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ABSTRACT

In dictionary learning, a desirable property for the dictionary
is to be of low mutual and average coherences. Mutual coher-
ence is defined as the maximum absolute correlation between
distinct atoms of the dictionary, whereas the average coher-
ence is a measure of the average correlations. In this paper,
we consider a dictionary learning problem regularized with
the average coherence and constrained by an upper-bound on
the mutual coherence of the dictionary. Our main contribution
is then to propose an algorithm for solving the resulting prob-
lem based on convexly approximating the cost function over
the dictionary. Experimental results demonstrate that the pro-
posed approach has higher convergence rate and lower rep-
resentation error (with a fixed sparsity parameter) than other
methods, while yielding similar mutual and average coher-
ence values.

Index Terms— Compressed sensing, sparse coding, mu-
tual coherence, average coherence, dictionary learning

1. INTRODUCTION
1.1. Dictionary learning

Dictionary learning (DL) has been extensively utilized in a
wide range of machine learning and signal processing appli-
cations, including image/signal enhancement and reconstruc-
tion [1, 2], and pattern recognition and classification [3]. A
lot of algorithms have been proposed for this problem. To for-
mally define it, given a training dataset Y 2 [y1,y2, ..., y1],
yi € R™, a dictionary D £ [d;,ds,...,d,], d; € R™,
is learned in such a way that it provides sparse coefficients
for y;’s. That is, the representations X £ [x;,Xo, ..., %],
x; € R™ are sufficiently sparse. To achieve this, the DL prob-
lem is usually formulated as follows [4]

(D*,X*) = argmin |Y — DX|% (1)

DeD,XeXx

in which, D and X are defined as D = {D : Vi, ||d;|3 < 1}
and X = {X: Vi, ||x;||1 < 7}, where, ||.||; denotes ¢; norm.
To solve (1), many dictionary learning algorithms have been
introduced [2, 4, 5, 6, 7], which are mainly based on alternat-
ing minimization on D and X. Some methods impose addi-
tional constraints on the dictionary D which can improve the
performance [1, 8, 9]. Two important properties are reviewed
in the next section.

1.2. Mutual and average coherences

One of the important properties of a dictionary is the maxi-
mum correlation between the columns of the dictionary which
is called mutual coherence and denoted by u(D) [10]. An-
other important property of a dictionary is the average corre-
lation of dictionary columns, which is called average coher-
ence and denoted by 14,4 (D). For a dictionary D, these two
parameters are respectively defined as:
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In dictionary learning, it is usually desired that the mutual
coherence of the learned dictionary is small. This is because
of two main reasons: On the one hand, it has been shown in
[11] that a dictionary with low mutual coherence has well-
conditioned sub-matrices. On the other hand, a signal with a
sparse representation x with sparsity parameter s, i.e. with s
nonzero coefficient s, can be recovered from y = Dx through
£1 minimization when [12]:
1 1

s < 5 (1+ " )- (3)
According to (3), dictionaries with low mutual coherence are
better for high s. However, the mutual coherence is lower
bounded [13], and it can be shown that:

D S ]Rmxn — Wwelch S ,LL(D) S 17 (4)
where the ftye1ch 1S the Welch bound [13], defined as:

m(n—1)

Furthermore, dictionaries with low average coherence are fa-
vorable in compressed sensing applications [14].

During recent years, many dictionary learning algorithms
have been proposed trying to reduce mutual coherence [8,
9, 15]. A recent approach, called Gradient-based ISDL [16]
(GSD), has been proposed in [17], which minimizes the fol-
lowing cost function:

A
Hwelch =
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where
H = {H ERV™ :H=H" h;=1,Vi m£x|hij| < Mo} :
17

in which pg > ftweich- To solve the above problem, an al-
ternative minimization approach has been used in [17], while
this problem does not yield closed form solution for updat-
ing the dictionary. In other words, the gradient of the cost
function, F(D), over D is computed as follows:

A
F(D) £ |[Y - DX||% + 5 D"D — H||} = (6)
VpF(D) =2(DX - Y)X" +2AD(D'D - H). (7)
Then solving F'(D) does not result to a closed-form solution,

because (7) is non-linear over D. For this reason, [17] uses
gradient descent to update the dictionary, that is,

Dk+1 = Dk — OZVDF(Dk) (8)

Then, H is updated using the following formula, in which &
denotes the iteration number:

hiy = sen(Wpo @ # J,|pul > po ©)
1 i=j

in which, 1 = u;, the (i, j) entry of Uy = D} Dy,

In some older papers, e.g. [8, 9, 15], a cost function sim-
ilar to (6) has been used by having identity matrix I instead
of H. And in [18], a combination of these two cost function
have been used. In all of these papers, the cost function is
non-linear over D, so they all use an update equation of the
form (8).

In this paper, we propose a new approach that approxi-
mates these non-convex cost functions over the dictionary by
a convex function. This leads to a closed-form solution for
the dictionary. As our simulations will confirm, the new algo-
rithm results in improved performance in dictionary recovery.

The rest of the paper is organized as follows. Section 2
presents the main idea of our algorithm and related discus-
sions. Then, the new algorithm is experimentally evaluated in
Section 3.

2. THE PROPOSED ALGORITHM

To develop our proposed algorithm, consider the pair (D, X,,),

which is assumed to be known. Then, following [4], we can
write

{ D=D,+D-D,
X=X,+X-X,
DX = (D,+D - D,)(X, + X - X,) = D, X + DX,
—DuXy + (D —Dg)(X — Xq) (11)
D'D = (D, +D-D,)"(D, + D -D,) =D]D
+D"D, - D; D, + (D - D,)" (D —D,). (12)

(10)

Assuming that ||[(D—D,)(X—X,)||r and ||(D—-D,)"(D—
D,)||r are small, we can write

DX ~ D,X + DX, — D, X, (13)
D’D~D'D + DD, - DID,, (14)

from which we can propose the following approximate prob-
lem which is convex over D:

A
. e
pain Y = DX} + 5ID"D — H]% (15)
min Y + DX, - D, X — DX, | %
DeD,Xex

A
+5IDiD + DD, - DD, — H|, (16)

To solve the above new problem, we use an alternating min-
imization approach, by optimizing the cost over one variable
while fixing the other one. This procedure is summarized as
follows.

2.1. Updating sparse coefficients (first term of (16)):
In this stage, suppose D, = Dy_1,D = Dy, X, =
X, Zr =Y — (D — Dg_1)X, then we can write:

Xpp1 = min |1Zr — Dp_1X|%. (17)
To solve (17), we note that it is a sparse coding problem, with
a lot of solvers existing in the literature [19].

2.2. Updating the dictionary (the two terms of (16)):

In this stage, we assume X = X, = X1 and D, = Dy.
Then, the cost function for updating the dictionary of iteration
k 4+ 1 would be as follows:

A
G(D) = [Y~DXyu[}+ 3 Df D+ D" Dy~ D Dy~ H[3.

VpG(D) = (DXy41 — V)X, + AD,(D;D + DDy, —
D/D;, — Hy) = DX} 11X}, + \AD;D; D + AD;,D"Dj,
- YX],, — \Dy(D/ Dy, + Hy)

To minimize G(D), VpG(D) is set to zero. By defining the
auxiliary variables

Wi = (X)) Xpegn) "
A, =H;, +D{Dy , (18)
Cr =Y Xis1)T + ADrA,

the following equation is obtained to be solved in D:
DW, + AD;D”D; + A\D;D!D = C,. (19)
By using the substitutions

M, =DW, + )\DkDgD

M; = \D;;DTD,, )

M; + M; = Cj, — vec(My) 4 vec(M3) = vec(Cy)
(20)



and using [20]:
> AXB, =R (D> Bl'®A,)vec(X) = vec(R),
n n

where ® denotes Kronecker product, one obtains
{ vec(M;) = (WF &1L, + I, ® (ADIDy))vec(D)
vec(Mz) = A\(Df ® Dy)vec(DT)
(W] @1, + I, ® (A\DfDy))vec(D)
+ M(Df @ Dy,)vec(DT) = vec(Cy). (21)

To solve the above equation with respect to D, we first deter-
mine a matrix By, such that (D} ® Dy )vec(D7) is equal to
Byvec(D). It is not difficult to see that such a By, is obtained
as:

{ Qr £ (Dg ®Dg), D e R™*" 1 <i<n,

I<j<m
Bi(:, (i = m+3)) £ Qu(:, (i + (7 — 1)n))

So

(W{ @1, +1, ® (A\DLDy) + ABy)vec(Dj4 1) = vec(Cy)

-1

= vec(Dpy1) = (W @1, + 1, ® (ADFDy) + AB})
vec(Cy),

(22)
which determines Dy ; in closed-form.

2.3. Updating H:

It is updated by (9).

Note that our approach can be used on many dictionary
learning algorithms to convexify the cost function. As an
example, we apply it here on GSD [17] and RAMC [18].
The two new obtained methods are called Convex-GSD and
Convex-RAMC.

The final algorithm (Convex-RAMC) is summarized in
Algorithms 1 and Convex-GSD algorithm is achieved when
£1 = 0in Algorithm 1.

Algorithm 1 The proposed algorithm (Convex-RAMC)

Input:Y, DY, s (sparsity parameter)
Initialization: Set initial dictionary D! = D,
for & = 1 to Maxlteration do
Sparse approximation: Xy ; =OMP(Z;, Dy_1, s).
Dictionary update:Dictionary is updated by equations
(22).
Normalize the columns of Dy .
Update Hy, 1 using (9) and replace Hy 1 with
P+ BoHp 41 in (18),inwhich0 < 51 <1,0 < 2 <
land B + B2 = 1.
end for

3. SIMULATION RESULTS

In this section, we experimentally evaluate Convex-GSD and
Convex-RAMC, and compare them with GSD [17], RAMC
[18] and MOD [6] for recovering a known dictionary. Our

simulations were performed in MATLAB R2017b environ-
ment on a system with 4.00 GHz I7 CPU and 16 GB RAM,
under Microsoft Windows 10 operating system. As a rough
measure of complexity, we will mention the run times of the
algorithms. The performance measures are root mean square
error (RMSE) defined as €, = % [18], percentage
of atom recovery, mutual coherence and average coherence
(2). Assuming that Dy is the true dictionary and D is the re-
covered dictionary, we say that the ¢th atom of the dictionary
D is successfully recovered if

min(1— | D(, i)' Dy(:,5) |) < 0.01. 23)
i#]

For OMP, we used the available MATLAB code at http://
www.cs.technion.ac.il/~ronrubin/software.
html. We generated a Gaussian random matrix D; €
R20%50 with zero mean and unit variance. Then 2500 training
data {y; }?59° were generated by random linear combinations
of dictionary atoms. According to the size of the dictio-
nary, the Welch bound (4) is computed as piyeicn, = 0.1749
and we chose (g = fwelch- In our simulation, we assume
B1 = 0.2, 85 = 0.8, SNR = 30dB and s = 7 (sparsity param-
eter). In all simulations, the sparsity parameter (s) is constant
while the hyper-parameter A\ (balancing the two terms of the
cost F'(D)) has two values 5 and 10. We performed 2000
iterations between the sparse coding and dictionary updating.
The dictionary was initialized by randomly choosing different
signals from the training set followed by a normalization. We
repeated all simulations 400 times and the averaged results
are reported here.

Run times of algorithms are also compared as a rough
measure of computational complexity. The average running
times and iterations number of the algorithms for achieving a
percentage of recovery equal to 80 are shown in Table 1.

Figures 1 to 8 are the results of the simulation of our
algorithms and its comparisons with other mentioned algo-
rithms. According to all the figures and table, our methods
have higher convergence rate and lower RMSE than the other
algorithms while mutual and average coherence of our meth-
ods are similar to those achieved by GSD and RAMC. The
overall running time to converge of our methods are lower
than the other methods. According to Fig 3 and 4, for A = 5
mutual and average coherences are similar for all the meth-
ods, while our methods have higher convergence rate than the
other methods. In Figs.7 and 8, mutual and average coherence
of GSD are a little bit lower than Convex-GSD but the final
percentage of recovery of Convex-GSD is 15 percent higher
than GSD (see Fig. 5).

4. CONCLUSION

In this paper, we proposed a new approach to convexify the
cost function of dictionary learning problem with low mutual
and average coherence. According to our simulations on syn-
thetic dictionary recovery, our approach increases the conver-
gence rate and decreases RMSE, while mutual and average
coherence of our algorithms are reduced well.
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Fig. 2: Evaluation of RMSE with assumptions: A = 5. The
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imposed.
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Fig. 7: Evaluation of average coherence with assumptions:
A =10.
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Table 1: Number of iterations and average running time (in
seconds) for achieving percentage of recovery= 80. Average
running times are reported in parentheses. In this table and all
figures, s = 7 and SNR = 30dB are supposed.

| Algorithm | A=5 [ A=10 |
Convex-GSD (89.3}s) (1122.fs)
Convex-RAMC (fgs) (110(.)fs)
GSD | (56 | 5930
RAMC (1674.l§s) (1692.41)
Mop | % | oss




(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

5. REFERENCES

M. Elad, Sparse and Redundant Representations,
Springer, 2010.

R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictio-
naries for sparse representation modeling,” Proceedings
of the IEEE, vol. 98, no. 6, pp. 1045-1057, 2010.

J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary
learning,” IEEFE Trans. on Pattern Analysis and Machine
Intelligence, vol. 34, no. 4, pp. 791-804, 2012.

M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, ‘“Dic-
tionary learning for sparse representation: A novel ap-
proach,” IEEE Signal Proc. Letters, vol. 20, no. 12, pp.
1195-1198, 2013.

M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An
algorithm for designing overcomplete dictionaries for
sparse representation,” IEEE Trans. on Signal Process-
ing, vol. 54, no. 11, pp. 43114322, 2006.

K. Engan, S. O. Aase, and J. Hakon Husoy, “Method of
optimal directions for frame design,” in Proceedings of
IEEE ICASSP, 1999, vol. 5.

M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Learning
over-complete dictionaries based on atom-by-atom up-
dating,” IEEE Trans. on Signal Proc., vol. 62, no. 4, pp.
883-891, 2014.

C. D. Sigg, T. Dikk, and J. M. Buhmann, “Learning
dictionaries with bounded self-coherence,” IEEE Signal
Proc. Letters, vol. 19, no. 12, pp. 861-864, 2012.

M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “A new
algorithm for learning overcomplete dictionaries,” in
Proceedings of 21th European Signal Processing Con-
ference (EUSIPCO 2013), 2013.

D. L. Donoho and X. Huo, “Uncertainty principles and
ideal atomic decomposition,” IEEE Trans. Information
Theory, vol. 47, no. 7, pp. 2845-2862, 2001.

J. A. Tropp, “On the conditioning of random subdic-
tionaries,” Appl. Computat. Harmon. Anal., vol. 25, no.
1, pp. 1-24, 2008.

D. L. Donoho and M. Elad, “Optimally sparse repre-
sentation in general (nonorthogonal) dictionaries via ¢!
minimization,” Proc. Nat. Aca. Sci, vol. 100, no. 5, pp.
2197-2202, 2003.

T. Strohmer and Heath R. W., “Grassmannian frames
with applications to coding and communication,” Ap-
plied and Computational Harmonic Analysis, vol. 14,
no. 3, pp. 257-275, 2003.

[14]

[15]

[16]

(17]

(18]

(19]

(20]

W. Chen, M. R. D. Rodrigues, and J. I. Wassell, “Projec-
tion design for statistical compressive sensing: A tight
frame based approach,” IEEE Transactions on Signal
Processing, vol. 61, no. 8, pp. 2016-2029, 2013.

M. Sadeghi, M. Babaie-Zadeh, and C. Jutten, “Reg-
ularized low-coherence overcomplete dictionary learn-
ing for sparse signal decomposition,” in Proceedings
of 24th European Signal Processing Conference (EU-
SIPCO 2016), 2016.

D. Barchiesi and M. D. Plumbley, “Learning incoher-
ent dictionaries for sparse approximation using iterative
projections and rotations,” IEEE Trans. on Signal Proc.,
vol. 61, no. 8, pp. 2055-2065, 2013.

G. 1li, Z. Zhu, H. Bai, and A. Yu, “A new framework for
designing incoherent sparsifying dictionaries,” in IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), 2017.

J. Parsa, M. Sadeghi, M. Babaie-Zadeh, and C. Jut-
ten, “Joint low mutual and average coherence dictio-
nary learning,” in Proceeding of 26th European Signal
Processing Conference(EUSIPCO 2018), 2018.

J. A. Tropp and S. J. Wright, “Computational methods
for sparse solution of linear inverse problems,” Proceed-
ings of the IEEE, vol. 98, no. 6, pp. 948-958, 2010.

K. B. Petersen and M.S. Pedersen, “The matrix cook-
book,” 2008.



