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Abstract— Block motion estimation is an important field of
video processing. This paper presents a new scheme to reach
in faster block motion estimation based on motion prediction.
The scheme exploits an adaptive filter to predict the block
motion from its spatio–temporal motion compensated adjacent
blocks. the predicted motion determines the initial candidate
block for search methods with biased search center. in special
case of partial distortion search, this strategy reduces search
time by preventing from complete distortion calculation for
more loser candidates. after comparison of three conventional
adaptive filters, a normalized least mean square filter with
convergence monitoring is recommended for motion prediction
from 5 neighbor blocks. Experimental results imply on adaptive
filter ability for block motion prediction and its efficiency in
reducing the time cost of motion estimation search strategy.

I. INTRODUCTION

Motion estimation is a fundamental process of video coding
regarding to its efficiency in reducing the temporal redundancy.
Among different approaches for motion estimation, block
motion estimation (BME) is especially considered because of
its simplicity and efficiency. In this approach the target frame
is partitioned to equal size blocks (rectangles). Block motion
is assumed as relative distance between corresponding blocks
in target and anchor frames. Finding the most similar block
in anchor frame performs by exploring a predefined search
window and comparing the similarity criterion (sum of square
error or SSE):

SSE =
∑
x∈X

|Iq(x) − Iq−1(x − m)|2. (1)

where m = [mx,my]T is the motion vector and X the set
of target block pixels with coordination of x = [x, y]T . The
optimal solution is the result of exhaustive search over all
candidates in search window (full search or FS). Although
full search results in optimum solution of BME, but its
computation cost keeps it away from implementation.

In order to reduce FS cost, two groups of motion estimation
algorithms are presented in literature. In the first group the
number of candidates is reduced and searching performs on
a restricted number of candidates determined by the search
pattern [1]–[3]. Approaches of second group do not omit
any candidate before taking part in similarity competition
(Partial distortion search or PDS for instance) [4]–[7]. These
search strategies are based on more efficiently calculation

of similarity criterion. The similarity criteria (equation 1)
can be implemented by accumulating of partial distortions
between the target block and candidate block. Since the partial
distortion is non–negative, for a new candidate, iterations
of calculating the SSE terminates when the accumulated
distortion is larger than minimum distortion pertaining to one
previously assessed candidate.

Whatever is the motion estimation method (except FS), a
valuable approach to speed up the process is predicting the
block motion and bias the center of search pattern to the
predicted location of best candidate. Although this scheme can
also be effective for methods of first group (TSS and etc.) but
its most explicit effect is on PDS and similar methods in which
the number of candidates is much more. Regarding to the PDS
strategy, the worst situation is when new candidate is better
than all previous ones that means all iterations of calculating
distortion should be performed. In this situation there is no
privilege for PDS. The best situation for PDS is when the first
candidate is the best one and PDS never completes iterations.
Block motion prediction can propose an appropriate candidate
to be exploited as the first candidate in PDS.

Chung et. al. employed adaptive block motion and combined
it with three step search and showed its efficiency in reducing
search time [9]. Their prediction was a non-linear conditional
prediction in which motion of each block was predicted with
respect to their neighbors in same frame. Their method can
just predict the motion of those blocks whose up and left
neighbors’ amount of motion are identical. For these few
blocks the motion in x direction is set as the mx of right
neighbor and the motion in y direction set as the my of upper
neighbor. Despite restricted accuracy of this approach but it is
fast and easy to implement.

In this paper, an adaptive method is proposed to predict
block motion from temporal and spatial neighbors. The motion
vector of undergoing block is predicted using a weighted
sum of adjacent blocks’ motion (previously estimated motion
vectors). Extra processes are employed to suppress the effect
of those adjacent blocks in present frame whose motion is
independent from undergoing block. Furthermore, since the
block partitioning is similar in all frames but their inner object
moves, processes are necessary to compensate this difference.
Indeed the neighbors of block in previous frames are those
neighbors after motion compensation and block motion should
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Fig. 1. Conventional structure of adaptive filter

be predicted from neighboring blocks in previous motion
compensated frames. With respect to the fact that image
sequences does not have stationary conditions, prediction
weights should change adaptively. Variation of object velocity
and also motion model parameters by time are the most
important reasons for updating prediction weights. Various
known schemes (employed in adaptive filtering) are applied
to update spatial and temporal weights.

The paper is organized as follows. First, in section II, the
intra and inter mode block motion predictions are introduced
with their theoretic bases. In section III, alternative adaptive
filter (AF) schemes are applied for weight update and the
figure of acquired quantitative results are depicted to show
the validity of BMP in different sequences and difference of
AF methods. Section IV combines the adaptive BMP with
PDS for constructing fast optimum block motion estimation.
Proposed adaptive predictions are applied to various image
sequences and section V contains the experimental results and
quantitative criterion. Finally, section VI gives an overview on
the proposed algorithm and concludes the paper.

II. MOTION VECTOR PREDICTION

A. inter–mode prediction

Generally, object motion varies smoothly by time. With an
appropriate frame rate object motion in target frame correlates
with object motion in anchor frame. From basic dynamics,
temporal difference of object motion is the result of object
acceleration. This acceleration equals to the force divided by
object mass. Suppose that mi and ai are object velocity and
acceleration in frame i respectively, then

mi − mi−1 = ai. (2)

With a constant acceleration assumption, equation 2 implies
that there is no need for motion estimation (except for two
initial frames) and object motion can be exactly predicted from
two previous frames. Practically, object acceleration varies by
time. Therefore motion prediction is indeed an acceleration
prediction problem. Choosing an auto regressive model for
object acceleration, its motion is also an AR process.

ai = α1ai−1 + α2ai−2 + · · ·
mi = (1 + α1)mi−1 + (α2 − α1)mi−2 + · · · (3)

Assuming AR model and employing adaptive filter (AF) struc-
ture (figure 4), object motion can be predicted by defining:

y = whu (4)

u = [mi−1,mi−2,mi−3, · · ·]T (5)

d = mi (6)

Fig. 2. Inter–mode motion compensation

It must be mentioned that m = mx + jmy , u, w and d
are complex and adaptive filter calculation should perform
in complex domain. The AR model can be appropriate for
real objects’ motion. In the real world, object acceleration is
a smooth time function since sudden change in acceleration
needs large amount of force. Experiments show that this
assumption is fairly acceptable for objects with mass. For an
object with negligible mass (lips and eyes for instance), object
motion goes away from AR model and approaches to white
noise. The AR model of object motion is also addressed in [8]
and some of object motion prediction literature but has never
been applied to BME.

In BME, frames are partitioned by predefined blocks and
blocks do not move by object movement. Therefore the filter
input vector (u) can not be simply defined as previous block’s
motion. Objects can appear and disappear in one block through
frames and block motion history includes different objects’
motion. Suppose that block [n1, n2]T by the size of [s1, s2] had
a motion m = mx + jmy in previous frame. In present frame,
the block center locates on [n1×s1 +mx, n2×s2 +my]T and
probably, the addressed block replaces with block [n̂1, n̂2]T =
[n1 + mx/s1, n2 + my/s2]T . Consequently, motion of block
[n̂1, n̂2] should be predicted from motion of block [n1, n2] in
previous frame. Modifying the AR model of object motion,
each block motion can be linearly predicted from blocks’
motion of previous motion compensated frames. Actually, after
motion compensation, two temporal adjacent blocks pertain to
same part of one object and the AF based BMP can be acquired
reconstructing u.

Usually, block motion is not a correct multiple of block
size and transmitted block does not completely replace another
one. Refer to figure 2, where block A1 (up–left) transmitted
as mx < s1 and my < s2. Transmitted block T1 can overlap
with up to four blocks. Its motion distribute over four blocks
and changes their first previous motion ui{1} with respect to
their overlapping surface. Therefore, for i = 1, 2, 3 and 4

Re{ui{1}} = S{T1 ∩ Ai} × mx (7)

Im{ui{1}} = S{T1 ∩ Ai} × my (8)

where S{T1 ∩Ai} is the common surface of translated block
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(T1) and block Ai.

S{T1 ∩ Ai} =




(s1−mx)(s2−my)
s1s2

, i=1;

mx(s2−my)
s1s2

, i=2;

(s1−mx)my

s1s2
, i=3;

mxmy

s1s2
, i=4.

(9)

Totally, each block’s first element of input vector (u{1})
is sum of all block’s motion in previous frame weighted
by corresponding surface overlap ratio. There is a simple
extension for large motions with mx > s1 or my > s2 by
replacing mx and my in equations 9 with mod(mx, s1) and
mod(mx, s1) respectively. For more histories of block motion
in u, just more motions should be saved. Consider that there
is no need for extra calculations since for each block, just the
value of (u{1}) should be computed from equation 9. Indeed,
the older motions can be resulted from a shift in input vector
(u).

B. Intra–mode prediction

In spite of inter–mode BMP efficiency, it is useless in scene
changes when there is a small correlation between anchor
and target frames. In addition to temporally adjacent blocks,
spatially neighbors can also be employed for BMP. Intra–mode
prediction is based on correlation between each block and its
neighbors in same frame. When moving object is enough big
and blocks reasonably small, it will divide to some blocks and
motion of these blocks correlate since they all pertain to one
object. In specific application of BMP, only already processed
blocks can participate in prediction. The restriction rises from
the fact that the only available motions in motion input vector
(u) are those already estimated motions of present frame.

A simple prediction is to first check if two adjacent blocks
belong to one object and then assign the neighbor’s motion
(previously estimated) to undergoing block [9]. This prediction
is fast but limits the type of object motion to translation.
The other discussing point is choosing criterion for detecting
blocks of same object. equality of up and left blocks’ motion,
employed in [9], is not true always. Especially when upper and
left blocks belong to one object but the undergoing block does
not. Even if upper and left blocks have identical sum of motion
vectors, it is not correct to assign motion of these blocks to
the undergoing block regarding to motion model type.

From motion modelling, pixels of object with affine move-
ment displace with{

mx = a0 + a1x + a2y
my = b0 + b1x + b2y

(10)

⇒
{

mx(x′, y′) = mx(x, y) + a1∆x + a2∆y
my(x′, y′) = my(x, y) + b1∆x + b2∆y

(11)

and in complex notation of motion:

m(x′, y′) = m(x, y) + (a1 + jb1)∆x + (a2 + jb2)∆y (12)

In the case of translation, all model parameters except a1 and
a2 are zero and motion of neighboring blocks are identical
(assumption made in [9]). But in more general motion models
as affine these parameters can have any value and should be
approximated for more precise prediction. Although only a
and b coefficients are unknown and need approximation but
equation 12 is held just when adjacent blocks belong to one
object. The more general equation for implementing by AF
structure is:

m(x′, y′) = αm(x, y) + (a1 + jb1)∆x + (a2 + jb2)∆y (13)

Ideally, α is a binary weight which is set to 1 if pixels
[x′, y′]T and [x, y]T both belong to same object, and set to zero
otherwise. Binary weights are not compatible with AF update
strategy, so α should be a continues variable with hope that
α in extreme condition, converge to one of 0 and 1 values
and prepare a decision whether two blocks are independent
or not. The alternative, employed in this study, is initializing
and fixing α with respect to the optical flow, difference of
intensity and other acceptable benchmarks. These benchmarks
can probably determine two adjacent blocks belong to one
object or not. Assuming that the objects are rigid and do
not break apart, if two adjacent blocks belong to one object,
they preserve this property in future frames. All these assump-
tions can be correct when blocks move with objects. So the
strategy employed for modifying the previous motion vectors
in inter–mode is also necessary here. Mention that equation
13 represents prediction for pixels and in the case of blocks
[x, y]T replaces with [n1, n2]T and [∆x,∆y]T with block size.
Consequently, the intra–mode BMP can be implemented with
AF structure by defining u = [mn, s1, s2]T where mn is the
neighbor’s estimated motion. Same as inter–mode prediction,
d is desired block motion (d = mx+jmy) and w is a complex
weight vector. But w{1} is binary, predefined and constant and
u contains additional elements as block size (s1 and s2).

For other motion models as bilinear, more additional el-
ements (as s1s2) will be involved since pixel displacement
in these models are function of xy, x2, y2 and etc. While
bilinear model is theoretically more general than affine but
increases the number of adaptive weights. Large number of
weights introduces a problem namely over training in neural
network. The weights will minimize error in adaptation but
do not prepare good prediction for new frames. On the other
hand since s1 and s2 are constant, s1s2 and other polynomial
combinations of them are also constant and can be omitted
since the adaptive weight of s1 and s2 can exactly cover them
(ws1s2 = (ws1)s2 = ŵs2). There is a similar condition for
s1 and s2. Both of them are constant and w can continuously
vary, so they are nothing but a multiple of each other. Thus it
is not necessary to have both of them in u and it can simplify
to u = [mn, 1]T .

From equation 13, if motion of undergoing block is pre-
dicted from its upper block then ∆x = 0 and in the case of
left block ∆y = 0. However if all of the first neighbors (up,
left and up–left) are involved then the motion of undergoing
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block ([mx,my]T ) can be computed from:

mx = mx
l +al

1∆x+mx
u+au

2∆y+mx
ul+aul

1 ∆x+aul
2 ∆y (14)

my = my
l +bl

1∆x+my
l +bu

2∆y+my
ul+bul

1 ∆x+bul
2 ∆y (15)

Based on previous discussions, all the terms of al, au ,
aul and associating b weights can merge in one constant and
complex weight. Totally, in order to predict block motion
from first nearest neighbors by AF structure, the input vector
u should be defined as u = [mu,ml,mul, 1]T . Three first
elements of the weight vector are binary and constant deter-
mined after inspecting independence of corresponding blocks
with undergoing block. The last weight is a complex variable
weight and updates frame by frame.

III. BLOCK MOTION PREDICTION WITH ADAPTIVE FILTER

Since introduction of adaptive filter, it is widely employed
in different applications as system identification, beamforming
and etc [10]. Its adaptation is completely desirable in non–
stationary conditions and signals. An special application of
adaptive filter is linear prediction and in this study, block mo-
tion prediction is defined as special AF based linear prediction.
The sturctuer of an adaptive filter and the required vectors are
already introduced. It must be mentioned that block motion is
predicted from both spatial and temporal neighbors. The input
vector is the combination of those in intra– and inter–mode
predictions. When the number of reference frames is two (as
in this study) and three first nearest neighbors are exploited
or prediction, the input vector and weight vectors have 6
elements. Different adaptive filters can reach to different PSNR
accuracy regarding to their update strategy and adaptation
ability. Without an accurate prediction, total motion estimation
time increases. Therefore a fast AF is not acceptable if it can
not adapt with input sequence. Such an adaptive filter can
even degrade the PDS. In this study, three adaptive filters are
inspected in both time consumption and prediction quality.

Least Mean Square is the first and almost most frequently
addressed approach. Minimizing the statistical cost function
J = E{|e − whu|}, results in wiener filter wo = R−1P.
Where R = E{uhu}, P = E{uhd∗} and E{.} represents
statistical expectation. Exploiting wiener filter in lack of these
two statistical quantities is impossible. Such limitation leads to
a suboptimal but more applicable solution of AF namely least
mean squares (LMS). This adaptive filter is completely similar
to the steepest descent implementation of wiener filter. Except
that the R and P are replaced with uhu and ud∗ respectively.
More details on LMS can be found in [10] and here just
the weight update equation in iteration q and its correction
coefficient (µ) condition are addressed.

w[q] = w[q − 1] + µu[q]e∗[q] (16)

0 < µ < 2/λmax (17)

where λmax is the largest eigen value of autocorrelation
matrix. LMS is an efficient adaptive filter in noise cancellation
regarding to its simplicity and quality. An important issue in
LMS is appropriate selection of µ. Crucial big values of µ

(a) (b)

Fig. 3. LMS sensitivity to µ in this application. prediction error of flower
garden sequence. Dashed lines are prediction error while solid line is sum of
frame motion amplitude per frame, (a) µ = 0.016, (b) µ = 0.022.

result in filter divergence. As it can be inferred from fig. 3, an
increase in µ from 0.016 to 0.022 can result in filter divergence
and rapid increase in prediction error. On the other side, small
µ increases convergence time and also mean of prediction error
(fig. 3).

Weight update amount of LMS in (eq. 17) depends on
input dynamic range. In order to remove this disadvantage, in
normalized LMS, the weigh update and convergence condition
are replaced with:

w[q] = w[q − 1] +
µ

‖u‖2
u[q]e∗[q] (18)

0 < µ < 2 (19)

Selection of µ is easier in NLMS and is not a function of filter
input energy. But the prediction AF is still susceptible to µ
value. NLMS is more recommended when the input signal has
wide dynamic range while the motion vector has a restricted
dynamic range. A typical value for µ is 0.8. more details are
available in [10].

Against these two adaptive filters which exploit statistical
gradient, the third adaptive approach, namely recursive least
square error (RLS), uses sum of real error value.

J =
∑

|e(i) − w(i)hu(i)|2 (20)

omitting the details of RLS and its implementation (avail-
able in [10]), the basic relations of RLS are:

y = wh[q − 1]u[q] (21)

ξ = d[q] − y (22)

k =
λ−1p[q − 1]u[q]

1 + λ−1uh[q]p[q − 1]u[q]
(23)

w[q] = w[q − 1] + kξ∗ (24)

p[q] = λ−1p[q − 1] − λ−1kuh[q]p[q − 1] (25)

Comparing RLS equations with those of LMS, RLS, they have
more cost both in calculation and memory. For each block a
matrix of p in addition to filter weights (w) should be saved
while in LMS only a w vector needs memory. Multiplying by
the number of blocks in each frame, the difference between
two schemes in memory requirements reveals.

IV. PROPOSED BLOCK MOTION ESTIMATION USING

PREDICTION

Predicting block motion and exploiting it as first candidate
of PDS reduces time cost of search. The AF produces the
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predicted motion by weighted summation of spatial and tem-
poral neighbors’ motion. However, starting the search from
predicted first candidate, PDS finally extracts the optimum
motion required for weight update in AF. Each block has its
own AF which updates per frame exactly.

Among three AF schemes, complexity increases from LMS
to RLS while the prediction quality enhances a little (refer
to the experimental results). The most outstanding advantage
of RLS is its convergence while LMS has a strict sensitivity
to correction coefficient (µ). But computation complexity and
memory requirement is too high. Such process cost maybe
acceptable in computer based applications but it is hardly
affordable in many others. Regarding to insensitivity of NLMS
to the input vector energy, it can be recommended for BMP
with an experimental µ in the range of [0.5 − 0.7]. Generally
a small µ results in late convergence and usually more av-
erage prediction error. But a large µ can make AF diverge.
Basically, if the predicted motion is worse than zero initial
motion (conventional PDS) it takes more time for PDS to
find optimum candidate. Such a situation is probable when AF
diverges. So divergence should be prevented either by small µ
or monitoring of prediction error. It seems that small µ is not
desirable since video sequence is non–stationary and small µ
can not follow its variations.

The alternative is choosing bigger µ to speed up adaptation
and then check total error on whole frame and compare with
simple threshold. If AF was going to diverge the filter weights
reset to zero (conventional PDS) and filter update restarts with
a smaller or even same µ. Totaly, proposed PDS with adaptive
BMP can be implemented in following steps:

• for each target block:

– predict block motion.
– perform PDS with predicted motion as the first

candidate.
– update filter weights.

• modify the filter input vectors u of all blocks.
• check convergence.

The AF based BMP application does not restrict to PDS.
It can also be used in partial ridgelet distortion (PRDS) [7],
NPDS [5]and even in suboptimal motion estimation methods
as TSS [1], FSS [2], HS [3] and etc. All of these schemes
can perform faster if their first candidate is the total search
winner. Proposed modification on PDS is independent from
previous speed up schemes. It attempts to predict the best
candidate (the optimum result of PDS) as the first one and
consequently sooner termination of distortion calculation. It
is recommended to combine this with other schemes as pixel
priority in [6]. This will increase looser rejection probability
too.

It is also possible to extract pixel priority by an AF structure.
Furthermore, a better candidate can be expected by increasing
filter order. Employing AF structure for pixel priority detection
costs too much in calculation and time. Such AF needs many
weights and converges late, while it is possible for block
and inside object completely disappear before convergence.

Fuzzy membership functions are more appropriate candidates
for block pixel priority detection. Including more temporal
neighbors may result in better prediction since it gives a better
approximate of acceleration time function while this means
more memory requirement. But, generally increasing AF order
is not efficient. Experimental results show that increasing
filter order, increases convergence time and prediction error.
Regarding to non–stationary property of the image sequence,
the AF should converge as fast as possible. However, regarding
to the relatively small number of blocks in each frame,
memory requirement is not crucial (especially in computer
implementation).

V. EXPERIMENTAL RESULTS

Proposed PDS is applied to three different benchmark
sequences. Since predicted block motion is just used for
extracting the first candidate, the total search error is identical
for conventional PDS and the proposed one. Two important
criteria of proposed methods are search time and prediction ac-
curacy. Table I contains motion estimation time cost per frame.
As this table shows, if AF divergence be prevented, adaptive
block motion prediction (ABMP) can reduce the search time
by the cost of memory and more complexity. Rate of enhance-
ment completely depends on undergoing sequence. Prediction
is highly suitable for sequences with camera movement as
flower garden and is fairly applicable to outdoor sequences.
But in the case of close up and facial sequences where fine
objects have rapid and random motion, prediction fails (car
phone). However preventing from divergence guarantees that
search time in worth conditions does not increase too much,
while usually decreases.

In order to inspect the ability of different adaptive filtering
methods in BME, figures 4–6 depict prediction error per
frame for different sequences. Dashed lines are prediction
error while solid line is sum of frame motion amplitude per
frame. The value of µ in LMS is set to 0.01, and set to 0.8
in NLMS. Against what was expected, the acquired results
are not far better, except that there is no more sensitivity
to update parameter (such as µ in LMS). Comparing the
prediction error of different sequences in tables II and III,
it can be inferred that there is not a good prediction in car
phone sequence, because of small and non–smooth motions of
face and body. On the other side, in flower garden and mobile
linear prediction can perform successfully. Against what was
expected from AF theory, RLS was not far better predictor.
May be the employed LMS reaches too close to the minimum
available error. However it seems that paying the cost of
RLS is not justifiable if extra processes for monitoring of AF
convergence are provided.

While the method of [9] do not require adaptation and is
simpler for implementation, ABMP usually prepares a better
prediction of block motion since it employs both spatial and
temporal neighbors. ABMP covers more motion models in
comparison with Chung’s method in which just translation is
mentioned.
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TABLE I

SEARCH TIME OF PDS WITH AND WITHOUT ADAPTIVE BLOCK MOTION

PREDICTION

mobile flower garden car phone tennis
PDS with ABMP 1808.41 586.04 907.5 623.92
conventional PDS 2016.52 657.07 890.47 645.09

TABLE II

MEAN OF PREDICTION ERROR (DIFFERENCE OF PREDICTED AND

ESTIMATED MOTIONS).

mobile flower garden car phone tennis
LMS 1.01 0.74 0.69 0.61

NLMS 0.92 0.68 0.76 0.580
RLS 0.90 0.67 0.76 0.55

method of [9] 1.56 0.76 0.94 0.83

TABLE III

VARIANCE OF PREDICTION ERROR

mobile flower garden car phone tennis
LMS 4.28 2.17 2.14 2.01

NLMS 2.53 1.78 2.02 1.64
RLS 2.18 1.70 1.97 1.54

method of [9] 5.86 1.78 1.83 2.19

(a) (b)

(c) (d)

Fig. 4. The prediction error of applying LMS (dashed line) and sum of frame
motion (solid line): (a) tennis sequence, (b) car phone, (c) flower garden, (d)
mobile.

(a) (b)

(c) (d)

Fig. 5. The prediction error of applying NLMS (dashed line) and sum
of frame motion (solid line): (a) tennis sequence, (b) car phone, (c) flower
garden, (d) mobile.

(a) (b)

(c) (d)

Fig. 6. The prediction error of applying RLS (dashed line) and sum of frame
motion (solid line): (a) tennis sequence, (b) car phone, (c) flower garden, (d)
mobile.

VI. CONCLUSION

This paper presents a new scheme to reach in faster block
motion estimation based on motion prediction. Exploiting an
adaptive filter structure, the block motion is predicted from its
spatio–temporal motion compensated blocks. Different adap-
tive filters are discussed and experimentally assessed. The final
approach is based on NLMS with convergence monitoring.
The predicted motion by NLMS from 5 neighbors is used
for determining the first candidate of search algorithm. This
scheme increases search speed by preventing from complete
distortion calculation for losers. This block motion prediction
can combine with many other search strategies to reach in
even faster algorithms. Experimental results imply on adaptive
filter ability for block motion prediction and BMP efficiency
in reducing the time cost of motion estimation search strategy.
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