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ABSTRACT

Dictionary learning (DL) has found many applications in
sparse approximation problems. Two important properties
of a dictionary are maximum and average coherence (cross-
correlation) between its atoms. Many algorithms have been
presented to take into account the coherence between atoms
during dictionary learning. Some of them mainly reduce
the maximum (mutual) coherence whereas some other al-
gorithms decrease the average coherence. In this paper, we
propose a method to jointly reduce the maximum and average
correlations between different atoms. This is done by making
a balance between reducing the maximum and average co-
herences. Experimental results demonstrate that the proposed
approach reduce the mutual and average coherence of the
dictionary better than existing algorithms.

Index Terms— Compressed sensing, sparse coding, mu-
tual coherence, average coherence, dictionary learning

1. INTRODUCTION

1.1. Dictionary learning

During the last decade, dictionary learning for sparse approx-
imation has attracted a lot of attention due to its application
in many different areas such as compressed sensing and im-
age reconstruction [1, 2]. In the problem of dictionary learn-
ing, given a training dataset Y ≜ [y1,y2, ...,yl], yi ∈ Rm,
a dictionary D ≜ [d1,d2, ...,dn], di ∈ Rm, is learned in
such a way that it provides sparse coefficients for yi’s. Each
di is called an atom [1]. That is, the representations X ≜
[x1,x2, ...,xl], xi ∈ Rn are sufficiently sparse. This problem
is usually formulated as follows [3]:

(D∗,X∗) = argmin
D∈D,X∈X

∥Y −DX∥2F (1)

in which, D and X are defined as D =
{
D : ∀i, ∥di∥22 ≤ 1

}
and X = {X : ∀i, ∥xi∥1 ≤ τ}, where, ∥.∥1 denotes ℓ1 norm.
To solve (1) , many dictionary learning algorithms have been
introduced [2–6], which are mainly based on alternating min-
imization.

This work was supported in part by European project ERC-2012AdG-
320684-CHESS, and in part by Iran National Science Foundation (contract
No. 96000780).

1.2. Mutual and average coherence

Mutual coherence of a dictionary, denoted by µ(D), is de-
fined as the maximum absolute value of cross-correlations be-
tween its atoms [7]. The average coherence of a dictionary,
denoted by µavg(D), is defined as the average absolute value
of the cross-correlations between atoms. For a dictionary with
normalized columns, these two parameters are defined as:

µ(D) = max
i ̸=j

|DTD|ij ,

µavg(D) =

√
∥DTD− I∥2F

n(n− 1)
.

(2)

Mutual coherence plays an important role in sparse approxi-
mation. A signal with a sparse representation x with sparsity
level s, i.e. with s nonzero coefficient s, can be recovered
from y = Dx through ℓ1 minimization when [8]:

s ≤ 1

2
(1 +

1

µ
). (3)

According to (3), dictionaries with low mutual coherences are
better for high sparsity levels in comparison to dictionaries
with large mutual coherence. However, the mutual coherence
is lower bounded [9], and it can be shown that:

D ∈ Rm×n →
√

n−m

m(n− 1)
≤ µ(D) ≤ 1, (4)

where

µwelch =

√
n−m

m(n− 1)
.

Furthermore, dictionaries with low average coherences are
favorable in compressed sensing applications [10]. During
the recent years, many dictionary learning algorithms use the
following cost function to learn low-coherence dictionaries
[11–13]:

min
D∈D,X∈X

∥Y −DX∥2F +
λ

2
∥DTD− I∥2F . (5)

Comparing with (2), it is seen that these algorithms tend to
reduce the average coherence, and by varying the value of λ,
we can make a balance between minimizing the data repre-
sentation error and average coherence of the dictionary. A



recent algorithm, called GSD, [14] targets reducing mutual
coherence of dictionary by solving the following problem

min
D∈D,H∈H,X∈X

∥Y −DX∥2F +
λ

2
∥DTD−H∥2F , (6)

where

H ≜
{
H ∈ Rn×n : H = HT , hii = 1, ∀imax

i ̸=j
|hij | ≤ µ0

}
µ0 ≥ µwelch. The dictionary is updated using gradient de-
scent. Then, H is updated using the following formula [14],
in which k denotes the iteration number:

hk
ij =

 τ i ̸= j, |τ | ≤ µ0

sgn(τ)µ0 i ̸= j, |τ | ≥ µ0

1 i = j
(7)

in which, Gk = (Dk)TDk and τ = gkij .
As will be seen in the next section, the second term in

(5) reduces also the correlation between “rows” of the dic-
tionary whereas the second term in (6) decreases the mutual
coherence. However, problem (5) reduces the average coher-
ence better than problem (6), because its regularization term
is exactly the average coherence. Inspired by this observa-
tion and considering the usefulness of reducing both average
and mutual coherences in dictionary learning, we propose a
problem to impose low average as well as low mutual coher-
ences simultaneously. This is done by tuning two trade-off
parameters which balance between these two terms. Our sim-
ulation results demonstrate the effectiveness of the proposed
algorithm.

The rest of the paper is organized as follows. Section 2
presents the main idea and our algorithm and discussions re-
lated to it.Then, the algorithm is numerically studied in sec-
tion 3

2. THE PROPOSED ALGORITHM

Although the papers that use (5) as their cost function hope
that it indirectly reduces the mutual coherence of the dictio-
nary, it is interesting to note that it also reduces the correlation
between the “rows” of the dictionary. In fact, In denoting the
n× n identity matrix, one can compute:

∥DTD− In∥2F
= trace((DTD− In)(D

TD− In))

= trace(DTDDTD− 2DTD+ In)

= trace(DDTDDT − 2DDT + Im) + n−m

= trace((DDT − Im)(DDT − Im)) + n−m

= ∥DDT − Im∥2F + n−m. (8)

So, we can write:

∥DTD− In∥2F = ∥DDT − Im∥2F + n−m. (9)

Hence, problem (5) is actually equivalent to the following
problem

min
D∈D,X∈X

∥Y −DX∥2F +
λ

2
∥DDT − I∥2F , (10)

while it is intuitively less acceptable than (5), because it
proposes to design the dictionary by minimizing the correla-
tion of its rows. This problem does not exist in (6), because
∥DTD − Hn∥F ̸= ∥DDT − Hm∥F . Actually, it is experi-
mentally shown in [14] that (6) reduces the mutual coherence
as well. Our experiments (will be seen in Fig.1 of section 3)
with cost functions (5) and (6) shows also that increasing λ
in (6) results in a reduction in the mutual coherence, while
increasing λ in (5) cannot reduce the mutual coherence that
much.

On the other hand, it is intuitively useful to reduce the av-
erage coherence, too, which is done in (5). Actually, in some
papers like [14], the final average coherence is one of the per-
formance measures of the dictionary learning algorithms. So,
in this paper, we introduce an approach for reducing mutual
and average coherences jointly. The new optimization prob-
lem is:

min
D∈D,H∈H,X∈X

∥Y −DX∥2F+
λ1

2
∥DTD− I∥2F+

λ2

2
∥DTD−H∥2F ,

(11)

which is solved by alternating minimization. To solve (11)
over H, we use the same technique as in the GSD algorithm.
To solve (11) over D, we note that the update problem is
equivalent to:
min
D∈D

∥Y−DX∥2F+
λ1 + λ2

2
∥DTD−λ1I+ λ2H

λ1 + λ2
∥2F . (12)

Note that, the gradients of (11) and (12) over D are the same.
So, these two problems lead to the same steepest descent iter-
ations for updating D. Let us denote the above cost function
by F (D). The gradient of F (D) is:

∇DF (D,X) =2(DX−Y)XT+

2(λ1 + λ2)D(DTD− λ1I+ λ2H

λ1 + λ2
).

(13)

We then use steepest descent for solving (12):

Dk+1 = Dk − α∇DF (Dk,Xk+1). (14)

The suitable value for the step-size α is chosen as α ∈
(0, 1/L] where L is a Lipschitz constant of ∇F [15], that is,

∥∇DF (D2,X)−∇DF (D1,X)∥F ≤ L∥D2−D1∥F . (15)

By using the above definition, a Lipschitz constant of (13) can
be obtained by writing:

∇DF (D2,X)−∇DF (D1,X) = 2(D1 −D2)XXT+

2(λ1 + λ2)(D1D
T
1 D1 −D2D

T
2 D2)− 2(D1 −D2)

(λ1I+ λ2H) = 2(D1 −D2)XXT + 2(λ1 + λ2)

((D1 −D2)D
T
1 D1 +D2(D1 −D2)

TD1 +D2D
T
2

(D1 −D2))− 2(D1 −D2)(λ1I+ λ2H).
(16)



Then, utilizing the inequalities ∥A+B∥F ≤ ∥A∥F + ∥B∥F
and ∥AB∥F ≤ ∥A∥F ∥B∥F [16] we get

∥∇DF (D2,X)−∇DF (D1,X)∥F ≤ 2(∥X∥2F + (λ1 + λ2)

(∥D1∥2F + ∥D1∥F ∥D2∥F + ∥D2∥2F ) + (λ1∥I∥F + λ2∥H∥F ))
∥D1 −D2∥F .

(17)Assuming normalized dictionary atoms, we have:{
∥D1∥F = ∥D2∥F =

√
n,D ∈ Rm×n

∥I∥F =
√
n

(18)

Therefore, an upper bound of the Lipschitz constant is ob-
tained as
L′ = 2∥X∥2F +2(λ1+λ2)(3n)+2(λ1

√
n+λ2∥H∥F ). (19)

∇DF (Dk,Xk+1) = 2(DkXk+1 −Y)Xk+1T + 2

(λ1 + λ2)D
k(DkTDk − λ1I+ λ2H

k

λ1 + λ2
).

(20)

The final algorithm, which we call Reduced Average and Mu-
tual Coherence (RAMC), is summarized in Algorithm 1. For
the sparse approximation step, we use orthogonal matching
pursuit (OMP) algorithm [17]. The existence of the constant
γ is because the L′ above is only an upper bound for the Lip-
schitz constant.

Algorithm 1 The proposed algorithm (RAMC)

initialization: Set initial dictionary D1

for k = 1 to MaxIteration do
Sparse approximation:Xk+1 =OMP(Y, Dk, s)
Dictionary update:D(k+1)=Dk- γ

L′ ∇DF (Dk,Xk+1)
Normalize the columns of Dk+1

Update Hk+1 using (7)
end for

3. SIMULATION RESULTS
In this section, we compare our proposed algorithm, RAMC,
with MOD, SGK [18], and GSD algorithms in synthetic dic-
tionary recovery [4]. The performance measures are root
mean square error (RMSE) defined as εk = ∥Y−DkXk∥F√

ml
[12], percentage of atom recovery, mutual coherence and av-
erage coherence (2). Assuming that Dt is the true dictionary
and D is the recovered dictionary, we say that the ith atom of
dictionary D is successfully recovered if:

min
j

(1− | D(:, i)
T
Dt(:, j) |) < 0.01. (21)

For OMP, we used the available MATLAB code at http://
www.cs.technion.ac.il/˜ronrubin/software.
html. We generated a Gaussian random matrix Dt ∈
R30×50 with zero mean and unit variance. Then 1000 training
data {yi}1000i=1 were generated by random linear combinations
of dictionary atoms.To better compare our results with GSD,
we defined λ = λ1 + λ2, β1 = λ1

λ1+λ2
and β2 = λ2

λ1+λ2
.

According to the size of the dictionary, the Welch bound (4)
is obtained as µwelch = 0.1166 and we chose µ0 = µwelch.

By varying the values of β1 and β2, we can make a trade-
off between the representation error, mutual coherence and
average coherence of the dictionary. We performed 100 it-
erations between the sparse coding and dictionary updating.
The dictionary was initialized by randomly choosing different
signals from the training set followed by a normalization. We
repeated all simulations 500 times and the averaged results
are reported here. The value of γ was empirically chosen
equal to 40 in all simulation.

Figure 1 is to verify our primary motivation concerning
that (5) is suitable for decreasing the average coherence while
(6) is suitable for decreasing the mutual coherence.

Figures 2 to 9 are the results of simulation of our algo-
rithm and its comparisons with other mentioned algorithms.
As observed from these figures, when β1 increases, the av-
erage coherence reduces, whereas if β2 increases, the mutual
coherence decreases. This was expected, as β1 and β2 deter-
mine the contribution of the identity matrix (responsible for
average coherence) and matrix H (responsible for mutual co-
herence) in the coherence reduction term; see (12). Note that,
the higher λ, the higher RMSE. Based on the simulations, our
algorithm reduces mutual and average coherence better than
the GSD algorithm, while both of them have nearly the same
error and percentage of recovery. The key point of this simu-
lation, we should set β1 and β2 so that the learned dictionary
has a low coherence and a satisfactory percentage of recovery.

(a) (b)

(c) (d)
Fig. 1: Comparison of problems (5) and (6) with λ = 15. a)
percentage of recovery; b) RMSE; c) mutual coherence; d)
average coherence.

4. CONCLUSION

In this paper, we proposed a new algorithm for learning dic-
tionaries with both low average and low mutual coherence. In
contrast to previous approaches, our algorithm reduces mu-
tual and average coherence of the dictionary jointly. This is



done by adding two terms responsible for reducing the coher-
ences. Our simulations showed the superiority of our algo-
rithms compared to a set of well-known algorithms.

Fig. 2: Evaluation of mutual coherence with assumptions:
SNR = 30, β1 = 0.5, β2 = 0.5, sparsity level=5, µ0 =
µwelch, λ = 8, for both algorithms RAMC and GSD.

Fig. 3: Evaluation of average coherence with assumptions:
SNR = 30, β1 = 0.5, β2 = 0.5, sparsity level=5, µ0 =
µwelch, λ = 8, for both algorithms RAMC and GSD.

Fig. 6: Evaluation of mutual coherence with assumptions:
SNR = 30, β1 = 0.15, β2 = 0.85, sparsity level=5,
µ0 = µwelch, λ = 12, for both algorithms RAMC and GSD.

Fig. 4: Evaluation of RMSE with assumptions: SNR = 30,
β1 = 0.5, β2 = 0.5, sparsity level=5, µ0 = µwelch, λ = 8,
for both algorithms RAMC and GSD.

Fig. 5: Evaluation of recovery with assumptions: SNR = 30,
β1 = 0.5, β2 = 0.5, sparsity level=5, µ0 = µwelch, λ = 8,
for both algorithms RAMC and GSD

Fig. 7: Evaluation of average coherence with assumptions:
SNR = 30, β1 = 0.15, β2 = 0.85, sparsity level=5, µ0 =
µwelch, λ = 12, for both algorithms RAMC and GSD.



Fig. 8: Evaluation of RMSE with assumptions: SNR = 30,
β1 = 0.15, β2 = 0.85, sparsity level=5, µ0 = µwelch, λ =
12, for both algorithms RAMC and GSD.

Fig. 9: Evaluation of recovery with assumptions: SNR = 30,
β1 = 0.15, β2 = 0.85, sparsity level=5, µ0 = µwelch, λ =
12, for both algorithms RAMC and GSD.
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