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ABSTRACT

 

The theory of compressive sampling involves making 
random linear projections of a signal. Provided signal is 
sparse in some basis, small number of such measurements 
preserves the information in the signal, with high 
probability. Following the success in signal reconstruction, 
compressive framework has recently proved useful in 
classification. In this paper, conventional random projection 
scheme is first extended to the image domain and the key 
notion of concentration of measure is studied. Findings are 
then employed to develop a 2D compressive classifier (2D-
CC) for sparse images. Finally, theoretical results are 
validated within a realistic experimental framework.  
 

Index Terms— Compressive sampling, random 
projections, retinal identification.

1. INTRODUCTION 

The recently developed theory of compressive sampling 
(CS) involves making random linear projections of a signal 
by multiplying a random matrix. Provided the signal is 
sparse in some basis, few random projections preserve the 
information in the signal, with high probability [1]. This 
remarkable result is rooted in the concentration of measure 
phenomenon [1], which implies that the Euclidean length of 
a vector is uniformly “shrunk” under a variety of random 
projection matrices, with high probability. Due to tangible 
advantages, CS framework has found many promising 
applications in signal and image acquisition, compression, 
and medical image processing [1, 2, 4]. The CS community, 
however, has mainly focused on the signal reconstruction 
problem from random projections to date [3] and other 
applications of CS have yet remained unexplored. In 
particular, few recent studies showed that classification can 
be accurately accomplished using random projections, 
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which suggests random projections as an effective and yet 
universal feature extraction tool. In this context, 
compressive detection, hypothesis testing, and manifold-
aided classification of one-dimensional (1D) signals have 
been studied [1, 2]. However, as shown later in this paper, 
direct extension of these results to the image domain (2D) is 
computationally prohibitive, which strongly hinders the 
application of conventional compressive classifier (1D-CC) 
in real-world scenarios. To overcome this drawback, the 
idea of 2D compressive classification is developed in this 
paper. First, 2D random projection scheme is introduced in 
Section 2 and associated concentration properties are 
studied. It is then observed that using Gaussian random 
matrices, as the most common choice in 1D compressive 
framework, in the 2D random projection scheme, does not 
have feasible theoretical support. Then, by adding an 
assumption of so-called 2D sparsity (in some basis) to 
images, desirable concentration properties are proved for the 
same set of admissible random matrices as in 1D 
framework. This assumption is not restrictive, as most 
images become sparse under well-known transformations, 
like DCT, or have a sparse edge map. In Section 3, these 
findings are exploited to develop a 2D compressive 
classifier (2D-CC) for sparse images, along with derivation 
of error bound for an important special case. Finally, 2D-CC 
is applied to retinal identification within a realistic setting. It 
is observed that, at worst, 2D-CC provides significant 
saving on computational load and memory requirements 
compared to 1D-CC, at the cost of negligible loss in 
performance. This performance loss, however, can be 
avoided by “wise” selection of parameters. We note that, 
due to space limitations, some intermediate steps of the 
derivations have been omitted, and the interested reader is 
referred to [5] for details.  
 

2. CONCENTRATION OF MEASURE FOR 2D 
RANDOM PROJECTION SCHEME 

In order to linearly project a given image  to a 
lower dimensional space, columns of  are stacked into a 
vector . This process ignores the intrinsic 
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row/column-wise structure of the image and, even for 
moderately sized matrices, involves prohibitive 
computational load and memory requirements for generation 
and manipulation of the projection matrix [5, 6]. As a 
remedy to these drawbacks, one may use the so-called 2D 
projection scheme, i.e. , in which , 

, , with  and . 
This section is devoted to the study of 2D projection scheme 
in the compressive framework. Clearly, successful inference 
in this scenario depends on preservation of the structure of 
samples after projection [1]. For 1D signals, this has 
received extensive treatment. Particularly, it has been shown 
that, given a 1D signal, random matrices whose entries are 
i.i.d. random variables (rv’s) with proper tail bounds, e.g. 
Gaussian rv, uniformly “shrink” the signal length after 
projection, with high probability. Using the union bound, 
one may then show that, with high probability, such random 
matrices preserve the structure of a set of samples after 
projection, by uniformly shrinking the pair-wise Euclidean 
distances. Focusing on Gaussian random matrices, as the 
most common choice in CS framework, a similar strategy is 
developed here. Consider random Gaussian matrices 

 and , whose entries are i.i.d. 
 and  rv’s, respectively. Given 
, let us define  and , where 

 denotes the Kronecker product. Thus, , where 
each entry of  has a Bessel-like distribution with zero 
mean and variance  [5]. We are interested in 
studying the concentration of rv  about its expected 
value   by finding an exponentially-fast 
decreasing bound on 

, where probability is taken over all 
matrices  and . Note that (in contrast to 1D counterpart), 
entries of  are no more independently distributed. 
Furthermore, each entry of  is a product of two i.i.d. 
Gaussian rv’s. Properties of the Kronecker product implies 
that each row of  is dependent with exactly  
other rows, and that we can partition the rows of  into  
nonoverlapping partitions  with  , such that 
rows in each partition are independent. Let us denote by  
the  submatrix obtained by retaining the rows of 

 corresponding to the indices in . Clearly, rows of  
are independent, and we have , 
where entries of  are zero-mean rv’s with variance 

. It is then straightforward to show that strong 

concentration of  for , implies that of  [5]. 
This follows easily from the following fact [5]: 

 

 

 
(1)

For ease of notation, let  and . Now, it 
suffices to find an exponentially-fast decreasing bound for 

, where, due to linearity, 
each column of  is assumed to have unit length. Consider 
the probability of . Then, for any 

, invoking the Chernoff bounding technique and using 
the inherent symmetries in  [5] gives: 

where, without loss of generality, first row of  is used in 
(2). Further simplifications and exploiting the moments of 
Gaussian and Chi-square distributions [5] leads to:  

 
(3) 

in which  denotes the Gamma function. The sum on the 
right hand side of (3) apparently fails to converge. 
Consequently, the probability of 

 fails to decrease exponentially fast, in general; not 
letting us to find a solid theoretical base for 2D random 
projection with random Gaussian matrices. In the following, 
we prefer to insert an additional constraint on , which 
would allow for successful operation of 2D random 
projection scheme with the same set of admissible random 
matrices as in 1D case. Let  denote the set of all signals of 
length  with at most  nonzero entries. We say that 

 satisfies restricted isometry property (RIP) of 
order , if for every , the following holds for some 

. 

 (4) 

It is shown that many random matrices satisfy RIP 
condition with high probability [1, 4]. For instance,  
matrices whose entries are i.i.d.  rv’s satisfy RIP 
of order  with probability exceeding , 
provided , where  and  

 
(2) 
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depend only on  [1, 4]. Also random orthoprojectors, i.e. 
matrices with random orthonormal rows, satisfy the RIP 
condition similarly. Extending these ideas to the image 
domain, let   denote the set of all images , 
whose nonzero entries are distributed in at most  rows and 

 columns. A matrix with this property will be called 2D 
sparse matrix. Now, we have the following observation [5].  
Observation 1. Suppose projection matrices  
and , respectively, satisfy the RIP conditions of 
orders  and , for some . Then, for 
any , we have:  

 

 
(5) 

In particular, if  and  are admissible random matrices 
in the 1D compressive framework, (5) holds with 
probability exceeding , provided 

 and  
. This means that, if , then 
 is strongly concentrated about its expected 

value for variety of random matrices; hence establishing 
concentration of measure in 2D random projection scheme.  
 

3. 2D COMPRESSIVE CLASSIFIER FOR SPARSE 
IMAGES 

 

In many applications, images are sparse in some pixel 
domain or have a sparse representation in some basis, such 
that their nonzero entries are concentrated in a small number 
of rows/columns [5]. For this class of images, the results 
obtained in the previous section are applicable; enabling us 
to develop the proposed 2D-CC. Formally, assume that 

 denotes a set of  known 2D sparse 
images, i.e. , , for some integers 

, . The (possibly noisy) “true” image  
 undergoes 2D random projection to obtain 

, where  represents the noise. 
Now, we will be concerned with discrimination among the 
members of , given only low-dimensional random 
projections  Given  and , failure will be quantified in 
terms of expected error. Let , , 

 and . For simplicity of analysis, we 
further assume , where  denotes the 

 identity matrix. Also,  and  are selected to be 
random orthoprojectors, which implies that the distribution 

of noise remains unchanged under projection. Now, 
provided ’s happen equally likely, the Bayes decision rule 
and the associated expected error would be: 

 (6) 

 (7) 

where  . Note that, for any 
nonnegative sets  and  with , we have 

. Consequently, we may write:  

 (8) 

Further simplification and setting , gives the 
following bound: 

 (9) 

Assuming that  and  satisfy the RIP conditions similar to 
Observation 1, and defining , 
Observation 1 implies the following bound for classification 
error [5]:  

 (10)

Particularly, if  and  are random orthoprojectors, 
then above bound holds with conditions noted right after 
Observation 1. It is observed that the classification error 
decays exponentially fast as the number of observations 

 increases. 
 

4. EXPERIMENTS 

In this section, the efficacy of the proposed 2D-CC is 
examined in retinal identification problem. Retinal 
biometrics refers to identity verification of individuals based 
on their retinal vessel tree pattern (Fig. 1.a). Our 
experiments are conducted on VARIA database containing 
153 (multiple) retinal images of 59 individuals. To 
compensate for the variations in the location of optic disc 
(OD) in retinal images, a ring-shaped region of interest 
(ROI) in the vicinity of OD is used to construct the feature 
matrix (Fig. 1.b). To extract the ROI, using the technique 
presented in [6], OD and vessel tree are extracted. Then, a 
ring-shaped mask with proper radii centered at OD is used 
to form the feature matrix  by collecting the 
pixels along  beams of length  
originating from OD (Fig. 1.c). Note that feature matrices 
readily satisfy the requirements of Observation 1 in pixel 
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domain [5]. Due to small number of images per subject (~2) 
and approximate invariance of feature matrix to the location 
of OD, feature matrices of the same subject are modeled as 
noisy deviations from corresponding mean feature matrix. 
Hence, once all images are processed,  is 
formed, where each  is the mean feature matrix of th 
subject. Dimension reduction and classification of a test 
feature matrix is then performed in  by the proposed 
2D-CC, and in  by 1D-CC. Error is measured using 
the leave-one-out scheme and the average results over 100 
independent repetitions are depicted in Fig. 2 for a wide 
range of  and . Although explicit calculation of the 
bound in (10) is intractable [1], we note that the exponential 
nature of error is in accordance with our findings. Also, due 
to highly redundant nature of feature matrices along their 
columns, “wise” choices for  and , which consider this 
redundancy, exhibit good performance especially for small 
values of  and . In contrast, “careless” choices for  
and , degrade the performance (Fig. 3). Using an Intel 
Core 2 Duo, 2.67 GHz processor with 3.24 GB of memory, 
we found that each repetition of 2D-CC approximately took 

 seconds, whereas this number was roughly 
 for 1D-CC, in MATLAB7 environment. Note 

that this difference is significant even with our small-sized 
feature matrices. In sum, for typical choices of  and , 
2D-CC runs much faster than 1D-CC, yet producing results 
with negligible loss in performance. This loss, however, 
disappears with proper choice of  and  which takes the 
prior knowledge into account. In addition, 2D-CC enjoys 
significantly less memory requirements.  
 

5. CONCLUSIONS 
 

In this paper, the idea of random projections is extended to 
image domain and associated concentration properties are 
studied. Our findings are then used to develop 2D-CC, along 
with error bound for an important special case. Finally, 
results are validated in a realistic application.  
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(a) (b) 

 (c) 
Fig. 1. (a) Retinal image; bright area is OD. (b) Vessel tree (in 
white) and mask (in blue). (c) Feature matrix for , 

. Due to limited space, images (a) and (b) are cropped.    

Fig. 2. Average classification error of 2D-CC (red surface) and 
1D-CC (blue surface) for a wide range of  and .  

 
Fig. 3. Two examples of “wise” choices which consider the 
redundancy along columns:  (left) and  (right) 
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