Proceedings of the 2007 IEEE International Conference on Telecommunications and
Malaysia International Conference on Communications, 14-17 May 2007, Penang, Malaysia

Estimating the mixing matrix in Sparse Componentl
Analysis (SCA) based on multidimensional subspace
clustering

Farid Movahedi Naini!, G. Hosein Mohimani!, Massoud Babaie-Zadeh!* Member and Christian Jutten? Member

Abstract— In this paper we propose a new method for estimat-
ing the mixing matrix, A, in the linear model X = AS, for the
problem of underdetermined Sparse Component Analysis (SCA).
Contrary to most existing algorithms, in the proposed algorithm
there may be more than one active source at each instant (i.e. in
each column of the source matrix S), and the number of sources
is not required to be known in advance. Since in the cases where
more than one source is active at each instant, data samples
concentrate around multidimensional subspaces, the idea of our
method is to first estimate these subspaces and then estimate the
mixing matrix from these estimated subspaces.

I. INTRODUCTION

Because of its many applications, the problem of Blind
Source Separation (BSS) has been extensively studied in the
last twenty years (refer for example to the books [1], [2]. The
applications include channel estimation and equalization [3],
multimedia signal processing [4] and HDTV system [5]). In
the mathematical form, the problem consists in separating a
set of mixed signals from their mixtures, where there are no
information about the sources or about the mixing system
(hence the term “Blind”).

The aim of Sparse Component Analysis (SCA) is to solve the
BSS problem under the sparsity prior [6], [7], [8], [9], [10]. A
sparse signal is a signal whose most samples are nearly zero,
and just a few percent take significant values. Consequently,
at each ‘time’ instant, only a few number of sources have
significant values (say they are ‘active’), and most of them are
almost zero (say they are ‘inactive’).

The problem of SCA can be stated as follows. Consider the
linear model:

X =AS (1)

where A = [a;...a,] € R™*" is the mixing matrix, S =
[s1...57] € RPT and X = [x;...x7] € R™*T are the
matrices of n sources and m observed signals. Each column of

L Advance Communications research Institute (ACRI), Sharif University of
Technology, Tehran, Iran.

2Laboratoire des Images et des Signaux (LIS), Institut National Polytech-
nique de Grenoble (INPG), France.

This work has been partially funded by Sharif University of Technology,
by French Embassy in Tehran, and by Center for International Research and
Collaboration (ISMO).

Author’s email

addresses are: fmovnaini@yahoo.com,

S and X corresponds to an instant of ‘time’ and 7" is the number
of ‘time’ samples. Sparsity of source signals implies that in
each column of S, there are just a few significant values (active
sources) and most of the elements are almost zero (inactive
sources). The goal of SCA is then to estimate A and S, only
from X and the sparsity assumption. In this paper, each column
of the mixing matrix, i.e. each a;, 1 < ¢ < n, is called a mixing
vector.

Although the word “time” is used in the above paragraphs
(‘time’ samples or instant of ‘time’), and will be used in
the continuation of this paper, the above model may be in
another domain, in which the sparsity assumption holds. To
see this, let 7 be a linear ‘sparsifying’ transform (like Short
Time Fourier Transform (STFT) or wavelet packet transform
for speech signals), and the mixing system is stated as X = AS
in the time domain. Then, we have 7{X} = AT{S} in the
transformed domain, and because of the sparsity of 7{S}, it is
in the form of (1).

Generally, more than one source may be active at each instant
of time. The number of active sources at each instant is a
random variable and its average' is denoted by k.

The SCA problem is usually solved in two steps. The first
step is the estimation of the mixing matrix (A), and the second
step is the recovery of the source signals (S) by knowing the
mixing matrix. Note that in the underdetermined case, in which
the number of sources exceeds the number of sensors, these two
problems are not identical [11]. In this paper, we address only
the problem of the estimation of the mixing matrix.

In the field of SCA, two different cases should be dis-
tinguished for estimating the mixing matrix: single dominant
component and multiple dominant components. In the former,
the average number of active sources is less than or approxi-
mately equal to one. In the latter, the average number of active
sources is greater than one. Up to now, many papers have
been addressed to the former case [6], [8], [9], while only few
researchers have considered the latter case [12], [13]. In this
paper, we focus on the case of multiple dominant components.

In the single dominant component SCA, the observed data in
the m-dimensional scatter plot of mixtures concentrate along
the directions of » mixing vectors. Similarly, in the multiple

gh1985im@yahoo.com, mbzadeh@yahoo.com and Chris- Tn fact, this random variable may have non integer average. In this case, k
tian.Jutten@inpg.fr is the closest integer to this average.
1-4244-1094-0/07/$25.00 ©2007 IEEE. 670

dominant components SCA, the observed data concentrate
around k-dimensional subspaces which are spanned by a set of
k mixing vectors. The total number of these subspaces is equal
to N, = (Z) We call these subspaces concentration subspaces
throughout this paper.

The basic idea of this paper is to find these k-dimensional
concentration subspaces, and then to estimate the mixing
vectors using them. This general idea has also been used by
Washizawa et. al. in [13], but our method archives this goal
by another technique which has lower computational cost and
lets us to solve the medium scale problems (e.g., n = 12 and
m = 6). In fact, in our method, it is not necessary to find all N,,
concentration subspaces. Moreover, if some of these subspaces
are found mistakenly, the estimating part of the mixing matrix
is in a way robust to these errors.

It should be emphasized that in this paper, k, the average
number of active sources, is assumed to be determined a priori.
However, a method for estimating k has been proposed in [14].

The paper is organized as follows. In the following section,
we will explain the procedure of estimating the concentration
subspaces. In Section III, a method for estimating the mixing
vectors from the estimated concentration subspaces is devel-
oped. In Section IV, the algorithm for estimating the matrix
A is finalized, while Section V presents various computer
simulations to justify the algorithm. Finally, Section VI contains
some discussions and concludes the paper.

II. ESTIMATING CONCENTRATION SUBSPACES

In this section, we try to estimate k-dimensional concen-
tration subspaces. Each k-dimensional subspace can be rep-
resented by an m by k matrix, whose columns form an
orthonormal basis for the subspace?. In this paper, we do not
distinguish between a subspace and its matrix representation.

Let B € R™** be the matrix representation of an arbitrary
k-dimensional subspace. We define the following function to
detect whether B is a concentration subspace or not:

fo(B) = gexp (M) o)

202

where d(x;,B) is the distance of x; from the subspace rep-
resented by B (the definition of this distance is presented in
appendix 1).

For small values of d(x;,B) compared to o,
exp(—d?(x;,B)/20?) is about 1 and for large values of
d(x;,B), it is nearly zero. Therefore, for sufficiently small
values of o, the above function is approximately equal to the
number of data points close to B. Moreover, if the set of
points are concentrated around several different k-dimensional
concentration subspaces, f has a local maximum where B
is close to the basis of each of them. These local maxima
are very strong if ¢ is small enough. In fact, their values are
approximately equal to the number of data samples which lie
in that subspace. Therefore, by maximizing the function f, we

Note that this representation is not unique.

2
actually maximize the number of data points close to B. Now
an example is presented for demonstrating this function.

Example 1. Consider the problem for the case n = 5,
m = 3 and £k = 2 . In this case, there are five sources,
three mixtures and two sources are active in most instants of
time. Therefore, the data concentrate around (;) = 10 two-
dimensional concentration subspaces. To show the efficiency of
the function f, the data points near origin are first omitted (they
lie in all concentration subspaces) and the remaining points are
projected onto the surface of a unit semi-sphere (by normalizing
the data in every sample and forcing sign of the first component
to be positive. This operation does not change the subspace of
a data sample).

Given an arbitrary two-dimensional subspace, let B be
its matrix representation and (z,y,z) be its normal vector®
representation in Cartesian coordinate. This vector can be
represented by ((p, 6) satisfying:

z = sin(yp) sin(d)
y = cos(y) sin(0) 3)
z = cos(0)

The function f is plotted versus ¢, 6 for 0 < ¢, < 7 and
different values of o. The results are shown in Fig. 1(a) and
Fig. 1(b).

Note that for larger o, f is smoother, but for smaller one,
the peak locations are better distinguishable (all 10 concen-
tration subspaces are separated). Therefore, they form a better
representation for the actual concentration subspaces.

The idea is to maximize the function f for a small value of
o, using a maximization method. However, for small os, many
local maxima exist which make this maximization difficult. But
even in this case, if we have a good initial guess about the
location of the maximum, then by starting from this initial
point, the maximization algorithm may easily find the actual
maximum. Our idea is then to use the maximum obtained from
the maximization of f for a larger o, as the initial guess for
the location of the maximum for smaller o. This suggests to
use a decreasing sequence of ¢ in order to obtain an accurate
estimation.

Up to now, estimating the concentration subspaces is dis-
cussed. The presentation of the final algorithm is delayed
to Section IV, after introducing the method of estimating
the mixing vectors from concentration subspaces in the next
section.

III. ESTIMATING MIXING VECTORS

Now suppose that all of the k-dimensional concentration
subspaces are estimated and their representation matrices are
B;, i = 1...N,. This section is dedicated to estimating the
mixing vectors using these subspaces. To do this, we use an

3In this case, B is a hyperplane in the three-dimensional space. Its normal
vector, by definition, is a unit-norm vector which is perpendicular to the
hyperplane.

671

(b)

Fig. 1. Graph of the function f in the case n = 5, m = 3 and k = 2 for
two different values of o. In (a) ¢ = 0.1 and in (b) ¢ = 0.02. The exact
location of the actual concentration subspaces are indicated by vertical lines.
It is observed that by decreasing o, discrimination increases while a decrease
in smoothness is observed.

idea similar to the idea we used in the previous section to find
the concentration subspaces.

As mentioned before, every concentration subspace is
spanned by a set of £ mixing vectors. The number of con-
centration subspaces which include a certain mixing vector,
equals to the number of choices of other £ — 1 mixing vectors
from the total n — 1 ones. Therefore, every mixing vector lies
in (’,Zj) of the subspaces. Given an arbitrary vector v in the
m-dimensional space, we define the following function:

Zexl)(2:2]3))

where d(v,B;) is the distance of the vector v from the ith
estimated concentration subspace (refer to appendix 1 for the
definition of this distance)®.

For small values of d(v,B;) compared to o,
exp (—d*(v,B;)/20?) is about 1 and for large values of
d(v,B;), it is almost zero. Thus, for sufficiently small values
of o, the function g is approximately equal to the number of
subspaces close to v. Note that the o used in this formula is

“)

4However, as will be explained later, this function is not directly used in the
final algorithm.

Fig. 2. Graph of the function g in the case n = 5, m = 3 and k£ = 2 for
o = 0.02. Distinguished curves represent 10 two-dimensional concentration
subspaces and discriminated peaks represent 5 mixing vectors. The exact
location of the actual mixing vectors are indicated by added vertical lines.
Note that each mixing vector is the intersection of 4 concentration subspaces.

different from the previous one. In order to distinguish the
two, the one related to finding subspaces is denoted by op and
the one related to finding mixing vectors is denoted by oa.
The next example explains the behavior of this function.

Example 2. Here, we demonstrate the function g for the case
of example 1, in which n = 5, m = 3 and k = 2. There are
(3) = 10 concentration subspaces, all of them are presumed to
be already estimated. Each mixing vector is close to (5~]) = 4
of these estimated subspaces.

All of the surface points of the unit semi-sphere are spanned
as follows. Each vector with Cartesian coordinate (z,y, z) is
transformed to (¢, #) satisfying (3). The function g is shown
versus ¢, 8 for 0 < ¢,0 < 7 in Fig. 2. According to (3), a
two-dimensional subspace defined by equation z = ax + by can
be represented in this system of coordinates by equation:

cos(f) = asin(y) sin(f) + b cos(p) sin(h).

Therefore, any arbitrary two-dimensional subspace is trans-
formed into a curve in this figure. In fact, there are exactly
10 curves in the figure which each one represents one of the
concentration subspaces.

In this case every mixing vector lies in 4 subspaces. There-
fore, the absolute maxima that are located in the intersection
of 4 curves represent the mixing vectors and are easily dis-
tinguishable in the figure. Note that the values of these peaks
are nearly 4, which is equal to the number of concentration
subspaces in which they lie.

As observed in the figure, there exist local maxima which
make it difficult to design a maximization algorithm for es-
timating the mixing vectors. In general, each mixing vector
lies in (Z:}) concentration subspaces, but other vectors are
close to relatively smaller number of concentration subspaces,
say less than ¢ concentration subspaces. Consequently, in order
to identify the mixing vectors correctly, we detect the vectors
which lie in at least ¢ concentration subspaces.

Note that if g is set to (}~;) then all of the concentration

subspaces must be estimated accurately. However, the value of

672

Fig. 3. Graph of the function h in the case n =5, m =3,k =2and g =4
for 0 = 0.15. The exact location of the actual mixing vectors are indicated by
added vertical lines.

q can be set much less in some experiences, and the method
accomplishes correctly without requiring all the concentration
subspaces to be estimated.

Moreover, in determining the mixing vectors, instead of
working with the function g (as defined in (4)), we define
the following function to better discriminate between the peaks
corresponding to mixing vectors, and to force each detected
mixing vector to lie in at least ¢ concentration subspaces:

ho(v) = Z

1<i1 <+ <ig<Np

Uo (Vv Bil) o Ug (Va Biq))

where
uq(v,B) = exp (—d*(v,B)/20?)

and d(v,B) is the distance of vector v from subspace B. For
sufficiently small values of o, if v is close to B then u, (v, B)
is about 1 and otherwise it is almost zero. Thus,

1 ifvisclosetoall By, ---B;
0 otherwise

us(V,B) - ug (v, B;) = { a
This means that h,(v) is significant if at least one of the
summands is significant, i.e. if v is near to the corresponding
subset of ¢ subspaces. Therefore, this function can be utilized
for finding mixing vectors. Note that direct computation of (5)
is too time-consuming, and should be avoided. Instead, a fast
algorithm for computing (5) is presented in appendix 2. The
function h is shown for the same case of example 2, with ¢ = 4
in Fig. 3.

As it can be observed in the figures, the mixing vectors are
more distinguishable and the maximization process is simpler
for detecting these maxima. In fact, similar to the function f,,
value of o experiences a trade-off between smoothness and
discrimination.

IV. FINAL ALGORITHM OF IDENTIFYING THE MIXING
MATRIX

As mentioned in previous sections, two decreasing sequences
of o are used in this algorithm. We denote them by [0y ...0R].
However, their lengths and their values can be different.

Usually, the estimation of all the N, = (:) concentration
subspaces is not necessary. It is sufficient to estimate as many
concentration subspaces to guarantee the existence of any

1) Remove data samples (samples of the mixture
matrix x(¢) 1 < ¢ < T) which are near origin.
In these samples, all of the sources are probably
inactive. Then normalize every column of X (nor-
malization simplifies the distance measurement).

2) Choose a suitable value for Ng and a suitable
decreasing sequence of [0 ...0R].

3) Forj=1...Lp

a) Choose a random starting subspace (an or-
thonormal m by k matrix B;).

b) Seti=1.

c) Start with B; and maximize the func-
tion fy, using a multi-variate maximiza-
tion method. Orthonormalize B; after each
iteration. Update B; to the argument that
maximizes this function.

d) If ¢« < R (where R is the number of
elements of the sequence [0 ...0R]), in-
crement ¢ and go back to (c).

4) Omit the repeated subspaces.
5) Choose Np of the obtained subspaces that have
the largest value of the function fo 5.

Fig. 4. The final algorithm for estimating the concentration subspaces.

mixing vectors in at least ¢ of the estimated concentration
subspaces. This value is referred to as Ng.

The idea for estimating the concentration subspaces is to
start from randomly different starting points, with the hope of
finding different maxima. To achieve this, instead of trying Np
starting points, we use Ly starting points (where Ly is several
times greater than Ng), and then we take Ny of them which
have the greatest f,, (note that we are taking advantage that
the actual number of concentration subspaces N, = (’]Z) is
large). Using this method, if some of the detected subspaces
are false (because of getting trapped in local maxima), they
will be ignored, too. The final algorithm for estimating the
concentration subspaces is presented in Fig. 4.

Similarly in order to improve the performance of the second
part of the algorithm, instead of estimating n mixing vectors,
Lpr > n vectors are estimated, after which the repeated
vectors are omitted and actual mixing vectors are extracted
via error detection process. The final algorithm for estimating
the concentration subspaces is presented in Fig. 5. We do not
emphasize on the maximization method. In our simulations, we
have used the steepest ascent maximization method which is
discussed in appendix 3.

Note that the parameter n (number of sources) is not directly
used in the above algorithm. If n is not known, the above
algorithm can be equally applied. As will be seen in the
experimental results, obtaining more than n (actual number of)
mixing vectors is rare, but obtaining less than n vectors happens
more frequently, specially where the actual mixing vectors are
very close to each other.

V. EXPERIMENTAL RESULTS

In this section, one simulation is presented to show the per-
formance of the algorithm. For this simulation, sparse sources
are generated independently and identically distributed (i.i.d)

673

1) Choose a
[o1...0R]
2) Forj=1...La

a) Choose a random normalized m by 1 vector
Vj.

b) Seti=1.

c) Start with v; and maximize the function
hs; using any multi-variate maximization
method. Normalize v; after each iteration.
Update v; to the argument that maximizes
this function.

d) If 2 < R, increment ¢ and go back to (c).

3) Error detection process: Omit the vectors that are
near to less than g of the estimated subspaces.
4) Omit the repeated vectors.

suitable decreasing sequence of

Fig. 5. The final algorithm for estimating the mixing vectors.

by the sum of Gaussians model [11]:
si ~ pN(0,00n) + (1 = p) N(0, 001) (6)

where p is the probability of activity of the sources (and hence
k =~ np). oon and oo are the standard deviations of the sources
in active and inactive modes, respectively. In order to have
sparse sources, the conditions gon > g and p < 1 should
be applied. o.g is to model a white noise.

100 simulations are performed for the case n = 12, m = 6,
k=2({p=0.167),T = 3900, 6o = 0.01 and o, = 1. All the
mixing matrices are generated randomly and each column of
them is normalized. Parameters were chosen as follows: g = 4,
Np = 58, Lx = 240, Ly = 10Ng = 580, op = [.15, .075,
.037, .018] and o5 = [.1, .05, .025, .0125].

In the use of the algorithm of Fig. 4, two subspaces are
detected identical if their distance (presented in appendix 1) is
less than 0.1. In the use of the algorithm of Fig. 5, a vector
is considered to lie in a subspace if its distance (presented in
appendix 1) from that subspace is less than 0.03. And two
vectors are called identical if their angle is less than 6 degrees.
This criterion forces any two mixing vectors to have a minimum
angle of 6 degrees. In this simulation, all the mixing matrices
which did not obey this criteria were omitted.

Figure 6 shows the number of vectors obtained by the algo-
rithm in all simulations. Note that in none of these simulations
more than 12 vectors are obtained. However, in 11 of them less
than 12 vectors are estimated. In all cases, the obtained vectors
are compared with the mixing vectors. For the cases in which
12 vectors were obtained, the criterion

£ = min ||A — AP, (7
PeP

is used, where P is the set of all permutation matrices (this is
the same criterion used in [13]). The maximum, the minimum,
the mean and the standard deviation of the error obtained
by this criterion were 0.0111, 0.0054, 0.0083 and 0.0012,
respectively>. This shows that obtained vectors were very close
to the actual ones.

5In the cases where no < n vectors are obtained, the formula

£ = min ||AP — A]|2 ®)
Pex

0

q‘..{«'.'r.'.'.'..w.'..»);.((.'..'.‘.‘.)‘.:.z.r.g’g.'(.'»)jI(«.'..'.'r.'.'.'..'.'.‘.‘r.'..'.wy(
U (] U J [J U

-.»,‘ii IOOM
U

T (YN
‘ (e [(0M
w “ ‘ H H”

0 20 40 60 80 100
Simulation number

@

Number of obtained vectors

Fig. 6. Efficiency of the overall algorithm for all simulations in the case
n=12,m =6,k =2 and T = 3900 for 100 different simulations. Number
of obtained vectors in each simulation is shown. In some cases fewer than 12
vectors are obtained(7).

Generally, the method may not succeed in estimating all of
the mixing vectors. This error occurs if that mixing vector is not
close to at least ¢ of the estimated subspaces. This error may
be generated because of error in subspace estimation process.
In the 11 cases where less than 12 vectors were estimated,
this error has occurred. The negligible errors obtained in the
experiment imply that the estimation of mixing vectors has been
accurate. The strict error detection process in Fig. 5, usually
prevents detection of any false vector.

VI. DISCUSSION AND CONCLUSION

Most existing algorithms assume single dominant case at
each instant for estimating the mixing matrix in SCA. More-
over, the number of sources is assumed to be known in most of
them. In this paper, we presented a method which omits these
restrictions. On the contrary, in our simulations, we assumed
that the averaged number of active sources, k, is known in
advance. However, some methods exist that estimate k [14].

At our best knowledge, all existing SCA methods are unable
to estimate mixing matrix in large and even medium scales
(e.g., the case used in the simulations), for the multiple dom-
inant case [13]. However, our method solves the problem at
least in medium scale cases. The reason is that there is no
necessity to estimate all concentration subspaces. Moreover,
the algorithm is in a way robust to the errors in estimation of
these concentration subspaces.

Unfortunately, just like other SCA methods, our method
suffers from exponential growth in computation cost. The
reason is that in order to estimate the concentration subspaces,
the number of data samples should be proportional to NN,
Therefore, it is burdensome to solve the problem in the large
scales. The large scale case still remains an open problem.

As mentioned before, the presented method uses a decreasing
sequence of ¢ for estimating the concentration subspaces. The
first and largest ¢ in the sequence is an essential factor in the
quality. A suitable starting o depends on many factors such as
n, m and k. If chosen too large, it may cause mixed peaks and
if too small many local maxima exist.

is used where X is the set of all ng by n full-rank matrices in which all
elements are zero except an element equal to one in each row.

674

The performance of our method depends on several factors,
such as the condition number of mixing matrix, the number
of samples, the number of observations, the average number
of active sources, the sequences of oo and op. A proper
estimation of the these sequences is an essential factor in
the performance. An optimum choice of the parameters is
an open problem which is currently being studied in our group.

Appendix 1

In the algorithm it is required to calculate the distance between a subspace and a vector
or two subspaces. Let B = [by ... bs] be the matrix representation of a k-dimensional
subspace of the m-dimensional space, that is, {b1, ..., by} is an orthonormal basis for
this subspace. Let v be a unit-norm m-dimensional vector. Then, as a measure of the
distance between subspace B and vector v, we use:

d(v,B) = \/1—[(v - b1)2 + -+ (v- by)?] ©

where v - b; represents the dot product of b; and v.

Now let B = [by...bg] and B = [b1 ...Bg] be two k-dimensional subspaces
of m-dimensional space represented in orthonormal form. Then, to detect if these two
subspaces are identical (step 4 of the algorithm of Fig. 4), we use (refereed as the ‘distance’
of the two subspaces within the paper):

d(B,B) = \/dQ(bl,ﬁ) + ...+ d2(bg,B)
where d(b;, B) is the distance between vector and subspace, stated above.

Appendix 2
In (5) it is necessary to calculate an expression of the form

@iy ... a;
1<i;<-+<ig<N

q

where N = N, and a; = uq(v,B;),1 < j < N,. If directly computed, it requires
a cost computation of order (]Z) However, by implementing a recursive algorithm, cost
computation can be decreased to the order of Ngq.

By defining:

sumg(ai...an) = E @iy - - i,
1<i1<--<ig<N

We have
sumg(ai...an) = sumg(ai ...an—1) + an - sumg—1(ai ...an—1)

Using this formula the recursive algorithm can be designed.

Appendix 3

As mentioned in Section 4, this method is based on the maximization of two functions,
fo and h.. This appendix is dedicated to development of the steepest ascent methods for
their maximization. Note that results of the previous appendices are used in developing
this section.

The following equation can be utilized to compute gradient in each iteration of the
steepest ascent maximization for function f,:

ofs 1

77 = 1<j<k 10
Bb]‘ o2 == 19

T
> xe(xe - b) exp (—d®(x, B)/25°)
=1

where B = [by ... bg]. Each iteration of this algorithm composed of:

o Setb; < b; + u(dfs/0b;)/T for 1 < j < k using (10).

« Orthonormalize B®.

In our simulation, we have chosen step size of the algorithm (1) proportional to o2,
to have smaller step-sizes for more complicated functions (which is the case for smaller
os).

)For second part of the algorithm, the following equations can be utilized to compute
gradient in each iteration of the steepest ascent maximization for function h,:

dh., A 2 2
=S = —d*(v,B;,)/2
By l; 5y texp (=d™(v.By;)/207)}
q—1
3 1T exp (—d®(v. Bs;)/20%) (1)
1<i1 <+ <ig_1<Np j=1
1¢{i1.ig—1}

6Ort.honormalizing the matrix B means projecting it on the sphere BTB = I In fact
the matrix BT B is symmetric and it’s square root can be easily computed. To do the
projection it is sufficient to right multiply the matrix B by the inverse of this square root.

where

2 {exp(~d*(vB)/20%)) =

k
01—2 (Z b; (b; -v)) exp (—d*(v,B)/207) (12)

i=1

To calculate (11), the method introduced in appendix 2 can be applied. In fact:

g—1
3 [T exp (—d*(v,Bi;)/20%) =
1<i1 < <ig_1<Np j=1
1¢{i1..ig—1}

sumq_1{exp (—d>(v,B;)/20°)|1 < i< N,i # 1} (13)

Similar to the previous maximization, a suitable step z proportional to o2 has been chosen
and the following steps should be performed in each iteration.

o Setv < v+ pu(dhy/0v)/||0hs /OV||2 using (11) and (12).

« Normalize v by setting v < v/||v]|2.

In the experimental results, in the first maximization y is set to 10%¢2 and in the

second, u is set to 10002,

REFERENCES

[1] A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis,
John Wiley & Sons, 2001.

[2] A. Cichocki and S. Amari, Adaptive Blind Signal and Image Processing:
Learning Algorithms and Applications, John Wiley and sons, 2002.

[3] J. Rinas and K.D. Kammeyer, “Mimo measurements of communication
signals and application of blind source separation,” in Proceedings of the
3rd IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT 2003), pp. 94-97.

[4] Shane F. Cotter and Bhaskar D. Rao, “Sparse channel estimation via
matching pursuit with application to equalization,” [EEE Transactions
on Communications, vol. 50, pp. 374-377, March 2002.

[5] W.F. Schreiber, “Advanced television systems for terrestrial broadcasting:
Some problems and some proposed solutions,” Proceedings of the IEEE,
vol. 83, pp. 958-981, June 1995.

[6] R. Gribonval and S. Lesage, “A survey of sparse component analysis for
blind source separation: principles, perspectives, and new challenges,” in
Proceedings of ESANN’06, April 2006, pp. 323-330.

[7]1 M. Zibulevsky and B. A. Pearlmutter, “Blind source separation by sparse
decomposition in a signal dictionary,” Neural Computation, vol. 13, no.
4, pp. 863-882, 2001.

[8] P. Bofill and M. Zibulevsky, “Underdetermined blind source separation
using sparse representations,” Signal Processing, vol. 81, pp. 2353-2362,
2001.

[9] P.G. Georgiev, F. J. Theis, and A. Cichocki, “Blind source separation and

sparse component analysis for over-complete mixtures,” in Proceedinds

of ICASSP’04, Montreal (Canada), May 2004, pp. 493-496.

M. Zibulevsky, B.A. Pearlmutter, P. Bofill, and P. Kisilev, Independent

Component Analysis: Principles and Practice, chapter Blind Source

Separation by Sparse Decomposition, Cambridge, 2001.

A. A. Amini, M. Babaie-Zadeh, and Ch. Jutten, “A fast method

for sparse component analysis based on iterative detection-projection,”

in Proceedings of Twenty sixth International Workshop on Bayesian

Inference and MaximumEntropy Methods in Science and Engineering

(MaxEnt), 2006.

P. G. Georgiev, F. J. Theis, and A. Cichocki, “Sparse component

analysis and blind source separation of underdetermined mixtures,” /EEE

Transactions of Neural Networks, vol. 16, no. 4, pp. 992-996, July 2005.

Y. Washizawa and A. Cichocki, “on-line k-plane clustering learning

algorithm for sparse comopnent analysis,” in Proceedings of ICASSP 06,

Toulouse (France), 2006, pp. 681-684.

N. Noorshams, M. Babaie-Zadeh, and C. Jutten, “Estimating the mixing

matrix in sparse component analysis based on converting a multiple

dominant to a single dominant problem,” in /CA’07, (submitted).

[10]

(1]

[12]

[13]

[14]

675

