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ABSTRACT
In this paper we present an algorithm for complex-valued
sparse representation. In our previous work we presented an
algorithm for Sparse representation based on smoothed � � -
norm. Here we extend that algorithm to complex-valued sig-
nals. The proposed algorithm is compared to FOCUSS algo-
rithm and it is experimentally shown that the proposed algo-
rithm is about two or three orders of magnitude faster than
FOCUSS while providing approximately the same accuracy.

Index Terms— complex-valued sparse component anal-
ysis, over-complete atomic decomposition.

1. INTRODUCTION

Obtaining sparse solutions of under-determined systems of
linear equations is of signi cant importance in signal process-
ing and statistics. Some of the potential applications include
Sparse Component Analysis (SCA) [1, 2, 3, 4], atomic de-
composition on overcomplete dictionaries [5, 6] and decod-
ing real eld code [7]. Despite recent theoretical develop-
ments [8, 1, 2], the computational cost of the methods has
remained as the main restriction, especially for large systems
(large number of unknowns/equations).
The aim of sparse representation is to obtain the spars-

est solution s � � � 	 
 � � � 
 � � 
 � of x � As, i.e. the solution
in which most of the elements � � , � � � � � are nearly
zero. We may search for a solution of the system having
minimal � � norm, i.e. minimum number of nonzero compo-
nents. It is usually stated in the literature [5, 3, 4, 2] that
searching the minimum � � norm is an intractable problem as
the dimension increases (because it requires a combinatorial
search), and as the noise increases (because any small amount
of noise completely changes the � � norm of a vector). Con-
sequently, the researchers look for other approaches to nd
sparse solution of x � As which are tractable. One of the
most successful approaches is Basis Pursuit (BP) [6, 8, 4,
2, 9] which nds the minimum � 	 norm (that is, the solu-
tion of x � As for which � � � � � � is minimized). Such a

�
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solution can be easily found by Linear Programming (LP)
methods. The idea of Basis Pursuit is based on the obser-
vation that for large systems of equations, the minimum � 	
norm solution is also the minimum � � norm solution [8, 6, 9].
By utilizing fast LP algorithms, speci cally interior-point LP
solvers, large-scale problems with thousands of sources and
mixtures become tractable. However, it is still very slow, and
in the recent years several authors have proposed improve-
ments for BP (for speeding up the algorithm and for handling
the noisy case) [5]. Another family of algorithms is Iterative
Re-weighted Least Squares (IRLS), with FOCUSS [10] as an
important member. These are faster than BP, but their esti-
mation quality is worse (especially if the number of non-zero
elements of the sparsest solution is not very small). Another
approach is Matching Pursuit (MP) [11, 2] which is very fast,
but is a greedy algorithm and does not always provide good
estimation of the sources.
In many applications, the sparsity of signals is in the fre-

quency domain. In these applications, Fourier transform is
a necessary pre-processing which gives rise to complex sys-
tems and signals. However, most of the proposed algorithms
(such as BP methods) cannot handle the complex case.
In our previous work [12], a new sparse representation ap-

proach was proposed that provided a considerable reduction
in complexity. In that article, we presented SL0, a fast method
for nding the sparse solution of an under-determined system
of linear equations, which was based on minimization of � �
norm. However, the method was restricted to real signals. In
this article we modify that work and extend it to the complex-
valued system and signal case and justify its performance in
complex case. The paper is organized as follows. The next
section introduces the main idea. The algorithm is then stated
in Section 3. Finally, Section 4 provides some experimental
results of our algorithm and its comparison with FOCUSS.

2. THE MAIN IDEA

The main idea of SL0 approach [12] is to approximate the � �
norm by a smooth (continuous) function, which lets us to use
gradient based methods for its minimization and also solves
the problem of sensitivity of � � norm to noise. In this section
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we introduce a family of smooth complex approximators of
� � norm, whose optimization results in a fast algorithm for
nding the sparse solution while preserving noise robustness.
The � � norm of s � � � � � � � � � � 	 is de ned as the number

of non-zero components of s. In other words, if we de ne

� � � � �
�


 � �� �� � � � (1)

then the � � norm is � s � � � �
�

� 	 �
� � � � � . It is clear that the

discontinuities of the � � norm are caused by discontinuities
of the function � . If we replace � by a smooth estimation of
it, we obtain a smooth estimation of the � � norm. This also
provides some robustness to additive noise.
Different functions may be utilized for this aim. In this

paper, we extend the zero-mean Gaussian family of functions
used in [12] to complex zero-mean Gaussian family of func-
tions which seems to be very useful for this application, be-
cause of their differentiability. By de ning:
 � � � � � � 
 � � �


 � 
 � � � � � � � � 
 � � � � � �� � � �� � � � � � � � (2)

where 
 � 
 , � � and � � represent the module, real and imaginary
parts of � � � , we have:

� � �� �
�


 � � � � �
�


 � � � � � � � � � � � �� � �� � � � � �� � or � � �� � � � (3)

Consequently,
� � � � �

�

 � � � � � 
 � � � � � , and therefore by

de ning � � � s � � �
�

� 	 �

 � � � � � , we have:

� � �� �
�

� � � s � �
��

� 	 �
� 
 � � � � � � � � � � � s � �

� (4)

and as a result, � s � � � � � � � � s � . The value of � speci es a
trade-off between accuracy and smoothness of the approxima-
tion: the smaller � , the better approximation, and the larger � ,
the smoother approximation. From (4), minimization of the
� � norm is equivalent to maximization of � �

for suf ciently
small � . This maximization should be done on the af ne set 

� ! s 
 x � As " .
For small values of � , � �

contains a lot of local max-
ima. Consequently, it is very dif cult to directly maximize
this function for very small values of � . However, as the value
of � grows, the function becomes smoother and smoother, and
for suf ciently large values of � , as we will see, there is no
local maxima.
Our idea for escaping from local maxima is then to de-

crease the value of � gradually1: for each value of � we use a
steepest ascent algorithm for maximizing � �

, and the initial
value of this steepest ascent algorithm is the maximizer of � �
obtained for the previous (larger) value of � . Since the value

1The idea for optimizing a non-convex function is called Graduated Non-
Convexity (GNC) [13].

# Initialization:

1. Choose an arbitrary solution from the feasible set $ , v % ,
e.g.the minimum & ' norm solution of x ( As obtained
by pseudo-inverse (see the text).

2. Choose a suitable decreasing sequence for ) ,* ) + , , , ) - . .# for / ( 0 1 , , , 1 2 :
1. Let ) ( ) 3 .
2. Maximize (approximately) the function 4 5 on the feasi-
ble set $ using 6 iterations of the steepest ascent algo-
rithm (followed by projection onto the feasible set):

– Initialization: s ( v 3 7 + .
– for 8 ( 0 , , , 6 (loop 6 times):
(a) Let: 9 s (* : + ; < = > 7 ? @ A ? B' 5 BC D 1 , , , 1 : E ; < = > 7 ? @ F ? B' 5 BC D . G
(b) Let s H s I J 9 s (where J is a small positive

constant).
(c) Project s back onto the feasible set $ :

s H s I A K > AA K D 7 + > As I x D
3. Set v 3 ( s.# Final answer is s ( v L .

Fig. 1. The nal algorithm.

of � changes slowly, the steepest ascent algorithm is initial-
ized not far from the actual maximum, and hence, it is less
likely to get trapped into local maxima.
Remark. Equation (4) proposes that � � � � � can be seen

as a ‘smooth measure of sparsity’ of a vector (especially for
small values of � ): the sparser s, the larger � � � s � . In fact,� � � s � is approximately the number of elements of s which
have signi cant values (compared with � ), and for very small� ’s it is simply the number of non-zero elements of s.

3. THE ALGORITHM

The nal algorithm for complex case is presented in Fig. 1,
which is a modi cation of the real case algorithm of [12]. As
indicated in the algorithm, the nal value of the previous esti-
mation is used for the initialization of the next steepest ascent.
By choosing a slowly decreasing sequence of � , we may es-
cape from getting trapped into local maxima, and obtain the
sparsest solution.
Remark 1. The internal loop (steepest ascent for a xed� ) is repeated a xed and small number of times ( M ). In other

words, for increasing the speed, we do not wait for the (inter-
nal loop of the) steepest ascent algorithm to converge. This
may be justi ed by gradual decrease in value of � , and the
fact that for each value, we do not need the exact maximizer
of � �

. All we need, is to enter a region near the (absolute)
maximizer of � �

for escaping from its local maximizers.
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Remark 2. Steepest ascent consists of iterations of the
form s � s � � �

� � � � s � . Here, the step-size parameters � �
should be decreasing, i.e. for smaller values of � , smaller
values of � � should be applied. This is because for smaller
values of � , the function � �

is more ‘ uctuating’, and hence
smaller step-sizes should be used for its maximization. In
fact, we may think about changing the value of � in (2) as
looking at the same curve (or surface) at different ‘scales’,
where the scale is proportional to � . For having equal (i.e.
proportional) steps of the steepest ascent algorithm in these
different scales, it is not dif cult to show that � � should be
proportional to � � . Letting � � � � � �� , for some constant � ,
we obtain s � s � � � s as stated in the algorithm of Fig. 1,
where � s � � � � � � � � s � .
Remark 3. The algorithm may work by initializing v �

(initial estimation of the sparse solution) to an arbitrary solu-
tion of x � As. However, the best initial value of v � is the
minimum � � norm solution of x � As, which is given by the
pseudo-inverse ofA. It is because this solution is the (unique)
maximizer of � � � s � on the feasible set 	

, where � tends to in-
nity2. This is formally stated in the following theorem (for
the proof, refer to [12]).

Theorem 1 The solution of the problem:

Maximize � � � s � subject to x � As �

where � � � , is the minimum � � norm solution of x � As,
that is, s � A 	 � AA 	 � 
 � x.

Remark 4. Having initiated the algorithm with the min-
imum � � norm solution (which corresponds to � � � ), the
next value for � (i.e. � � ) may be chosen about two to four
times of the maximum absolute value of the obtained sources
(


 � � � � � � � ). To see the reason, note rst that:

� � 
 � � � �� � � � � � �
�

	 , if � � � � � �� , if � � � � 
 � � (5)

Consequently, if we take � � �

 � � � � � � � for all 	 
 � 
 � ,

then � � 
 � � � �� � � � � � � � � � � � 	 , and comparison with (5)
shows that this value of � acts virtually like in nity for all
values of � � , 	 
 � 
 � . For next values of � � , we have used� � � � � � 
 � , where � is usually between 0.5 and 1.
Remark 5. In applicationswhere the zeros in the sparsest

s are exactly zero, � can be decreased arbitrarily. In fact,
in this case, its minimum value is determined by the desired
accuracy. For applications in which inactive elements of s
are small but not exactly zero (say that the ‘source’ vector is
noisy), the smallest � should be about one to two times of (a
rough estimation of) the energy of this noise. This is because,
while � is in this range, (5) shows that the cost function treats

2In another point of view, one may think about the minimum � � norm
solution as a rough estimate of the sparse solution, which will be modi ed in
the future iterations of the algorithm.

Table 1. Progress of the method for a problem with � �
	 � � � , � � � � � and � � 	 � � � � � � � 	 � .

itr. # � MSE SNR (dB)
1 1 � � � � � � � 3.52
2 0.5 � � � � � � � 8.39
3 0.2 � � � � � � � 16.51
4 0.1 � � � � � � � 18.06
5 0.05 � � � � � � � 23.32
6 0.02 � � � � � � � 26.28
7 0.01 � � � � � � � 25.59

algorithm Time SNR STD Minimum
SL0(k=100) � � � � � 26.15 0.56 24.91

FOCUSS(k=100) � � � � 27.93 1.34 21.01
SL0(k=150) � � � � � 22.91 3.16 13.56

FOCUSS(k=150) � � � � 22.49 3.95 13.54

small (noisy) samples as zeros (i.e. for which
� � � � � 	 
 � ).

However, below this range, the algorithm tries to ‘learn’ these
noisy values, and moves away from the true answer.

4. EXPERIMENTAL RESULTS

In this section, we justify the performance of the presented ap-
proach and compare it with FOCUSS [10]. Sparse sources are
arti cially created using Complex Bernoulli-Gaussian model:

� � 	 
 � � � � � � � 
 	 � � � � 
 	 � � � � � � � � 	 � (6)

where 
 denotes probability of activity of the sources. � � 
 and
� � � are the standard deviations of the sources in active and
inactive mode, respectively. In order to have sparse sources,
the parameters are required to satisfy the conditions � � � �

� � 
 and 
 � � . Setting � � � � � results in a spiky model. In
the simulation � � 
 is xed to 1. Each column of the mixing
matrix is randomly generated using the normal distribution
which is then normalized to unity.
Using (6), the number of active sources has a binomial

distribution with average � 
 . Let de ne � � � 
 . In our sim-
ulations, we prefer to work with � instead of working with 

directly.
The mixtures are generated using the noisy model x �

As � n, where n is an additive white complex Gaussian noise
with variance � � I � (I � is � � � identity matrix). � � is set
to 0.02 in the simulation. The values used for the experiment
are � � � � � � , � � � � � , � � � � � (average number of active
sources) or equivalently 
 � � � � , � � � � � , � � 
 � � , � � �

� � � � and the sequence of � is xed to [1, 0.5, 0.2, 0.1, 0.05,
0.02, 0.01]. � is set equal to � � � . For each value of � the
gradient-projection loop (the internal loop) is performed three
times (i.e. 
 � � ).
Table 1 shows the gradual improvement in the output SNR

after each iteration, for a typical run of the algorithm. More-
over, for this run, total time and nal SNR have been shown
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Fig. 2. Evolution of the algorithm toward the solution: � �

� � � � , � � � � � and �
� � � � . From top to bottom, rst plot

corresponds to the real and imaginary part of actual source,
and their estimation at the rst level ( � � � ), second level
( � � � � � ), and third level ( � � � � � ).

for our method and for FOCUSS (using FOCUSS-CNDL Pack-
age3 [14]). It is seen that our method performs two to three
orders of magnitude faster than FOCUSS, while it produces
approximately the same SNR. Figure 2 shows the actual source
and it’s estimations in different iterations for this run of the al-
gorithm.
The experiment is then repeated 100 times for � � � � �

and � � � � � (for different randomly generated sources). Av-
erage computational time in second, average SNR, standard
deviation of SNR and the worst case SNR in dB are shown in
table 1. Although the CPU time is not an exact measure of
complexity, it can give us a rough estimation of complexity.
Our simulations are performed in MATLAB 2006 environ-
ment using a 2.00GHz Dou processor with 0.99GB of mem-
ory, and under Microsoft Windows XP operating system.

5. CONCLUSIONS

In this article, a fast method for nding sparse solutions of an
under-determined system of linear equations of complex vari-
ables was proposed (to be applied in complex-valued atomic
decomposition and SCA). The method was based on maxi-
mizing a ‘smooth’ measure of sparsity. The overall algorithm
was shown to be two to three orders of magnitude faster than
FOCUSS, while providing approximately the same accuracy.
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