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ABSTRACT

In this paper an extension of the sparse decomposition
problem is considered and an algorithm for solving it is pre-
sented. In this extension, it is known that one of the shifted
versions of a signal � (not necessarily the original signal itself)
has a sparse representation on an overcomplete dictionary,
and we are looking for the sparsest representation among the
representations of all the shifted versions of �. Then, the pro-
posed algorithm finds simultaneously the amount of the re-
quired shift, and the sparse representation. Experimental re-
sults emphasize on the performance of our algorithm.

Index Terms— atomic decomposition, sparse decompo-
sition, sparse representation, overcomplete signal representa-
tion, sparse source separation

1. INTRODUCTION

In the classical atomic decomposition problem [1], we have
a signal ���� whose samples are collected in the � � � signal
vector � � ������ � � � � ������ and we would like to represent
it as a linear combination of�, ��� signal vectors ����

�

���.
After [2], the vectors ��, � � � � � are called atoms and
they collectively form a dictionary over which the signal is to
be decomposed. We may write

� �

��

���

���� � � �� (1)

where � � ���� � � � ���� is the � � � dictionary (matrix)
and � � ���� � � � � ���� is the � � � vector of coefficients.
A dictionary with � 	 � is called overcomplete. Although,
� � � is sufficient to obtain such a decomposition (like what
is done in Discrete Fourier Transform), using overcomplete
dictionaries has a lot of advantages in many diverse appli-
cations (refer for example to [3] and the references in it).
Note that for the overcomplete case, the representation is not
unique, but all these applications need a sparse representation,
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that is, the signal � should be represented as a linear combina-
tion of as small as possible number of atoms of the dictionary.
It has been shown [4, 5] that with some mild conditions on
the dictionary matrix, if there is a sparse representation with
at most �
� non-zero coefficients, then this representation is
unique. The main approaches for finding this sparse solution
include Matching Pursuit (MP) [2, 6], FOCUSS [5], Basis
Pursuit (BP) [1], and Smoothed �� (SL0) [7].
In this paper, we introduce a generalization of this classi-

cal problem to the case that we call ‘convolutive sparse rep-
resentation’. In this case, it is known that the signal � has a
sparse representation not over the dictionary itself, but over
some (unknown) shifted versions of the atoms. To state the
problem more clearly, consider a representation of the form:

� �
��

���

����
����� (2)

where������ stands for the ��-sample (circularly) shifted ver-
sion of ��. Then, our problem is to find the sparsest repre-
sentation in the form of (2) among all the possible values for
��� � � � � ��.
Note also that the Fourier transform does not convert this

problem to the classical sparse representation (1) in the fre-
quency domain: The problem in the transformed domain will
be similar to (1), but with time varying ��’s.
In this paper, we address only a special case of the general

problem (2), that is, where all the shifts �� are equal. This
is equivalent to this simplified problem: an unknown shifted
version of � has a sparse representation over the dictionary,
and we would like to find this representation.
One of the trivial applications of the general problem is

to reduce the size of the dictionary in atomic decomposition
applications. An example for the applications of the above
simplified problem is where our recorded signal, which has to
be decomposed as a combination of a small number of atoms
of the dictionary, is shifted relative to its underlying atoms
that already exist in the dictionary.
The paper organized as follows. In Section 2 the main

idea of the algorithm is introduced. The resulting algorithm
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is then stated in Section 3. Finally, simulation results of the
algorithm are presented in Section 4.

2. MAIN IDEA

Consider a dictionary with atoms������ � � � ���. The prob-
lem is then to sparsely decompose an ��� vector � as a linear
combination of shifted atoms of the dictionary (in this paper,
the shifts are assumed to be circular). One trivial solution
to the problem is to insert all shifted atoms in the dictionary
and then find the sparsest representation of the vector � for
that dictionary using the conventional atomic decomposition
methods. However, this direct solution demands a high com-
putational and storage load.
Let also that �� be a continuous variable (a non-integer

shift �� can be imagined as shifting the hull of signal and then
re-sampling it). For handling circular shifts more easily, we
take the Discrete Fourier Transform (DFT) of both sides of
(2) to obtain:

�
��� �

��

���

�����
���
� (3)

in which ���� and ����
� are the DFTs of the signals � and ��

repectively, and

�� �

�
������

��
� � � � �

� ��
� � � �

� � ��
� � �

� � �
. . . �

� � � � ��
���

�
������
� �� � ���

��

�
��

As stated in the introduction, in this paper we consider
only the case in which �� � �� � � � � � ��, and we present
an iterative algorithm to solve the problem in this case. This
case is equivalent to assuming that the atoms of the dictionary
are fixed and the signal � is shifted in opposite direction. In
this case:

�� ��� � � � � ��� ���

and hence from (3) we have:

�
��� ��

��
���

���
���
� (4)

or:

�
�
�
��� �

��
���

���
���
� � � ���

� (5)

where:

�
� ���� �

�
�������

��
�

� � � �

� ��
�

� � �

� � ��
�

� �

� � �
. . . �

� � � � ��
���

�
�������

in which �� � ��
��

�
�. Now the problem is to find the sparsest

solution of (5). To do so, we should have some criterion� ���
for sparseness of the solution vector� and optimize that crite-
rion subject to the constraint (5) using optimization methods.
Note also that one of the unknows, � does not exist in the
objective function � ���, and appears only in the constraint
(5). As their objective functions, two classical sparse decom-
position approaches use ��-norm [1], and smoothed �� (SL0)
norm [7]. Here we use the second one, because it results in
a very fast and accurate algorithm in classical atomic decom-
position [7], and also because it is a differentiable measure of
the sparsity of�. Smoothed ��-norm of a vector is an approx-
imation to its ��-norm (number of its non-zero element), and
is defined as:

� ��� � 	�

��
���

����
����� (6)

where 
 is a parameter which specifies a tradeoff between
smoothness and the accuracy of approximation: the smaller

, the better approximation of the �� norm; the larger 
, the
smoother objective function.
On the other hand, (5) can be written as:

���� ��� � ���
�
��� �� ���

��� � � (7)

Now we should minimize (6) subject to the (7), for a small
value of 
. Note that one of the optimization variables (� �),
is not present in � ���, and appears only in (7).
Note that for small values of 
, � contains a lot of local

minima. Consequently, it is very difficult to directly minimize
this function for very small values of 
. The idea of [7] for
escaping from local minima is then to decrease the value of 

gradually: for each value of 
 the minimization algorithm is
initiated with the minimizer of the � for the previous (larger)
value of 
. This idea of minimizing a non-convex function
is called Graduated Non-Convexity [8], and is also used in
simulated annealing methods.
To start the minimization, we should find a proper initial

guess for the solution ��, that is, the initial estimation of the
sparsest solution of � � � �. It has been shown that for
the case of the simple sparse decomposition, the best initial
value for � is the minimum ��-norm solution of � � � �,
that is, �� � �

	 �� � 	 ���
� [7]. The reason is that this

solution minimizes the function � ��� subject to � � � �

where 
 goes to infinity. Despite the fact that our method is
somehow different with the method presented in [7], we use
the same initialization for our algorithm. Since we also have
the variable ��, we should start from the sparsest ���� �
�

	 �� � 	 ���
�
��� vector. Let �� � argmin� � ������, for

� � �� �� � � � � �. Then we choose ����� to be the starting
point of our algorithm.
Because of noise, if our algorithm tries to satisfy (7) ex-

actly, it would be very sensitive to noise. Consequently, we
try to satisfy this equation approximately. We realize this idea
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by minimizing the function � defined below with respect to
� and ��:

���� ��� � ����� ��� � ��� ��� ��� (8)

where � � � � � is a constant that specifies the weight which
is given to satisfying (7). This equation can be interpreted
as a trade-off between the accuracy of the decomposition and
maximizing the sparsity.
By letting �� � ���, the final objective function���� 	�

will be a real-valued function of real-valued variables � and
	. For each 
, this function may be minimized by gradient
based algorithms (specifically steepest descent). Direct cal-
culations show:

��

��
� ����� ������ ���

����
�
������

��� �����
���
��
����

�
������ � � � � ���

����
�
�������

(9)
��

��
� ��������

��
� ��� (10)

where� � �����	� 
�� � � � � �	� 
���.

3. THE FINAL ALGORITHM

The final algorithm of the proposed method is given in Fig. 1.
As seen in the algorithm, the final values of the previous esti-
mation are used for initialization of the next steepest descent.
As explained in the previous section, the decreasing sequence
of 
 is used to escape from getting trapped into local minima.
In the minimization part, the steepest descent with vari-

able step-size (�) has been used: If � is such that ��� �
� ��
�� � � � ����� � � ���� �� we multiply the value of � by
1.2 for the next iteration. Otherwise if � is such that ��� �
� ��
�� � � � ����� � � ���� �� we multiply the value of � by
0.5 for the next iteration.

4. EXPERIMENTAL RESULTS

In order to experimetally evaluate our method, we generated
a random dictionary � which had �	 atoms and each atom
was a signal of length 
	 (thus we assumed 
 � �	 and
	 � 
	 in our simulations). Then we created a synthetic
vector � by generating a sparse coefficient vector� at random,
using a Bernoulli-Gaussian model: each coefficient is ‘active’
with probability �, and is ‘inactive’ with probability 
 � �.
If it is active, its value is modeled by a zero-mean Gaussian
random variable with variance 
�

��; if it is not active, its value
is modeled by a zero-mean Gaussian random variable with
variance 
��� , where 
��� � 
���. Consequently, each �	 is
distributed as:

�	 � � � 	 �	� 
��� � �
� �� � 	 �	� 
�� �� (11)

� Initialization:

1. Let: � ��� � � �

��
��� �

���
����� and

���� � �
� ��� � �������.

2. Find the minimum of � ������ for � �
�� �� � � � � �. Assuming this minimum occurs
for � � ��, let ��� � ����� and ��� � ��

	
��.

3. Choose a suitable decreasing sequence for
� � ��� 	 	 	 �
�. Choose a small value for 
.

4. Let� � 	
���
� ��� 	 	 	 � �� � ����.

� For � � �� 	 	 	 � 
:

1. Let � � ��.

2. Minimize (approximately) the function
���� �� using � iterations of the steepest
descent algorithm:

– Initialization: � � ����� and � � �����.
– for � � � 	 	 	 � (loop � times):
(a) Calculate �


��
and �


��
from (9) and

(10), respectively.
(b) If ��� � 
 �


��
� � � 
 �


��
� �

���� �� let � � �	� else � � 
	�.
(c) Let �� �� 
�����

and � � � � 
�����.
(d) Let 
� 
� �.

3. Set ��� � � and ��� � �.

� Let �� � ��
 and �� � ��
. The final coefficient
vector is �� and the final shift value is �� ��

��
.

Fig. 1. The final algorithm

where � denotes the probability of activity of the coefficient,
and sparsity implies that � � 
. In our simulations we have
fixed 
�� � 
� 
�� � 	�	
, � � 	�
, and � � 	���.
Then we created the signal � by � � � � � �, where

� is an additive white Gaussian noise with zero mean and
standard deviation 
� � 	�	
. Finally, we shifted the � vector
circularly by � samples where � was a random number from 	
to ��. We applied our algorithm to convolutively decompose
this vector � over the dictionary� .
The simulation was repeated 1000 times with randomly

generated coefficients, dictionary and the shift of the signal,
and it was seen that in 992 experiment the algorithm could
sucessfully estimate the shift value and the coefficient vector
�. In average, the Signal to Noise Ratio1 (SNR) was greater
than 24dB. Figure 2 shows one of the runs of these experi-
ments. In the other 8 experiments the algorithm felled into
local minima, and could not correctly estimated � and �.

1Signal to Noise Ratio is defined as �� �����
����

�������
where �� is the

estimated coefficient vector.
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Fig. 2. A sample of our experiments. From top to bottom,
first plot represents a randomly generated coefficient vector
�, second plot is the synthetic vector � which has the coeffi-
cient vector� on the randomly generated dictionary� , third
plot is a randomly shifted version of vector � which is the in-
put of our algorithm, fourth plot is the estimated coefficient
vector ��, and the last plot is the vector �� which has the coef-
ficient vector ��.

In order to see the effect of � on the estimation quality, the
algorithm was repeated for �’s between 0.3 and 0.9 (outside
this interval SNR decreases rapidly). For each value of � we
repeated the algorithm 100 times and the mean SNR for each
� is computed. The mean SNR is plotted versus � in Fig. 3.

5. CONCLUSION

In this paper, a new method was proposed as the first step for
solving the convolutive sparse decomposition problem. The
proposed method can be used in the cases in which we know
that one of the shifted versions of a signal � has a sparse repre-
sentation on an overcomplete dictionary, and we are looking
for the sparsest representation among the representations of
all the shifted versions of �. We used Discrete Fourier Trans-
form (DFT) to convert the problem to a continuous optimiza-
tion problem. The proposedmethod was fast because of using
the idea of smoothed ��-norm [7]. Experimental results em-
phasized on the performance of the proposed algorithm.
It seems that the proposed algorithm can be generalized

for applying to the general convolutive sparse representation
problem (in which the shift values �� are not necessarily equal).
However, our simulations show that the main difficulty of
such a generalization is that the algorithm very oftenly traps
into local minima. Such a generalization is currently under
study in our group.
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Fig. 3. Output SNR versus �.
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