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Abstract. While Blind Source Separation (BSS) for linear mixtures has
been well studied, the problem for nonlinear mixtures is still thought not
to have a general solution. Each of the techniques proposed for solving
BSS in nonlinear mixtures works mainly on specific models and cannot
be generalized for many other realistic applications. Our approach in
this paper is quite different and targets the general form of the problem.
In this advance, we transform the nonlinear problem to a time-variant
linear mixtures of the source derivatives.

The proposed algorithm is based on separating the derivatives of the
sources by a modified novel technique that has been developed and spe-
cialized for the problem, which is followed by an integral operator for
reconstructing the sources. Our simulations show that this method sepa-
rates the nonlinearly mixed sources with outstanding performance; how-
ever, there are still a few more steps to be taken to get to a comprehensive
solution which are mentioned in the discussion.

Keywords: Blind Source Separation - Nonlinear mixtures + Indepen-
dent Component Analysis

1 Introduction

Blind Source Separation (BSS) is the problem of extracting the source signals
that have been mixed together in a number of observations without any informa-
tion about the mixture model or the sources [7]. In the simplest form of the prob-
lem, the number of sources and the observations are the same, and the sources
are assumed to be statistically independent. The problem is formulated as

x(t) = £(s(t)), (1)

where x(t) = [z1(t),...,2,(t)]" and s(t) = [s1(t),...,5,(t)]T are the observa-
tion and source vectors, respectively (and n is the number of sources which is
considered to be equal to the number of observations). The problem has been
intensively studied since 1985. The first idea for performing the separation was
trying to make independent signals combining the observations; hence named
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Independent Component Analysis (ICA) [6,10]. It leaded to many noticeable
achievements when the mixing model is linear, and several algorithms have been
proposed such as INFOMAX, [2], JADE [5], Normalized EASI. [4], SOBI. [3],
and FastICA [16].

Many practical applications for BSS have been considered by now, which is
still being diversified. Separating the signals in a Multiple Input Multiple Output
(MIMO) situation, separating EEG signals from different parts of the brain,
discovering the hidden parameters affecting economical indexes, discriminating
different layers of the earth from the reflections of the emitted electromagnetic
wave, etc. are a few samples of the applications of BSS in real world [12].

However, extending theses accomplishments to the nonlinear case is not
straightforward. As indicated in [11], ICA (i.e. source independence) is not suf-
ficient for separating sources which are nonlinearly mixed.

But there are many realistic applications for which the linear BSS model
could not be applied; e.g. smart chemical sensor arrays [8], hyperspectral imaging
[9], and removing show-through in scanned documents [17]. Therefore, studies on
this issue were focused on specific applications with restricted mixing models.
Post Nonlinear composition (PNL) [18], Convolutive Post Nonlinear mixture
[1], Bi-Linear model [17], conformal mappings [15], and mappings that can be
transformed to linear mixtures via a nonlinear function [13] are some of the
objectives that have been attained in this regard. Moreover, the problem has
been addressed in [14] using the velocity state-space of the observations for
continuous-time sources more recently.

Our approach to this problem is quite distinct. In this work, we add a few
assumptions that should be met in addition to the conventional ones which are
discussed in the following section. However, the conditions are not restrictive in
practical applications and, so, the approach is more general.

2 The Main Idea

Our approach in this paper is based on the assumption that if the mixed sources
meet a few conditions, they can be blindly separated utilizing signal derivatives.
The assumptions consist of:

1. The derivatives of the sources need to meet the separability conditions of the
conventional BSS problem for linear mixtures. Especially, they are statisti-
cally independent.

2. The sources are supposed to be colored; they need to have temporal correla-
tion.

3. The nonlinear mixing model is required to be an invertible mapping.

4. The nonlinear mixing model is time-invariant.

Apparently, these conditions are met when the sources are not originally identi-
cal. In other words, if the sources are mutually independent in terms of stochastic
processes, their derivatives are mutually independent as well (which guarantees
meeting the required conditions).
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The proposed method is based on the fact that the derivatives of the sources
are mixed linearly even though the mixture model is nonlinear in general. Let
s1(t) to s, (t) and z1(t) to x,(t) represent the source signals and the observations
respectively. The above assumption can be written as

(1) = £(s(1)) = 2% = ¥(s(1)) 2> 2)

where f and J correspond the nonlinear mixing function and its Jacobian matrix
respectively. The key point here is that, as the above equation shows, although
the signals are mized nonlinearly, their derivatives are mized linearly. Accord-
ingly, the main steps of the separating approach are summarized below:

Algorithm 1: Adaptive Algorithm for Time-Variant mixtures (AATV)

1. Compute the derivatives of the observations;

2. Consider them as the inputs for a linear BSS algorithm for linear mixtures;

3. Separate the derivatives of the observations to get the derivatives of the
sources;

4. The sources are supposed to be the integral of the results.

However, except the sensitivity of the proposed method to the noise due to the
derivative computation which is not addressed in the current work, there are two
main challenges that highly affect the performance of the mentioned algorithm.
The first one is that the mixing matrix (Jacobian) is time-variant and changes
over the time. Therefore the existing methods for BSS in linear mixtures, which
usually assume that the mixing matrix is constant, must be modified before
being used for this problem. It is worth noting that the alterations of the mixing
matrix depend on both the nonlinear mixing model, and the dynamics of the
sources. However if the nonlinear mixing function changes slowly with respect
to the sources (at the state of saturation, as an extreme example), the variations
of the sources may lead to relatively small changes in the mixing matrix.

The second issue is the cumulative error in the integral of the separated
signals because of the slow convergence of the BSS procedure. It should be noted
that because the mixing matrix is time variant, it is not possible to run a batch
algorithm for separating the derivatives that would prevent the convergence error
in the signals: an adaptive (and fast) algorithm is mandatory.

To overcome the first challenge, we use an adaptive and iterative algorithm,
which tracks the separating matrix in each iteration. In this context, the tra-
ditional convergence never happens, since the mixing model may vary over the
time even though the output signals become completely separated at a moment.

Utilizing an adaptive algorithm causes the slow convergence and hence the
error accumulation (the second mentioned concern). As it is stated before, even
converging to the exact separating matrix at a point does not mean that it will
properly work for the remained samples of the signals; for the reason that the
mixing matrix (Jacobian) may alter rapidly, which should be followed by the
adaptive algorithm again.
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But the Jacobian matrix is not inherently time-variant. Actually, due to
the assumption of mixing system to be time-invariant, its Jacobian is a time-
invariant function of the source as well. In fact, considering the linear BSS model
resulted by derivative computation, it is seen a time-variant mixing matrix;
because the Jacobian matrix is calculated at different points (of the varying
sources). Thus, trying to find the nonlinear nature of the separating matrix in
the BSS procedure, we face a time-invariant problem, which may be solved by a
batch algorithm. 5 5

. ) b'e S
x=J(s)§ — T J(s(t)) 9 (3)

In other words, we propose to estimate the nonlinear mixing model which
exists behind the linear time-variant matrix. This idea is similar to the one used
in batch algorithms for linear mixtures, where the estimated mixing model is
adjusted after data convergence, and is then applied to the whole data. The
only difference here is that the system is nonlinear and, so, nonlinear modeling
is used for the function to be extracted.

As a consequence, the BSS procedure is split into two phases. At the first
phase, an adaptive algorithm is run on the observation derivatives and the sep-
arated signals are constructed. Then we extract the nonlinear time-invariant
model from the result. To do this, the data after convergence (of the algorithm)
is used for nonlinear modeling of the mapping. The obtained model is then
applied to the data as the second run to compensate the slow convergence error.

Finally, the separating algorithm for the blind separation of nonlinearly
mixed sources can be summarized as follows:

Algorithm 2: Adaptive Algorithm and Nonlinear Estimation (AANE)

1. Compute the derivatives of the observations;

2. Consider them as the inputs for an adaptive and iterative linear BSS algo-
rithm;

3. Estimate (e.g. by spline interpolation) the time-invariant nonlinear model
(nonlinear modeling) of the time-variant linear separating system derived
from the previous step (by utilizing only the data after convergence);

4. Apply the obtained model to the whole data (observations) again in order to
separate the signals correctly and get the derivatives of the sources;

5. The sources are the integral of the results.

3 Simulation Results

Simulating the proposed method, we have chosen a simple two-input two-output
system with the integrals of a saw-tooth (named s;(t)) and a sinusoid (named
s2(t)) signal as the input. The mixing model (4) is the same as the counter
example [1], which was thought not to be separable at all.

[961] = {c.osoz s a} {81} where o = 0.1 x m (4)
T sina cosa | |s2
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Fig. 1. Nonlinear mapping graph

Figure 1 shows the nonlinear mapping of the mixing model (it can be shown
that the model is invertible).
From the given model, calculating the Jacobian matrix is straightforward.

dzy dzy : 1 —gy2a _g 0a
J= |85 92| — |cOSQ —sina 258, 255 (5)
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In our simulation, Normalized-EAST [4] has been used as the linear BSS algo-
rithm. This method is adaptive, iterative, and hence, suitable for the conditions
of the problem. In addition, its equivariancy causes that its performance remains
the same with respect to how much the sources are mixed together.

Performing the nonlinear modeling of the time-variant mixing model, we
have used the down-sampled version (for increasing the speed of calculations)
of the second half of the result (to make sure that we are using the outputs
after convergence) after running Normalized-EASI on the data, to be modeled
through a smoothing spline manner.

Obviously, it is not necessary to find the nonlinear mizing system for per-
forming the proposed algorithm; it is sufficient to model the separating func-
tion instead. The models for the two outputs of the considered simulation are
depicted in Fig.2. In this figure, the blue circles are the converged samples of
the elements of the separating matrix (which are resulted from the Normalized-
EASI algorithm), and the plotted surfaces are the nonlinear model fitted to the
data using smoothing spline. It should be also noted that we may directly model
the nonlinear mapping of the two output signals as a function of the inputs (the
derivatives of the observations) as well.

Finally, the obtained model is then applied to the whole data to adjust
the result and is plotted for both sources in Fig.3. This figure compares the
original sources with the reconstructed ones by performing both the algorithm
1: AATV (signal named “AATV Result”) and the algorithm 2: AANE (sig-
nal named “AANE Result”). In addition, Table 1 shows the normalized mean
squared error for both results of the both algorithms.

It is also shown in Fig. 3 that Normalized-EASI is a fast adaptive algorithm
and overcomes the first challenge (the mixing matrix changes over the time)
pointed out in the previous section. Nevertheless, the second issue (slow conver-
gence and the cumulative error) dramatically damages the result if not amended
by the nonlinear modeling.
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Fig. 2. Nonlinear modeling result of the elements of the separating matrix

Table 1. NMSE for AATV and AANE

AATV | AANE
NMSE for the Source 1 |1.6083 | 0.0032
NMSE for the Source 2 | 0.4875 | 0.0244

4 Discussion

In this paper, a new method is proposed for BSS in nonlinear mixtures based on
separating the derivatives of the signals. Our simulations show that the proposed
algorithm works well and can be considered as a simple approach to a new class
of techniques in this field.

This approach targets a more general class of practical BSS problems in
nonlinear mixtures than the existing ones and is not limited to a specific mixing
model. However, there are a few concerns that should be thought about in this
regard.

Firstly, the sources are supposed to be colored in the BSS problem (see the
assumptions of the algorithm). This supposition is to make the derivatives suited
for being separated by the adaptive BSS method for linear mixtures. It should
be such that the adaptive algorithm can follow the variations. Solving the BSS
for nonlinear mixtures through the proposed framework, we need that the BSS
for the time-varying linear mixtures works properly.
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Fig. 3. Final extracted signals in comparison with the sources

Secondly, we have not considered the noise in the proposed algorithm. As we
know, taking the derivatives amplifies the noise, and hence, makes the method
more sensitive to the noise. At last, we should note that there exist the traditional
ambiguities of BSS in linear mixtures (scaling and permutation) in the proposed
method as well. However, these ambiguities do not differ for different samples
of the signals (because in the proposed method, the unigue extracted nonlinear
model is applied on the whole data).
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