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ABSTRACT

Recently, a lot of research has been done on compressed sensing,
capturing compressible signals using random linear projections to a
space of radically lower dimension than the ambient dimension of
the signal. The main impetus of this is that the radically dimension-
lowering linear projection step can be done totally in analog hard-
ware, in some cases even in constant time, to avoid the bottleneck
in sensing and quantization steps where a large number of samples
need to be sensed and quantized in short order, mandating the use
of a large number of fast expensive sensors and A/D converters.
Reconstruction algorithms from these projections have been found
that come within distortion levels comparable to the state of the art
in lossy compression algorithms. This paper considers a variation
on compressed sensing that makes it resistant to spiky noise. This
is achieved by an analog real-field error-correction coding step. It
results in a small asymptotic overhead in the number of samples,
but makes exact reconstruction under spiky measurement noise, one
type of which is the salt and pepper noise in imaging devices, pos-
sible. Simulations are performed that corroborate our claim and in
fact substantially improve reconstruction under unreliable sensing
characteristics and are stable even under small perturbations with
Gaussian noise.

Index Terms— Compressed Sensing, Joint Source-channel
coding, Sparse solution problems, Natural Images, Error-Correcting
codes

1. INTRODUCTION

Compressed sensing has generated a lot of research activity in recent
years. This is chiefly motivated by the desire to build cheaper imag-
ing devices exploiting the way digital images are typically stored and
manipulated, a lossy compressed representation containing only the
most important details, and the inefficiency of current image sensor
architectures that require a number of light-intensity measurements
proportional to the pixel size of the image, rather than its inherent
information content or the desired level of detail.

The main breakthrough came from the works of [1, 2] showing
that the minimum �0-norm solution to most underdetermined lin-
ear systems coincides with their minimum �1-norm solution, effi-
ciently solvable by virtue of �1-norm convexity. Wakin et al. in [3]
demonstrated the real-world applicability of this concept by making
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a so-called single-pixel camera using a Digital Micromirror Device
(DMD) chip to produce a series of linear combinations of light in-
tensities from across the desired scene and reconstructing it by find-
ing the minimum �1-norm solution of the resulting linear system in
wavelet domain.

Interest in this and other applications has resulted in a number
of fast mathematical programming and iterative algorithms for find-
ing sparse solutions to underdetermined linear systems (see [4, 5, 6]
and references therein). In this paper we propose and analyze an
enhanced method of compressed sensing that while preserving the
hardware implementability property of [3] provides for a tunable
measure of immunity to spike noise in image sensor.

The basic idea of this method is to make use, in addition to
the compressibility of natural images, of spiky nature of noise in-
troduced into measurements by precoding the compressed samples
using a suitable encoding matrix, allowing the circuitry on the digital
side to do an additional denoising step in post processing and there-
fore compensate to some degree for the unsatisfactory noise char-
acteristics. This is specially relevant to image acquisition as one of
the common forms of noise corrupting images is the so called salt
and pepper noise that has a spiky nature and typically is a result of
defective pixels in image sensors [7]. In ordinary imaging archi-
tecture, these errors are hard to correct for in hardware because the
functionality of a pixel is dependent on its location [7], but our setup
promises an approach that can sidestep this issue completely.

The outline of the paper is as follows. Section 2 expounds on
some background knowledge, introducing our notation and a step
by step description of the proposed setup. We then clarify the re-
lationships of our method both to coding theory, specially real and
complex-field linear codes, and to coded aperture methods of image
acquisition used in astronomical imaging. The steps involved will
be explained in complete detail, drawing attention to some important
points. Section 3 reports on the numerical results obtained for our
experimental setup. Various parameters for describing the problem
are defined and the performance of algorithm under their changes is
investigated with a series of plots showing how our algorithm com-
pares with ordinary compressed sensing under the presence of spiky
noise. Finally, section 4 concludes the discussion and shows direc-
tion for future research.

2. BACKGROUND AND NOTATIONAL CONVENTIONS

The classical compressed sensing scenario is as follows:
Given a natural signal x ∈ R

N and an orthonormal basis Φ ∈
RN×N that is sparsifying for x, i.e. x = Φθ and θ is semi-sparse
with at most S significant coefficients. We multiply x by a random
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matrix D ∈ Rn×N where n � N to obtain y = Dx = DΦθ ∈
R

n. We recover an approximation x̂ to x by finding the sparsest θ
′

for which DΦθ
′

= y, calling it θ̂ and calculating x̂ as Φθ̂.
Almost all recent theoretical advances on the above problem

amount to proving some variation of these results: the �1-norm min-
imizer obeying the constraints of the above problem coincides with
the sparsest solution (subject to some conditions on matrix D and
S). Also, subject to stronger conditions on D and S, even if θ is not
exactly S-sparse, the distance between �1-norm minimizer and its
best S-term approximation is proportional to the energy in the non-
sparse tail of θ [2]. Furthermore, if the observations are corrupted
with an error vector e whose length is upper bounded by ε, the dis-
tance between the �1-norm minimizer θ

′

subject to the inequality

constraint
‚
‚
‚y − DΦθ

′

‚
‚
‚

2

≤ ε and the best S-term approximation

to θ is increased at most proportional to ε compared to the noise-
less case. These sufficient conditions on D and S are true with high
probability when D is selected from various random matrix ensem-
bles and S is sufficiently small [8]. we adopt the language of [6] and
call the equality constrained problem and its inequality constrained
counterpart Basis Pursuit (BP) and Basis Pursuit Denoise (BPDN),
respectively.

Another corollary of these results that has attracted theoretical
[9], but not practical interest is this: Assume H ∈ Rk×K is a ma-
trix satisfying the same kind of conditions as D for d-sparse sig-
nals (in our work, k and K are generally much smaller than n and
N respectively with K being of the same order of magnitude as
n but strictly larger). Assume also that G ∈ RK×n is a matrix
that is left-annihilated by H (HG = 0) and defines an injective
mapping from R

n to R
K (has full column rank). This G is the

coding matrix of a linear code of dimension n and length K that
can correct up to d gross errors and H is its corresponding par-
ity check matrix. The decoding process is identical to that of bi-
nary linear codes. We first make a message-independent syndrome
s by multiplying H with the error-infested message r, then find
the sparsest error pattern consistent with it by solving the system
He = Hr = H(c + e) = H(Gy + e) for its sparsest solution e

(here, y and r denote the uncoded and coded message respectively
and e is the error vector). Having e at hand allows for finding the
coded message c by simply calculating c = r − e. Injectivity of
G assures that having c is equivalent to having y (for example by
calculating G†y where G† denotes the pseudoinverse of G). Let us
clarify our matrix and vector naming scheme. D is so named be-
cause it Deflates (compresses) the natural signal x. H and G are
conventional names, respectively for parity check and generator ma-
trices in coding theory. c is the coded message and r is the received
codeword.

Note that repetition of n and y in this discussion is deliberate
and that our aim is in fact to encode the compressed samples y with
G, in an approach not dissimilar to joint source-channel coding. The
important difference is that in this setup both source and channel
coding are to be done in analog hardware. This means complex and
nonlinear signal-dependent compression algorithms are not available
and we must rely on theoretical guarantees of compressed sensing to
ensure a reasonable compression ratio.

A high-level description of the steps involved is as follows:

1. Multiply the signal with a known sparsifying basis with a suit-
able wide random matrix D ∈ Rn×N to obtain y = Dx

(analog hardware).

2. Multiply y by a tall encoding matrix G ∈ RK×n to obtain
c = Gy (analog hardware).

3. Sense and quantize c to obtain r = c+e where e has a small
number of large components (noise spikes) interspersed by
small values of thermal noise (Analog/Digital interface).

4. Multiply r by the wide H ∈ Rk×K to obtain the syndrome
and use He = Hr = s to solve for the sparsest e, call it ê

(digital hardware).

5. Calculate ĉ = r − ê (digital hardware).

6. Calculate x̂ by first finding the sparsest solution θ̂ to ĉ =
GDΦθ and from it x̂ = Φθ̂ (digital hardware).

Some notes are in order:
Steps 1 and 2 can and should in fact be combined in a joint

source-channel coding K × N operator J � GD, because having
c, we don’t need y by injectivity of G. Calculating y on the analog
side is not needed and on the digital side we only need to know the
decomposition of J into GD for which H is a left-annihilator of
G. We construct H by drawing its entries from a suitable random
matrix family. Any n linearly independent vectors from the null
space of H can form the columns of G. In our simulations, we
use the first n columns from the output of the MATLAB function
null(H) that calculates an orthonormal basis in matrix form for the
kernel of its input parameter.

That θ is not exactly sparse and e has a large number of small
components of a thermal noise nature will not lead to numerical
blowup, as their finding involves solving inverse sparse approxima-
tion problems, which are stable as discussed earlier. For typical val-
ues of problem parameters, this implies that the support of desired
vector (location of its significant coefficients) and the associated co-
efficient values are accurately identified and calculated.

The K×N matrix J = GD is rank-deficient as its rank cannot
be larger than n < K. Note that the row nullity of J (number of
rows minus the row rank) is at least K−n (with hight probability row
nullity is equal to K −n), this measures the redundancy in a system
of equations with coefficient matrix J . Note that for an injective G

and its annihilator H to exist we should have K ≥ k+n by a simple
dimensional argument, therefore K − n ≥ k. Combined with the
fact that for a random H to recover d-sparse signals, k should be
on the order of d log (K/d) [8], this reaffirms k as a measure of the
amount of redundancy added for gross error correction.

Our description of the setup elaborated on the similarities to real-
field coding when discussing the choice of notation, we also note one
difference here: typically in real-field coding the encoding matrix
is chosen to satisfy some desirable properties or to be similar with
some coding scheme over finite fields, e.g. real field DFT codes [10],
these design constraints most often manifest themselves in terms of
restrictions on the structure of coding matrix. The method proposed
here, to the contrary, constrains the design of parity check matrix (by
restricting it to be suitable for compressed sensing) and finds some
coding matrix among many that is annihilated by that specific parity
check matrix. This has some similarities to the way sparse graph
based codes like Low Density Parity Check (LDPC) Codes [11] are
constructed and perhaps interestingly, these constructions also rely
on randomness to obtain asymptotically optimal properties.

There are also similarities with coded aperture methods in as-
tronomical imaging that use a masking pattern between the scene
(region of the sky we are interested in studying) and a sensor array
to detect a number of photon sources, each point source of photons
projects the mask pattern onto the sensor array consistent with its
own spacial location and therefore if the number of sensors is large
enough we are able to localize and detect the intensity of all sources
in the region of interest. Of particular interest to this work are some
coded aperture reconstruction methods that try to exploit sparsity in
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Fig. 1. SNR versus S (N = 1000, n = 400, K = 600, k = 200
and d = 40).
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Fig. 2. SNR versus d (N = 1000, n = 400, K = 600, k = 200
and S = 120).

detector function imperfections (spiky errors) in addition to scene
sparsity (e.g. [12]). There are important differences though, the un-
usual design of coded aperture systems is at least as much affected
by the difficulty of building lenses for wavelengths of interest as by
the sparsity of the desired signal and the detector failure pattern, if
not more.

3. SIMULATION RESULTS

This section reports on numerical results obtained from the proposed
scheme. We select S indices at random from {1 · · ·n} to be from
N (0, σ2

on) (representing active signal coefficients) and the rest from
N (0, σ2

off) (σ2

off � σ2

on). The same method is used to generate the
spiky noise where d elements of {1 · · ·K} are chosen at random
to be from N (0, σ2

spike) (representing noise spike locations) and the
rest to be from N (0, σ2

therm) (σ2

therm � σ2

spike). D and H are selected
from the scaled Gaussian ensembles Nn×N /

√
n and Nk×K /

√
k

respectively (scaled i.i.d standard normal entries).
To compare our results with ordinary compressed sensing, each

test on a joint source-channel coding matrix J ∈ RK×N is accom-
panied by a test on another random matrix A ∈ RK×N drawn from
NK×N /

√
K, which we term the direct compressed sensing matrix

(direct CS). Our own inflation approach is termed coded compressed
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Fig. 3. Reconstruction with coded CS (N = 25, n = 10, K = 15,
k = 5, S = 5 and d = 1).
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Fig. 4. Reconstruction with direct CS (N = 25, n = 10, K = 15,
k = 5, S = 5 and d = 1).

sensing (coded CS). The same spiky noise is added to both measure-
ments. Reconstruction is based on the SPGL1 algorithm [6] as it
seems to be the fastest implementation of Basis Pursuit for systems
whose answer is not completely sparse. The reported SNRs were
averaged over 50 trials of each experiment to smooth out random
deviations.

In coded CS, error reconstruction from syndrome is done using
the noiseless BP. BPDN is used in reconstructing the signal from
error-subtracted samples as the error estimation step is not guaran-
teed to be completely accurate. BPDN is also used in direct com-
pressed sensing setup. The �2-norm constraint value in these BPDN
problems was chosen empirically to be 1.3 times the expected norm
of the relevant error. To apply this for error-subtracted samples in the
inflated setup, we needed to estimate the residual part of noise not
recovered by the first BP, for which we used an empirical estimate
of BP performance in recovering semi-sparse vectors.

Figures 1 and 2 show the performance of the algorithm versus S
and d (N = 1000, n = 400, K = 600, k = 200, σ2

spike/σ2

therm =

σ2

on/σ2

off = 1000). Note how in fig. 1 we have zero SNR for the first
data point (S = 0). For S ≤ 100, coded CS performance is quite
impressive and after that it decreases smoothly for larger S, asymp-
totically reaching direct CS but always performing better. Note that
the performance of direct CS shows some improvement when S in-
creases! This might be related to the less sparse signals being some-
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what better at masking the effects of spiky noise. Figure 2 shows the
effect of changing d on performance. Note the extreme sensitivity
of direct CS to spiky noise (a common form of noise in image sen-
sors) by comparing its performance for d = 0 and d = 4 (first and
second data points). Coded CS outperforms direct CS as expected,
except for the degenerate case of d = 0. Its performance smoothly
decreases for larger d’s, again asymptotically reaching direct CS but
never becoming worse.

Figures 3 and 4 compare performance of coded and direct CS
on an actual low-dimensional problem instance (N = 25, n = 10,
K = 15, k = 10, S = 5, d = 1, σ2

spike/σ2

therm = σ2

on/σ2

off = 1000).
We see that our coded CS approach has correctly identified the lo-
cation and magnitude of active coefficients whereas direct CS has
failed to detect three of the five active components correctly under
only a single noise spike.

We repeated above experiments using SL0 algorithm [5] and the
results have been essentially the same. We don’t reproduce these
results here for reasons of space. SL0 may be advantageous from
a computational standpoint. Unlike SPGL1 it requires computation
or storage of measurement matrix pseudoinverse but typically con-
verges in fewer iterations and requires fewer matrix vector products.

4. CONCLUSION

An extension to the classical compressed sensing scenario was pro-
posed and connections with related ideas in coding and astronomi-
cal imaging were considered. Simulations showed that the proposed
idea is promising when spiky errors are present in the measurement
process, even when they are not the only source of error and that nu-
merical stability is not an issue in reconstruction for moderate val-
ues of parameters. We are also experimenting with partial Fourier
transform matrices for sensing and parity check as they are more
amenable to analog hardware implementation. Also, the approach
to redundant measurements proposed here may be of use for reduc-
ing other types of noise. Our primary results show that even for
completely dense noise, coded compressed sensing provides a 3dB
improvement in SNR. This is not as impressive as the results for
sparse noise, but may be useful as it can be implemented in analog
optical domain and used to learn the thermal noise of sensors and
other electronic components.
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