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ABSTRACT 

In this paper, we address the matrix completion problem and 
propose a novel algorithm based on a smoothed rank func-
tion (SRF) approximation. Among available algorithms like 
FPCA and OptSpace, there is no solution that can simulta-
neously cover wide range of easy and hard problems. This 
new algorithm provides accurate results in almost all scena-
rios with a reasonable run time. It especially has low execu-
tion time in hard problems where other methods need long 
time to converge. Furthermore, when the rank is known in 
advance and is high, our method is very faster than previous 
methods for the same accuracy. The main idea of the algo-
rithm is based on a continuous and differentiable approxi-
mation of the rank function and then, using gradient projec-
tion approach to minimize it. 

Index Terms— Matrix completion, nuclear norm, 
Compressed Sensing, Sparse Signal Processing

1. INTRODUCTION 

Matrix completion can be treated as a generalization of 
compressive sensing of vectors which has been attracting a 
lot of researchers during the last decade. Matrix completion 
arises in wide range of applications including: collaborative 
filtering, triangulation from incomplete data and linear sys-
tem identification [1, 2]. Consider a matrix that only few of 
its entries are known and we would like to exactly recover 
the matrix based on the revealed entries. It is clear that solv-
ing this problem is not generally possible. Now, suppose 
that the matrix is of dimension  and of rank . It is 
easy to show that degree of freedom of this matrix is equal 
to . So, to exactly recover the matrix, it is 
necessary that the number of revealed entries be more than 
this degree of freedom. Consequently, recovery of the ma-
trix from sufficient number of known entries is possible if 
the matrix is low-rank and entries are selected uniformly [1]. 
Indeed, the issue of matrix completion is to set a matrix with 
minimum rank to a given subset of entries. If the number of 
revealed entries is sufficiently large and the entries have 
been sampled sufficiently uniformly, then the setting is 
unique. 

Recovery of a matrix by means of minimizing rank 
function and constraints on revealed entries is an NP-hard 
problem that stems from non-convexity and discontinuously 
of the rank function [3]. Complexity and time required to 
solve this problem grow double exponentially by matrix di-
mensions [3]. To overcome non-convexity of the rank func-
tion, Fazel proposed using nuclear norm instead of the rank 
function [4]. The nuclear norm of a matrix is the sum of sin-
gular values of the matrix and is a convex envelope of the 
rank function [4]. Surprisingly, the relation between nuclear 
norm and rank of a matrix is similar to relationship between 

 norm and  norm of a vector [2]. So, the matrix comple-
tion problem would be converted to recovery of the matrix 
by means of minimizing the nuclear norm and constraints on 
revealed entries. Solution of nuclear norm minimization 
might completely differ from the solution of minimizing 
rank function. However, Candès and Retch [1] show that 
under incoherency of column and row spaces of a matrix 
with standard basis, if the number of revealed entries is 
large enough, then the solution of minimizing nuclear norm 
is unique and, with a high probability, is equal to the solu-
tion of minimizing rank function. 

Most of the algorithms such as FPCA [5], OptSpace [6] 
and SDP (Semi-Definite Programming) [4] use nuclear 
norm heuristic to solve matrix completion problem. FPCA is 
appropriate for hard problems where the number of revealed 
entries is close to the degree of freedom. But, for easy prob-
lems, it is inaccurate. On the other hand, OptSpace is suita-
ble for easy problems, especially problems where the rank 
of the matrix is very low. 

In this paper, we propose a new approach based on a 
continuous and differentiable approximation of the disconti-
nuous rank function. Our algorithm has two main advantag-
es in comparison to the other ones. Firstly, when the rank of 
the matrix is known and high, this algorithm is faster than 
all previous methods. Secondly, it achieves more accurate 
results in almost all situations. Our work is inspired by the 
work of Mohimani et al [7] that uses smoothed -norm to 
obtain sparse solutions of underdetermined system of linear 
equations. 

This paper is organized as follows. In section 2, we    
formulate the problem and in section 3, propose the novel 
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algorithm. Section 4 presents some simulation results and 
section 5 concludes the paper. 

2. MATRIX COMPLETION PROBLEM 

Consider an unknown matrix  of rank  for 
which only  entries of it have been revealed (in this paper 
we examine the case where revealed entries are noiseless). 
Let  be sufficiently large and locations of observed entries 
are sufficiently uniformly distributed. As explained in the 
introduction, matrix completion problem is to find a matrix 

that is a solution to the optimization problem: 

                                    (1) 

where  is the set of locations corresponding to observed 
entries and , where  denotes the cardinality of a 
set, and , the rank function, is the number of non-
zero singular values of . As mentioned, because of non-
convexity of the rank function, nuclear norm heuristic is 
used to solve the matrix completion problem. Nuclear norm 
of a matrix is , where  denotes the 
k-th largest singular value of matrix and .
By using the nuclear norm definition, non-convex optimiza-
tion problem (1) can be reduced to the convex problem: 

                               (2)          

Candès and Retch [1] show that for random matrices there 
are numerical constants  such that if the number of re-
vealed entries of the matrix  is larger than ,
then with probability at least  the minimizer to the 
problem (2) is unique and equal to .

3. PROPOSED ALGORITHM 

3.1. Main Idea 

Our main idea to solve matrix completion problem is to use 
a continuous approximation of the rank function and then to 
apply continuous optimization techniques to minimize it. 
Let be any continuous approximation of the 
rank function, then equation (1) can be written as: 

                                            (3) 

If  is differentiable, then it can be used to solve (3) us-
ing a gradient projection approach. One of such functions is 
the Gaussian function that is used in [7], 

                                          (4) 

When  approaches to zero in (4),  will approach to the 
rank function. But decreasing  to zero will result in a high-
ly non-smooth  with many local maxima, and the gra-
dient projection method might be captured in local minima 

and fail to converge. In contrast, for large values of , the 
approximation of the rank function will not be accurate 
enough.  To overcome this problem, we will gradually de-
crease  in each iteration. This technique, used for minimiz-
ing non-convex functions, is referred to as GNC (Graduated 
Non-Convexity) [8]. For a given , this technique uses the 
minimizer of the previous iteration (larger  as the new 
starting point to search for the minimizer of this smaller .
Theoretically, the initial value of  is infinite but practically 
three or four times of the largest singular value of an initia-
lization matrix is enough because it virtually acts as infinity 
in the exponential functions in (4). Now, we are looking for 
the gradient of the approximating function, .
Theorem 1: For matrix  with singular value de-
composition (SVD) , the gra-
dient of  is 

. (5) 

Proof: Let represent  as 
where is defined as 
and  has the singular values of the ma-
trix . In [10, Cor 2.5], it is shown that if a function  is ab-
solutely symmetric (a function  is called absolutely 
symmetric if  is invariant under arbitrary permutations 
and sign changes of the components of ) and the matrix 
has  in the domain of , then the sub-differential of 

 is given by: 

             .  (6) 

Since  is differentiable at ,  is a sin-
gleton and consequently  becomes a singleton. 
Therefore,  is converted to  and eq-
uation (5) is obtained (the theorem results also from the “if 
part” of [10, Thm 3.1], which does not require convexity of f
as stated in its proof).                              
      
3.2. Gradient Projection 

Let  be a projection operator such 
that for a given matrix ,

So, the gradient projection at the -th iteration will be, 

                                                  (7)
where  is the step size at the -th step. Now, by consider-
ing the gradient given in (5), gradient projection method can 
be represented as the following two steps: 
Step 1: Gradient, 

               (8) 

Step 2: Projection, 
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                                   ,                           (9) 

where is the SVD of  the 
matrix .

3.3. Finalized Algorithm 

Before finalizing the algorithm, two remaining points should 
be clarified. Firstly, the initial solution of the algorithm is a 
solution of (3) with  defined in (4) when  approaches   
infinity. We claim that when  goes to infinity every full 
rank matrix satisfying the constraints of (3) is a solution of 
the minimization problem (3). Let be a full rank matrix 
that fulfills the constraints of (3). Since all singular values of  

are non-zero,  in equation (4) approaches to 
one as  goes to infinity. Therefore,  will be zero for 
infinite values of . It is easy to seen that , hence 

is a solution of (3). 
Secondly, closeness of the approximated matrices in 

two consecutive iterations is our criterion to stop the algo-
rithm. In our simulations, we declared that algorithm has 
been finished if  is smaller than a 
given threshold which we call error threshold.

Putting all together, it results in the algorithm shown in 
Table 1, called smoothed rank function (SRF) algorithm. 

4. NUMERICAL SIMULATIONS 

In this section, the performance of the SRF algorithm is ex-
perimentally evaluated and is compared to other algorithms. 
For generating a testing random matrix of rank 
 in our simulations, we used the following procedure. We 

generate two random matrices and
whose entries are independent and identically drawn 

from a Gaussian distribution with zero mean and unit va-
riance and then, construct the matrix . Re-
vealed entries index set, , is selected randomly in a uni-
form manner. The final estimated matrix is denoted by 
and to measure the closeness of the estimated matrix to the 
original matrix, we use relative error defined as 

.
We used run time of the algorithms and their relative 

errors as two criteria to compare their performances. Al-
though CPU time is not an accurate estimate of the run time, 
we use it as a rough estimation to compare algorithm com-
plexities. Our simulations were performed in MATLAB®

7.6 environment using an Intel® i5 M520, 2.4GHz processor 
with 4GB of RAM, under Microsoft Windows® 7 operating 
system. We run every simulation 20 times with different 
randomly generated , and results are averaged run time 
and relative error. In our simulations, we used .
In tables, we denote Error and dr, the relative error and de-
gree of freedom, respectively. Moreover, by the term easy 
problems, we mean problems in which the ratio   is 
larger than 3, otherwise problems are called hard problems.

Our algorithm’s input parameters are the number of ite-
rations of the inner loop, error threshold, and decreasing fac-
tor of  and their default values are 8, , and 0.9 respec-
tively. However, for easy problems, we set the decreasing 
factor of  equal to 0.4 to decrease computational time. To 
obtain a given relative error, it is sufficient to set the error 
threshold approximately equal to the expected relative error. 
Experimentally, the number of iterations of the inner loop, 

, is chosen equal to 8. For larger values of , obtained ma-
trix will be more accurate although this increases the run 
time. 

Moreover, as explained in the previous section, we need 
to start the algorithm with a full-rank initialization matrix 

 satisfying the constraints of (3). In our simulations, we 
used the following initialization matrix: 

which was always full-rank with our randomly generated 
matrices. 

Some algorithms inherently need to know the rank of 
the original matrix and it is given as input or it is approx-
imated by the algorithm. For example, see OptSpace and 
ADMiRA [9]. In our algorithm, if the rank is known, we can 
exploit it by doing a partial singular value decomposition in-
stead of a complete one (in MATLAB, this can be ‘svds’ 
function instead of ‘svd’ function), and update only this sin-
gular values in (8). This will result in decreasing the compu-
tational load. 

4.1. Unknown Rank Scenario 

In this scenario, the rank of original matrix is unknown. Al-
gorithms like FPCA and SRF inherently do not need to 
know the rank and never estimate it, but OptSpace algorithm 
needs to estimate the rank before starting. In this part, we 
run algorithms by their default parameters. Table 2 shows 
some results of this comparison. In all cases, SRF has more 

Table 1. Pseudo code of the SRF Algorithm 

Algorithm 1: Smoothed Rank Function (SRF)  

Inputs: (initialization matrix), , , , .
Output: .
Initialize: = largest singular value of , , .
While

Let
Inner loop:
For

Compute SVD of 

Compute projection .
End 
Compute , .

End
.
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Table 2. Simulation results of easy problems 

Problem SRF OptSpace FPCA
(n, r, m/dr) Time Error Time Error Time Error 

(50,5,4) 0.34 1.29e-8 0.29 6.18e-2 0.38 2.15e-2 
(100,2,10) 0.93 1.49e-8 0.35 8.37e-8 0.12 4.50e-5 
(100,5,3.3) 2.06 4.36e-8 0.77 1.24e-1 0.16 1.69e-3 
(100,10,5) 1.68 2.89e-9 1.99 2.79e-8  1.24 7.67e-1 

(100,10,3.3) 1.52 3.49e-9 2.62 1.37e-1 0.32 4.84e-5 
(200,10,4) 7.90 4.92e-9 9.12 8.19e-7 0.57 8.31e-5 
(200,20,3) 9.38 1.83e-9 45.3 5.60e-2 0.81 3.32e-5 

(300,10,3.3) 36.9 3.68e-7 19.5 4.62e-2 1.6 2.40e-3 
(300,10,4) 27.8 1.70e-7 19.4 2.27e-6 1.01 1.82e-4 

Table 3. Simulation results of hard problems 

Problem SRF OptSpace FPCA
(n, r, m/dr) Time Error Time Error Time Error 

 (50,10,2) 0.36 7.78e-8 0.53 4.35e-1 3.23 8.44e-7 
(100,5,2.5) 4.16 1.01e-5 0.52 4.69e-1 4.8 7.14e-6 
(100,10,2.5) 1.8 1.52e-7 1.97 3.77e-1 10.1 1.98e-6 
(100,10,2) 3.11 6.49e-7 1.10 6.36e-1 8.28 3.86e-6 

(100,10,1.7) 6.82 5.26e-5 0.63 8.09e-1 7.52 6.62e-6 
(100,20,2.5) 1.93 4.35e-9 12.4 2.66e-1 12.0 7.87e-8 
(100,20,2) 1.81 2.24e-8 2.55 7.69e-1 11.5 6.03e-7 

(100,20,1.7) 2.25 2.06e-7 1.41 7.88e-1 10.9 1.76e-6 
(300,10,2.5) 69.2 1.12e-6 19.5 1.51e-2 74.7 7.17e-6 

accurate results in comparison to other algorithms. With re-
spect to OptSpace algorithm, besides the better accuracy, 
SRF begins to outperform OptSpace in computation time 
when the matrix dimensions increase. In Table 3, we show 
some results of hard problems. As seen, OptSpace algorithm 
fails in all cases. SRF has the lowest run time in all men-
tioned simulations and is more accurate than FPCA in most 
cases. 

4.2. Known Rank Scenario 

In this scenario, we set parameters of all algorithms such 
that relative error be in order of  and then we will com-
pare their computation times. This is showed in figure 1 and 
as can be seen, for ranks greater than 4, SRF algorithm has a 
lower run time. For comparison, we use a matrix of dimen-
sion  where only 20,000 randomly chosen entries 
(50% of the total entries) of it are revealed. 

We declare that when the rank is unknown and the 
problem is easy our method achieves the most accurate re-
sults, while in hard problems it is the fastest among the si-
mulated algorithms. Also, it was shown that for the same 
relative error, if the rank is known and is more than 2% of 
the matrix dimension, SRF is faster than others. 

5. CONCLUSION 

In this work, a new approach for solving matrix completion 
problem was introduced. After presenting the main idea, we 
experimentally compared the proposed method with 
OptSpace and FPCA methods, two well known methods in 

matrix completion literature. Thorough simulations, we 
showed that the novel algorithm is more precise whether the 
problem is easy or hard. In addition, when the rank is known 
and high, for the same reconstruction performance, our algo-
rithm is faster than the others. Extension of this idea to noisy 
matrix completion problem, where the noise is Gaussian or 
spiky, is currently under study in our group. 

Fig. 1 Execution time vs. rank  
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