
the solution onto the set D. This leads to the following closed-
form expression:

D = YXT(xxT)~!, 5)

followed by normalizing the columns of D.

Another well-known dictionary learning algorithm is K-
SVD [8]. K-SVD solves (4) by updating the atoms sequen-
tially, i.e. for updating each atom, the others are kept fixed. In
K-SVD along with each atom, the nonzero entries of the cor-
responding row vector in the coefficient matrix are also up-
dated. This problem leads to a matrix rank-1 approximation
that can be solved by Singular Value Decomposition (SVD).

1.3. Low mutual coherence dictionaries

An important desired property of a dictionary is its low mu-
tual coherence. The mutual coherence of a dictionary is de-
fined as the maximum absolute value of the cross-correlations
between the atoms [10]. Specifically, let G = [g;;] = DTD
be the Gram matrix of D (with normalized columns). The
mutual coherence of D is then defined as:

w(D) = max |g;;|. (6)
i#]

The mutual coherence of a dictionary has an important role
in sparse approximation problems [2, 10]. Smaller values of
(D) implies less similarity between atoms which in turn re-
sults in improved performance of many sparse recovery algo-
rithms including BP [11] and Orthogonal Matching Pursuit
(OMP) [12].

Very recently, Sigg et al. [13] proposed a dictionary learn-
ing method that instead of using (4) for stage 2, regularizes (4)
with a term that encourages low self-coherency of the dictio-
nary, i.e. the pairwise similarity of the atoms. They proposed
the following problem to be solved for stage 2:

A
- _ 2 AT T2
Inin Y — DX|% + 2||D D -1I)%. 7

By varying the value of )\, we can make a trade-off between
minimizing the approximation error and minimizing the self

Algorithm 1 The proposed algorithm

1: Task: Dictionary learning for training data Y.

2: Initialization: Set D = D), k = 0.

3: The main loop: Repeat until convergence:

4: Sparse Approximation: X (*+1) = SA(Y, D),

s: Dictionary Update: Set X = X*+tD D = D),
G = D7D — I, then: D*+1) = YXT(XXT + \G) ™!
Normalize each column, and set k < k + 1.

coherence of the dictionary. To solve (7), [13] proposes to use
the limited-memory BFGS (I-BFGS) algorithm [14]. In other
words, at each iteration between stages 1 and 2, stage 2 itself
has to be solved using an iterative optimization algorithm (I-
BFGS).

In this paper, we derive a new dictionary learning algo-
rithm based on solving (7) as its second stage. Our algorithm
uses a simple closed-form formula for stage 2, and has a bet-
ter performance, both in terms of quality and speed, as will be
shown by our simulations in Section 3.

The rest of the paper is organized as follows. In Section 2
we describe our proposed algorithm in details. Then Section
3 presents the experimental results.

2. THE PROPOSED ALGORITHM

To solve (7), we set its gradient equal to zero. This leads to
the following equation:

—(Y -DX)X” + \D(D'D - 1) = 0. (8)

An exact closed-form solution for this equation would be
tricky. However, noting that (7) is itself inside an iterative
algorithm (that is, it has to be solved as stage 2 of an iterative
algorithm between stages 1 and 2), we propose to replace the
term D7D with the Gram matrix of the current dictionary,
D). In other words, we solve the following equation for D:

—(Y -DX)XT + AD(G® — 1) =0, )

where k indicates alternation number between the two dictio-
nary learning stages and G*) is the Gram matrix of D(¥).
Finally, the updated dictionary is obtained as follows':

D*H) — YXT(XXT + AGR) 1, (10)

where G = G®) —T with its diagonal elements all equal to
zero. Although norm of each atom is also penalized, a column
normalization is done. Note the similarity between (10) and
that of MOD in (5).

Algorithm 1 shows a description of the proposed algo-
rithm, in which SA(Y,D) denotes the coefficient matrix
found by sparsely approximating of Y in D via any sparse

I'We have omitted the alternation number, k, from X for convenience in
the notation.



recovery algorithms (OMP in our experiments). As will be
seen in the next section, the computational burden of our
proposed algorithm is much less than those of K-SVD and
[14] (henceforth named as the I-BFGS).

3. EXPERIMENTAL RESULTS

In this section, we evaluate the efficiency of our proposed al-
gorithm with two experiments. These experiments are similar
to those in [15, 8]. For the sparse approximation stage, we
use OMP. In the first experiment, we compare the ability of
our proposed algorithm to K-SVD? and 1-BFGS algorithms
in reconstruction of a known dictionary. In the second experi-
ment, we consider training vectors from a class of autoregres-
sive (AR) signals. In this case, there is no underlying known
dictionary, but as stated in [15], the only goal is to minimize
the approximation error for the training set’.

Our simulations were performed in MATLAB R2010b en-
vironment on a system with 3.8 GHz CPU and 8 GB RAM,
under Microsoft Windows 7 operating system. As a rough
measure of complexity, we will mention the run times of the
above algorithms.

3.1. Reconstruction of a known dictionary

We generated a random matrix of size 20 x 50 as the generat-
ing dictionary, with zero mean and unit variance independent
and identically distributed (i.i.d.) Gaussian entries. A collec-
tion of 2000 training data {y;}2°}° were produced, each as
a linear combination of s different columns of the dictionary,
with zero mean and unit variance i.i.d. Gaussian coefficients
in random and uniformly independent positions. We varied s
from 3 to 6. We then added white Gaussian noise with Sig-
nal to Noise Ratio (SNR) levels of 10, 20, 30, and 100 dB.
We applied the three algorithms onto this noisy training data,
and compared the resulting recovered dictionaries to the gen-
erating dictionary as follows. Assume that d; is a generating
atom and d; is the atom in the recovered dictionary that best
matches d; among the others. We say that the recovery is
successful if |diT<_il-\ is above 0.99 [8]. The percentage of the
correct recovery is used as the measure of successfully recon-
structing the generating dictionary.

We performed 100 alternations between sparse approxi-
mation and dictionary update stages for all three algorithms.
The initial dictionary was made by randomly choosing differ-
ent signals from the training set followed by a normalization.
For all of these experiments we fixed A = 0.5 in our algo-
rithm and the 1-BFGS algorithm. We repeated each trial 50
times and averaged the results. Figure 1 shows the resulting

2For K-SVD and OMP we have used K-SVD-Box v10 and OMP-Box
v10 available at http://www.cs.technion.ac.il/~ronrubin/
software.html

3 As pointed out in the previous works, e.g. [15], the performance of MOD
and K-SVD is very similar in these experiments. So, we omitted MOD from
the simulations.

SNR= 10 dB SNR= 20 dB
100é 100@ 5
. S A °© 8
2 O K-svD O K-SVD
8 60 O I-BFGS | g0 O I-BFGS
& { Proposed {  Proposed
Tg 40 FREES 40
¢ 8 ©
g 20 Rt 20
| p J
0 0 |
3 4 5 ‘6’ 3 4 5 6
SNR= 30 dB SNR= 100 dB
100 100
(0] o
- 8 B @ 8
< 80 80
2 O K-SVD O K-SVD
8 60 O I-BFGS |1 60 O I-BFGS |4
& ¢  Proposed { Proposed o
2 40 Dol
@
8
S 20 20
7]
0 m o m
3 4 5 6 3 4 5 6
s S

Fig. 1. Results of the experiment on synthetic data. Each
figure corresponds to a certain noise level.

successful recovery ratios. As can be seen, the performance of
the proposed algorithm is comparable and even slightly better
than the other two algorithms. The average execution times
of K-SVD, I-BFGS, and our algorithm were 26.88, 13.67, and
2.96 seconds, respectively.

3.2. Sparse Approximation of an AR(1) signal

In this experiment, we consider an AR(1) signal (according to
[15]), that is generated as v(k) = 0.95v(k — 1) + e(k), where
e(k) is Gaussian noise with zero mean and unit variance. A
collection of L = 2000 training data were made by chopping
this signal into vectors of length n = 20. Number of atoms
was set to m = 40 and s = 5 atoms were used to approxi-
mate each training vector. For all of the three algorithms 100
alternations between stages 1 and 2 were done. As in [15], we
computed SNR as SNR = 101log | Y||Z,/|Y — DX||%.

To find the best value of the regularization parameter (\)
for the setup of this experiment, we repeated our algorithm
and 1-BFGS for a sequence of A’s. For each value of A\ we
repeated the two algorithms 50 times and averaged the results.
The final SNR for these two algorithms is plotted as a function
of A in Fig. 2. As can be seen, for our algorithm A = 85, and
for the I-BFGS A = 40 results in the best SNR, although
these algorithms are not too sensitive to it (this is especially
the case for our algorithm). SNR versus alternation number
(averaged over 50 trials) is plotted in Fig. 3. This figure shows
that the proposed algorithm outperforms the 1-BFGS and K-
SVD in the sense that it reaches higher SNR value. From
Fig. 2 and Fig. 3 we see that our algorithm has a very smooth
behaviour, while it is not the case for the - BFGS. The average
execution times of K-SVD, 1-BFGS, and our algorithm were
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Fig. 3. Results of the experiment on AR(1) signal. SNR is
plotted as a function of the alternation number, k, during the
learning process. The regularization parameter for our algo-
rithm and the I-BFGS algorithm is A = 85, and A = 40,
respectively.

15.88, 6.69, and 1.25 seconds, respectively.

4. CONCLUSION

In this paper, we derived a new dictionary learning algorithm.
Our algorithm is based on solving a recently proposed dic-
tionary learning cost function that controls the trade-off be-
tween the approximation error and the self-coherency of the
dictionary [13]. Contrary to [13] that proposes to use an itera-
tive limited-memory BFGS (I-BFGS) algorithm inside the al-
ternating minimization iterations, we proposed a closed-form
formula to be used inside these iterations. In this way, our al-
gorithm has no additional input parameters. Experimental re-
sults on recovery of a known dictionary and designing a spar-
sifying dictionary for an AR(1) signal showed that compared
to I-BFGS and K-SVD algorithms, not only our algorithm has
a lower computation load, but also it results in a better quality.
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