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ABSTRACT

In this paper, an algorithm for ECG denoising and compres-
sion based on a sparse separable 2-dimensional transform
for both complete and overcomplete dictionaries is studied.
For overcomplete dictionary we have used the combination
of two complete dictionaries. The experimental results ob-
tained by the algorithm for both complete and overcomplete
transforms are compared to soft thresholding (for denoising)
and wavelet db9/7 (for compression). It is experimentally
shown that the algorithm outperforms soft thresholding for
about 4dB or more and also outperforms Extended Kalman
Smoother filtering for about 2dB in higher input SNRs. The
idea of the algorithm is also studied for ECG compression,
however it does not result in better compression ratios than
wavelet compression.

Index Terms— Sparse Representation, Sparse Decompo-
sition, ECG Denosing, Sparse Coding, ECG Compression.

1. INTRODUCTION

The electrocardiographic (ECG) signals are one of the most
important tools for diagnosis of cardiovascular diseases.
Therefore their clarity is vital. These signals are usually
contaminated by noise and therefore denoising is a crucial
preprocessing step for these signals. A common approach for
ECG denoising is ensemble averaging but it requires aver-
aging many beats and in this way many important inter-beat
variations are lost [1]. Another approach that can be used
for ECG denoising is Wiener filtering however Wiener fil-
ter is optimal only for stationary signals. Noisy ECG has a
non-stationary nature and hence Wiener filtering can’t give
good results for ECG denoising. Nowadays, a very common
approach for denoising is wavelet denoising proposed by
Donoho [2]. Also a newly efficient method mainly based on
Kalman filtering is proposed in [3] which uses a nonlinear
bayesian filtering framework for ECG denoising.
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On the other hand, off line recorded ECG signals are also
necessary for telecardiology, therefore compression is also
desirable if an ECG signal is to be transmitted to a cardiac
specialist. Moreover there may exist a necessity to build a
database of ECG recordings for patients so that two ECG
traces taken on different dates may be compared.

Schemes of ECG data compression are grouped into
two categories: time domain (direct) methods and transform
methods (see [4], [5], [6]). In direct methods, the com-
pression is performed directly on the ECG samples but in
transform methods signal is transformed to another domain
in which signal is sparsely represented.

In this article a strategy based on an enhanced sparse
representation in transform domain (for both complete and
overcomplete dictionaries) for ECG denoising and compres-
sion is studied which is based on a recently proposed ap-
proach [7] for image denoising and also a recently proposed
two dimensional sparse decomposition algorithm [8]. An
enhanced sparse representation can be achieved by grouping
similar 1D segments of the input signal into 2D data arrays.
We have used this approach with a 2D separable complete
and overcomplete dictionary (DCT+Wavelet or overcomplete
DCT) for ECG denoising and compression. Note that to use
the approach proposed in [8], separability of dictionary is
an essential assumption. Our procedure includes three steps:
2D transformation using the dictionary (complete or over-
complete)1, shrinkage of the transform domain coefficients,
and inverse 2D transformation. Due to the similarity between
segments in a 2D array, the 2D transform can achieve a highly
sparse representation. Experimental results demonstrate that
its performance is highly better than Wavelet based denois-
ing proposed in [2] and also better than extended Kalman
smoother filtering proposed in [3](for higher input SNRs) but
it does not achieve outstanding performance (compared to
Wavelet) for ECG compression in terms of both SNR and
sparsity.

The paper is organized as follows. The next section de-
scribes the main idea and discusses its effectiveness. Section

1Note that the initial data are one dimensional and we arrange it in two
dimensional data before applying the 2D transform. In fact, this step is the
most important step in our algorithm.
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3 introduces two dimensional sparse decomposition based
on [8]. The algorithm is then stated in Section 4. Finally,
Section 5 provides some experimental results of algorithm.

2. THE BASIC IDEA

The basic idea of this article is achieving an enhanced sparse
representation by grouping similar segments of the input ECG
signal into 2D arrays, and then using a 2D transformation
(which can be complete or overcomplete) to transform 2D ar-
rays.

A simple justification for the effectiveness of the idea is
as follow:

• Assume that the grouping is done, i.e. similar segments
are placed in groups and a 1D transformation (A) is
used for each group.

• In each group we have similar segments and hence after
transformation we will have the same number of high-
magnitude coefficients for each segment in a group, say
α high-magnitude coefficients for each segment.

• Assuming n segments in each group, we will have
nα high-magnitude coefficients in that group. In other
words this group can be represented by nα coefficients.

• Now we should perform another 1D transform (B) on
the second dimension (along each row) of each group.

• Components of this row are similar (because only sim-
ilar segments are in this group), i.e. there is a kind of
similarity for all members of the row.

• As an example, after using 1D transform the first or sec-
ond coefficients of this row will be high-magnitude (be-
cause of the compaction property of used transform).
This means that the whole group can be represented by
highly less than nα coefficients instead of nα coeffi-
cients (i.e., a much more sparse representation).

Note that if overcomplete 2D transform be used we will
have an underdetermined system of linear equations and we
have to find its sparsest solution. Also note that we have
grouped various segments of 1D ECG signal into some two
dimensional groups, hence we are working with two dimen-
sional data and working with a fast and less complex algo-
rithm to find the sparsest solution is essential. To do this we
use 2DSL0 algorithm [8], as a fast method to obtain the spars-
est solution of an underdetermined system of linear equations.
Therefore before presenting the algorithm two dimensional
sparse decomposition is briefly described in the next section.

3. SPARSE DECOMPOSITION OF TWO
DIMENSIONAL SIGNALS

In signal decomposition, a signal vector x ∈ Rn is to
be decomposed as a linear combination of m basic sig-
nals ϕi ∈ Rn, 1 ≤ i ≤ m, This can be written as x =
s1ϕ1 + · · · + smϕm = Φs, where Φ = [ϕ1, . . . ,ϕm] and
s = (s1, . . . , sm)T . The signals ϕi, i = 1, . . . ,m are called
‘atoms’, and they collectively form the ‘dictionary’ Φ. When
the dictionary is overcomplete, i.e. when m > n, the decom-
position is not unique, and the goal of sparse decomposition
(SD) is then to search for a decomposition in which as few
as possible atoms are present in the decomposition. Math-
ematically, this is equivalent to finding the sparsest solution
of the Underdetermined System of Linear Equations (USLE)
Φs = x.

Now consider the decomposition of two-dimensional
(2D) signals: X ∈ Rn1×n2 is to be decomposed as linear
combination of atoms Φij , 1 ≤ i ≤ m1, 1 ≤ j ≤ m2,
that is X =

∑m1
i=1

∑m2
j=1 sij Φij . Letting x = vec(X) and

ϕij = vec(Φij), where ‘vec’ of a matrix stands for the vector
obtained by stacking its columns, this 2D problem will be
converted to the previous 1D problem. However, the atoms
usually used in 2D signal transformation and representation
(e.g. 2D Fourier atoms) are separable, that is, there are vectors
ai and bj such that Φij = aibT

j , 1 ≤ i ≤ m1, 1 ≤ j ≤ m2.
This kind of atoms result in 2D decompositions (and trans-
formations) of the form:

Xn1×n2 = ASm1×m2B
T (1)

where A = [a1, . . . ,am1 ] and B = [b1, . . . ,bm2 ]. For
the complete case, i.e. where n1 = m1 and n2 = m2, the
above decomposition is unique. However, for the overcom-
plete case, i.e. where n1 < m1 and n2 < m2, the represen-
tation is not unique, and in Sparse Decomposition (SD), it is
desired to find the S with as much zero elements as possible.
Note that in our simulations B is always a complete Haar
dictionary for denoising and a complete DCT dictionary for
compression and A is either a complete DCT, or a complete
Wavelet, or an overcomplete mixed DCT-Wavelet.

It can be shown [9, 10, 11] that if the USLE Φs = x
has a solution for which ‖s‖0 < spark(Φ)/2, it is the unique
sparsest solution2. In [8] the uniqueness conditions for the
two dimensional case are extracted (which are less restrictive)
conditions than those of [9, 10, 11]). Moreover a fast algo-
rithm is presented (in [8]) which is called two dimensional
smoothed `0 (2DSL0) algorithm. This algorithm will be used
in this paper to find the sparsest solution when we have an
overcomplete mixed dictionary.

2spark of a matrix [10] stand for the minimal number of its columns which
are linearly dependent



4. THE ALGORITHM

Based on the basic idea of the previous section, the final algo-
rithm is as presented in Fig.1.

Remark 1. In the matching phase (which is used for group-
ing the segments) we are looking for segments that are
similar to a reference segment. It needs a search among
all segments to find segments similar to a given refer-
ence segment. The fragments whose distance from the
reference segment is smaller than a grouping threshold
are stacked in a group. Any signal fragment can be
used as a reference segment and thus a group can be
constructed for it. The similarity between signal frag-
ments is typically computed as the inverse of some dis-
tance measure. In particular, we use the same distance
proposed in [7] which is defined below:

d(yr,yi) =
‖yr − yi‖2

2

N
(2)

where, yr is the reference segment from which the dis-
tance of the ith segment (yi) is calculated. N is the
size of the chosen segments (for all our simulations seg-
ments with 32 samples are used). This distance can
also be computed in the transform domain, i.e., we can
do the grouping after 1D transformation (transform do-
main grouping). Our experience with the algorithm
(not presented in this paper) shows that there is no sig-
nificant change in results.

Remark 2. Note that in the 2D transformation we can have
complete or overcomplete transform. If a complete
transform is used the procedure of algorithm is straight-
forward (using `2 norm). But if an overcomplete 2D
transform is used we will have an underdetermined sys-
tem of linear equations and we have to find its sparsest
solution. To do this we use 2DSL0 algorithm [8],
as a fast method to obtain the sparsest solution of an
underdetermined system of linear equations.

Remark 3. Based on (1) the overcomplete 2D transform has
been constructed from an overcomplete 2D dictionary
(A) which is a concatenation of two complete dictio-
naries and another complete dictionary (B)3. Note that
the overcompleteness factor (number of columns of
dictionary divided by number of rows of dictionary)
for this dictionary is 2.

Remark 4. As it is seen in Fig. 1, in the shrinkage phase we
have used a hard thresholding methodology.

Remark 5. Obviously, a straightforward implementation
of this algorithm is highly computationally demand-
ing. In order to realize a practical and efficient al-
gorithm, we can, for example, reduce the number of

3Explanations regarding choosing these dictionaries are presented in sim-
ulation results.

• Grouping:

1. Segment input signal to approximately 0.25 seconds time inter-
valsa

Denoising: In this case number of overlapping samples be-
tween two adjacent segments is 31 samples.

Compression: In this case there are at most 12 overlapping
samples.

2. Save segments in Y.

• While y is not empty

for i=1,...,NumberOfSegments:

1. Choose one segment as a reference segment (yr).

2. Calculate d(yr,yi) =
‖yr−yi‖22

N
were yi is the ith seg-

ment.
3. if d(yr,yi) ≤ThresholdDistance

– Assign yi to the current group.
– Remove yi from Y.

Save resulted group in a 2D array named GroupArray

• 2D transform

– If Complete 2D transform is desired:

1. For every group of GroupArray
In (1) set A as a complete dictionary and set B as an-

other complete dictionary.
Solve determined system of linear equations (straight-

forward using `2 norm)

– If Overcomplete 2D transform is desired:

1. For every group of GroupArray
In (1) set A as an overcomplete dictionary and set B as

a complete dictionary.
Use 2DSL0 algorithm to solve under determined system

of linear equations

• Shrinkage

If TransformDomainCoefficients ≤ HardThreshold

Discard that coefficient

• Calculate inverse 2D transform

– For complete transform:

Set A as complete dictionary and set B as a complete dictio-
nary too.

– For overcomplete transform:

In (1) set A as an overcomplete dictionary and set B as a
complete dictionary.

• Place each decoded segment in its original position.

abased on sampling rate of ECG signals which we have used each of these
fragments includes 32 samples

Fig. 1. The Algorithm



processed segments using only a limited number of
reference segments by choosing reference segments
between every N1 segments. In this way we will have
(TotalNumberOfSegments)/N1 reference segments. A
complete set of such ideas can be found in [7].

Remark 6. Note that in the application of this approach for
denoising, the blocks have an overlapping of 31 sam-
ples which results in high redundancy (in simulation
results we will see that this redundancy is one of the
main reasons for high performance of the proposed
algorithm). But in compression applications we cannot
use this redundancy as well because accompanying
with an acceptable SNR there should be an acceptable
compression ratio too and if we use much redundancy
(too much overlapping samples), we will have good
SNR but compression ratio will degrade.

Remark 7. Reasons for expecting good results especially in
denoising are as follow:

• Because of the redundancy between various seg-
ments there will be more than one estimation for
each sample and the final value of that sample is
a weighted average of its estimations.

• Aforementioned redundancy results in a very
good matching in each group and hence an en-
hanced sparse representation.

5. SIMULATION RESULTS

In this section, we study the performance of the presented
approach in overcomplete and complete cases. This section
includes two parts. In the first part, the performance of the
proposed approach is investigated in denoising application. In
the second part, its performance is investigated for compres-
sion. The MIT-BIH Normal Sinus Rhythm Database [12],[13]
was used to study the performance of the proposed approach.
In our simulations ten ECG signals were randomly selected
from eighteen ECG signals (from database in [13]) and then
from each ECG signal a 2500 samples segment was used as
the test signal. The final results are average results of these
ten signals.

5.1. Denoising

The additive noise is assumed to be white Gaussian noise.
Input SNR (i.e. signal to noise ratio between original signal
and noisy signal) and output SNR 4(i.e. signal to noise ratio

4The definition of SNR which has been used here is 10 log(
‖x‖22
‖n‖22

) as

input SNR and 10 log(
‖x‖22

‖x−xr‖22
) as output SNR. In these formulations x is

the original signal, n is noise and xr is the reconstructed signal

between original signal and reconstructed signal) were calcu-
lated for some denoising methods. The methodologies com-
pared in our simulations are soft thresholding [2], Extended
Kalman Smoother filtering [3], 2D denoising based on com-
plete DCT dictionary (proposed in this paper), 2D denoising
based on complete Wavelet dictionary (proposed in this pa-
per) and 2D denoising based on overcomplete DCT+Wavelet
dictionary (proposed in this paper). Note that the B in (1)
is assumed to be Haar transform. Results are presented in
Fig. 2. As it can be seen from this figure results of denois-
ing using proposed 2D dictionaries are about 4dB better than
denoising using soft thresholding and about 2dB better than
extended Kalman smoother filtering for higher input SNRs.
Among 2D dictionaries the best results are obtained with 2D
complete Wavelet dictionary.

5.2. Compression

Ten ECG signals with 2500 samples were used for experi-
ments of this part. For compression we have at most 12 sam-
ples overlap. In fact based on the matching criteria defined
in (2) the best matching block will be chosen between these
overlapping blocks. Five methodologies are compared in
this part, Wavelet db9/7, complete DCT dictionary, complete
Wavelet dictionary, overcomplete mixed (DCT+Wavelet) dic-
tionary and overcomplete DCT dictionary. The overcomplete
2D DCT transform has been constructed from an overcom-
plete 2D DCT transform defined as (3).

φk(n) = cos
(kπ(n + 0.5)

M

)
, n ∈ 0, ..., N − 1, k ∈ 0, ...,M − 1

(3)
In our simulations we have assumed that overcompleteness
factor is 2. The results are presented in Fig.3.

6. CONCLUSION

In this paper an idea for ECG denoising and compression us-
ing complete and overcomplete dictionaries was studied. The
idea is based on 2D transform (complete or overcomplete)
to enhance the sparsity of the coefficients. Our simulations
show that the usage of this idea (for both complete and over-
complete cases) enhances the denoising results compared to
soft thresholding about 4dB and extended Kalman smoother
filtering about 2dB for higher input SNRs, but it does not give
outstanding results for ECG signal compression.
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Fig. 2. Comparison of performance of various denoising methodologies

Fig. 3. Comparison of performance of various Compression methodologies
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