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ABSTRACT 
 
 In the last few years, we have witnessed an explosion in 
applications of sparse representation, the majority of which 
share the need for finding sparse solutions of 
underdetermined systems of linear equations (USLE’s). 
Based on recently proposed smoothed -norm (SL0), we 
develop a noise-tolerant algorithm for sparse representation, 
namely Robust-SL0, enjoying the same computational 
advantages of SL0, while demonstrating remarkable 
robustness against noise. The proposed algorithm is 
developed by adopting the corresponding optimization 
problem for noisy settings, followed by theoretically-
justified approximation to reduce the complexity. Stability 
properties of Robust-SL0 are rigorously analyzed, both 
analytically and experimentally, revealing a remarkable 
improvement in performance over SL0 and other competing 
algorithms, in the presence of noise. 
 

Index Terms— Sparse representation, overcomplete 
signal representation, compressed sensing, basis pursuit 
 

1. INTRODUCTION 
 
In recent years, identifying relevant sparse solutions of 
under-determined systems of linear equations (USLE) has 
become a subject of major interest in signal processing and 
statistics, with applications spanning vast areas, such as 
overcomplete signal representation, source separation, and 
compressed sensing [1, 2]. In these applications, a sparse 
solution corresponds to an efficient representation of data as 
a linear combination of some collection of predetermined 
elements. In the rest of this paper, without loss of generality, 
we will pursue this problem in the context of sparse 
overcomplete signal representation. Let  be a signal 
we wish to decompose over a given dictionary  
with columns (atoms) . We then may write 

, where  is the vector of 
coefficients. This problem is a USLE and (if consistent) has 
                                                           
 This work has been partially supported by Iran NSF (INSF) under 
contract number 86/994, by Iran Telecommunications Research 
Center (ITRC), and also by ISMO and French embassy in Iran in 
the framework of a GundiShapour collaboration program. 

infinite solutions, hence additional constraints, such as 
sparsity, should be imposed to arrive at a unique solution. In 
fact, we are interested to use as small as possible number of 
atoms to represent the signal. To this end, one may directly 
seek for solutions to , in which  
denotes the -norm, i.e. number of nonzero components, of 
. This is, however, intractable as it requires combinatorial 

search. Moreover, since any small amount of noise 
completely changes the -norm of a vector, this method is 
prone to errors in noisy settings. As a result, alternative 
approaches have been considered to pursue sparse solutions. 
Based on the observation that, under some mild constraints, 
solving , recovers the sparsest 
solution, a  family of algorithms represented by basis pursuit 
(BP) have been developed [1]. Another family, with 
FOCUSS as an important member, is iterative re-weighted 
least squares, with the performance that is generally worse 
than BP [3]. These algorithms are typically associated with 
prohibitive computational complexity.  

Recently, Mohimani et al. [4] proposed SL0 algorithm 
for sparse representation. SL0 iteratively minimizes a 
smoothed version of -norm and was shown to run much 
faster than the competing algorithms, while producing 
solutions with the same or better accuracy. In this paper, we 
improve the performance of SL0 in noisy settings by 
developing a noise-aware variant of SL0, namely Robust-
SL0, which we then analytically prove it to be globally 
robust against noise. Robust-SL0 enjoys the same 
computational advantages of SL0, while having higher 
degree of immunity to noise. Our simulations in presence of 
noise, verified the improved performance of Robust-SL0 in 
terms of signal to noise ratio. The rest of this paper is 
organized as follows. Necessary background on SL0 
algorithm is provided in Section 2. The proposed Robust-
SL0 is systematically developed in Section 3. In Section 4, 
stability properties of Robust-SL0 are considered 
analytically. Experimental results are presented in Section 5 
and the paper concludes in Section 6. 
 

2. SMOOTHED    
 
Direct minimization of -norm is mainly impeded by the 
fact that the -norm of a vector is a discontinuous function 
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of that vector. Interestingly, SL0 approximates -norm of 
 with the continuous function , where 

 and  belongs to a family of 
continuous (one variable) functions that, generally speaking, 
approximate Kronecker delta as . Therefore, instead of 
minimizing  subject to data, SL0 attempts to solve the 
problem . However, it is 
observed that , for small , contains numerous local 
maxima, while having no local maxima for sufficiently large 
values of . Therefore, to avoid getting trapped into local 
maxima, SL0 solves a sequence of problems of the form 

, decreasing  at each step, and 
initializing the next step at the maximizer of the previous 
(larger) value of . Each  is solved using few iterations of 
gradient ascent. Thus, SL0 algorithm consists of two loops: 
the external loop that is responsible for gradually decreasing 
of  and the internal loop, being a simple steepest ascent 
algorithm for finding the maximizer of  for given . The 
convergence analysis of SL0 has been thoroughly 
considered in [4] and it was shown that, under mild 
conditions, the sequence of maximizers of  indeed 
converges to the unique minimizer of , whenever such 
answer exists. Moreover, SL0 runs significantly faster than 
the competing algorithms, while producing answers with the 
same or better accuracy [4]. 
 

3. ROBUST-SL0  
 
As a result of the presence of noise in practical situations, 

 not exactly, but approximately holds and it would be 
more appropriate to seek for sparse approximate 
representations, instead. This scenario considers the 
situation where a noiseless underlying signal  indeed has a 
sparse representation , but we can observe only a 
noisy version  which is corrupted by additive noise : 

, . For stable recovery in this noisy 
situation, the noise-aware variant of  can be adapted as: 

. In fact, it has been shown 
that, when  is sufficiently sparse and the noise level is 
given, solving  enables stable recovery of  with an 
error which is at worst proportional to the noise level [1]. 
Just as with , the noise-aware variant of SL0, to which we 
will refer as Robust-SL0, can be adapted for noisy settings: 

, where . As we 
will formally prove in Section 4, solving  indeed enables 
stable recovery of , provided some mild conditions are 
met. For now, however, we consider solving .  

As was the case for SL0, to avoid getting trapped into 
local maxima, we should solve a sequence of problems of 
the form , decreasing 

 at each step, and initializing the next step at the maximizer 
of the previous (larger) value of . Therefore, for each , we 
are left with the optimization problem . To make the 
inequality constraint implicit in the functional, we rewrite 

 as: , where  

takes zero when  and is infinite when  (i.e. when 
the constraint is violated). It is easily observed that the 
differentiable function   approximates  and 
that the approximation becomes more accurate as  
increases [5]. Therefore, for large ,  can be  
approximated by , where we have 

. Nonetheless, maximizing 
 for large  is difficult as the gradient varies rapidly 

near the boundary of the feasible set  
[5]. Instead, we may solve a sequence of problems of the 
form , increasing  at each step, and initializing the 
next step at the maximizer of the previous (smaller) value of 
 [5]. Using iterations of gradient ascent to solve each , 

the final algorithm would consist of three loops instead of 
two loops of SL0 and the computational efficiency of SL0 is 
potentially removed. Therefore, we have to resort to 
approximations, the detailed justification of which is not 
reported here and only an insightful explanation is given in 
the following. Notice that even for relatively large, but 
meaningful noise levels, the feasible set  is still a thin 
convex region enclosing . In fact, it can be shown that 
for small , the gradient of , , is approximately 
perpendicular to  and hence, informally 
speaking,  only moves  along the so-called minor axis 
of . In other words, the second term in the functional of 

 has negligible effect and can be omitted. Therefore, to 
find the maximizer of , instead of solving  for an 
increasing sequence of , we can simply maximize  while 
forcing  to stay in the feasible set and yet be sure that the 
answer approximates the maximizer of , provided  is 
small. For instance, one can use gradient ascent to update  
and project the updated  onto , whenever it falls 
outside the feasible set1. To be more specific, let  

, which indeed meets the requirements of SL0 (see 
Section 2). Then, the gradient of  would be 

 and the update rule of 
gradient ascent becomes . Following the same 
reasoning as in [4], we choose  and the update rule 
reduces to , followed 
by projecting onto , whenever  falls outside the 
feasible set. The remaining issues of initialization and 
selection of the sequence of  are addressed as in [4]. 
Robust-SL0 is initialized by the minimum -norm solution 
of , i.e. . In addition, the sequence of 

 is characterized by  and  where 
 and . Fig. 1 summarizes the Robust-SL0 

algorithm. Further study of the proposed algorithm reveals 
that Robust-SL0 has the same computational complexity as 
SL0, while being more robust against noise, as we shall 
verify in Section 5.  
 

                                                           
1  is naturally selected as it is the maximum likelihood loci 
for  with no other prior in hand. 
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Fig. 1. Robust-SL0 algorithm. 
 

4. STABILITY PROPERTIES OF ROBUST-SL0 
 
In this section, we formally investigate the stability 
properties of the proposed Robust-SL0. We shall prove that, 
whenever sufficient sparsity is present, solving  will 
indeed recover the unique minimizer of -norm with error 
which is at worst proportional to the noise level. The proof 
offered here, is based upon the assumption that for a given 

, exact maximizer of  is found without getting trapped 
into local maxima, which was achieved by gradually 
decreasing of . However, the question of how much 
gradually, is not answered in this paper, but was 
experimentally investigated in [4]. Also, without loss of 
generality, it is assumed that the columns of  are 
normalized to unity. We now start with a few definitions. 
Given  and , mutual coherence of , , 
is defined as the maximum off-diagonal element of  

 [1]. Also, given  , we will denote by  the set 
of indices  of  for which . The cardinality of , 
i.e. the number of elements of  with amplitude , will be 
denoted by . Before stating the stability properties of 
Robust-SL0 (Theorem 1), a few lemmas are given, that are 
either proved here or the proof of which is offered in 
corresponding references.  
 

Lemma 1 [1]: Given an  symmetric matrix  with 
diagonal entries set to one and off-diagonal entries  in 
amplitude, all eigenvalues of   are . 
 

Lemma 2: Let  satisfy  and . 
Then . 
Proof: Suppose  and  comprise the elements of  being 

 and  in amplitude, respectively. Note that, 
 or . At the same time, 

, where  and  are the th column 
of  and th element of , respectively. Hence,  

, from which we conclude 

. Now, notice that 
. Observe that, all diagonal elements of 

 are equal to one. Also, by the definition of mutual 
coherence, all off-diagonal elements of  are . 
Therefore, Lemma 1 requires all eigenvalues of  and  
to be  and , 
respectively. Then it follows that 

 and consequently 
 or . Finally, since , an 

upper is attained  for : 
  

 

Lemma 3: Let  be the maximizer of  and  belongs 
to the family of functions described in [4] (see Section 2). 
Also, suppose that  is the unique sparsest answer of noise-
free problem  and has  nonzero elements. Then, for 
any given , there exists  such that for all , we 
have .  
Flavor of the Proof: Detailed proof, which uses similar 
ideas to [4], is not reported here and only the proof outline is 
given. Utilizing the properties of , a proper upper bound 
on  and a lower bound on  are attained. On the 
other hand, since  is merely feasible for   , while  is 
optimal, we have . Combining these two 
observations eventually yields . 
 

Lemma 4 [1]: Suppose the noiseless case , where 
 satisfies  and  stands for the 

mutual coherence of . Then,  is the unique sparsest such 
representation of . Also, if  denotes the minimizer of 

, then , for any .  
 

Theorem 1: Suppose the noiseless case , where  
satisfies  and  stands for the mutual 
coherence of . Then, denoting the maximizer of  by 

, we have . 
Proof: As implied by Lemma 4,  is indeed the unique 
sparsest answer. Now, it suffices to show that, for any 
desired accuracy , there exists  
such that for all ,we have . First, note 
that  and  require that 

. Also, Lemma 3 implies that, for any 
given , there exists  such that for all ,  . 
Before continuing with the rest of the proof, we need the 
following observation.  
 

Lemma 5: . 
Proof: Let us denote indices of vector by last subscript  and 
the cardinality of a set  with . Now, observe that number 
of indices for which either  or  are  is less than 

, since clearly 
. Also, it is observed that other 

indices of  cannot exceed . This is because 

• Initialization: 
1. Let  equal to the minimum  norm solution of  

. 
2. Choose a suitable decreasing sequence for , 

 (see Section 3). 
• For  

1. Let  
2. Maximize (approximately) the function  on the 

feasible set : 
 Initialization:  
 For  

a) Let .  
b) Let .  
c) If  project  onto  with: 

.  
 Set . 

• Final answer is   
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,  and , , from which 
we get , . These two 
observations together yield .   
 
With  and being ,  Lemma 5 implies 

. Assuming   and 
applying Lemma 2, we get . Hence, 
for any , it suffices to select  to 
satisfy  and then Lemma 3 insures that for this 
value of  there exists  such that for all ,  
or . This completes the proof.  
 

Remark. For a given , Theorem 1 states that solving  
enables recovery of the sparsest solution with an error less 
than , whenever such answer exists and 

. On the other hand, for a given , 
best existing result implies that solving the noise-aware 
variant of , i.e. , enables 
stable recovery with an error less than  , 
provided such answer exists and  [1]. 
During our simulations, for a large range of noise levels, 
Robust-SL0 demonstrated improved performance compared 
to the noise-aware variant of BP.  
 

5. SIMULATION RESULTS 
 
In this section, the performance of the proposed algorithm in 
presence of noise is quantitatively compared to FOCUSS [7] 
and -magic [6], as a powerful implementation of the 
noise-tolerant variant of BP. The simulations are performed 
using synthetically generated signals. Each sparse signal  
is independently obtained using a Bernoulli-Gaussian 
model. To be specific, each source is derived from a  
density with probability  and from a  with 
probability , where . Here,  is set to zero. In 
addition, instead of directly working with , sparsity of  is 
controlled using , representing the average number of 
nonzero elements of . To construct each column of the 
dictionary , samples are drawn from a  density, 
followed by normalization to unity. Finally, the observations 
 are generated using the noisy model , where  

obeys , and  stands for the  unity 
matrix. The signal to noise ratio (SNR), defined as 

, with  denoting our estimation, will 
be used as our measure of performance. In this experiment, 
the following set of parameters are used: 

. The sequence of  is chosen as described in 
Section 3 with . The internal loop of the algorithm is 
characterized. by . Finally, we have set . 
The noise power  is varied between 0 and .5 and the 
average performance of algorithms over 100 runs is reported 
in Fig. 2. The elapsed time for Robust-SL0, SL0, BP, and 
FOCUSS was .09, .09, 1.24, and .82 seconds, respectively, 
with a regular Intel Core 2 Doe processor. Obtained results 
reveal that, for a large range of noise levels,  Robust-SL0  is 

Fig. 2. Averaged SNR (in dB) as a function of noise power . 
 
more immune to noise compared to other competing 
algorithms. Finally, it is worth noting that the dependence of 
Robust-SL0 on its parameters is expectedly similar to SL0, 
and has been thoroughly scrutinized in [4]. 
 

6. CONCLUSIONS 
 
In this article, we presented Robust-SL0 for stable recovery 
of sparse solutions of USLE’s in presence of noise. 
Theoretical and experimental justifications concerning 
Robust-SL0 have also been closely considered. Strong 
theoretical justification in companion with remarkable 
experimental results and low computational complexity, 
suggest Robust-SL0 as a powerful choice for real-world 
applications involving sparse representation.   
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