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Abstract—Sparse solutions of underdetermined linear systems
of equations are widely used in different fields of signal process-
ing. This problem can also be seen as a sparse decomposition
problem. Traditional sparse decomposition gives the same prior-
ity to all atoms for being included in the decomposition or not.
However, in some applications, one may want to assign different
priorities to different atoms for being included in the decomposi-
tion. This results to the so called “weighted sparse decomposition”
problem [Babaie-Zadeh et al. 2012]. However, Babaie-Zadeh
et al. studied this problem only for positive weights; but in
some applications (e.g. classification) better performance can be
obtained if some weights become negative. In this paper, we
consider “weighted sparse decomposition” problem in its general
form (positive and negative weights). A tight uniqueness condition
and some applications for the general case will be presented.

Index Terms—Sparse signal processing, Weighted sparse de-
composition, Weighted `0 norm minimization, Negative weights
decomposition, Weighted Sparse Representation for Classification

I. INTRODUCTION

Solving an under-determined system of linear equations
for sparse solutions has attracted lots of attention during the
last decade [1]. Application examples include blind source
separation [2], compressed sensing [3] and classification [4],
to name a few. Consider the linear system of equations

As = b, (1)

where A is an n by m matrix and b is an n by 1 vector. When
n < m and A is a full rank matrix, (1) has infinitely many
solutions, but the sparsest solution is achieved by solving

P0 : min
s
‖s‖0 s.t . As = b, (2)

where the `0 norm ‖s‖0 stands for the number of nonzero
components of s. Note that P0 can be interpreted as a “sparse
decomposition problem” where the aim is to decompose b as
a linear combination of the minimum number of columns of
A (called “atoms” after [5]).

It is seen that P0 gives the same priority to all the atoms
for being included in the decomposition or not. However, in
some applications, one may want to assign different priorities
to different atoms for being included in the decomposition.

This problem is studied in [6] under the title “weighted sparse
decomposition”. It defines the weighted `0-norm as

‖s‖0,w ,
m∑
i=1

wi |si |0, (3)

where w = [w1,w2, . . . ,wm]T is a known weight vector and
|si |0 is defined as

|si |0 ,
{ 0 si = 0,

1 otherwise. (4)

Therefore the weighted `0 norm minimization problem is
expressed as

P0,w : min
s
‖s‖0,w s.t . As = b. (5)

Note that the weight vector w is known and it is derived from
the application.

In [6] all the assigned weights are assumed to be positive.
However, in some applications there might be a need to con-
sider negative weights as well. As a motivation for considering
negative weights, suppose that in (1), the aim is to estimate
s based on the observation vector b. Moreover, assume that
the pi = Pr (si , 0) has a Bernoulli distribution, and the
probability of its activity, pi , is known a priori. As [6] shows,
the MAP estimation for this problem can be achieved by
solving a P0,w problem with the weights wi = ln[(1− pi )/pi].
Then, if the probability of a component being non-zero is
higher than 0.5, wi will have a negative value. Note that this
sounds heuristically: if an entry of s is more likely to be active
(pi > 0.5), it is less expensive that it has a non-zero value
(wi < 0). Therefore, in order to solve this problem generally,
it is needed to consider P0,w with both negative and positive
weights.

In this paper, we study P0,w for the general case where there
exist positive, zero and negative weights. We present a tight
condition on the weights (wi’s) that guarantees the uniqueness
of the solution of P0,w. Moreover, we present an application
example for P0,w with negative weights.

The paper is organized as follows: In the next section, we
study the uniqueness condition of our problem and, using
WSL0 algorithm [6], we will verify the condition numerically.
In Section III, we provide an application example for our
problem. Section IV concludes the paper.



II. UNIQUENESS AND ALGORITHM

A. Theory

An important question is whether or not problem P0,w has
a unique solution. Note that P0,w has at least one solution
because the weighted `0 norm is bounded from below1.

To explain our conditions which guarantee uniqueness, let
Spark(A) denote the smallest number of columns of A which
are linearly dependent [7]. It is proven that a solution s of
(1) which satisfies ‖s‖0 <

Spark(A)
2 is the unique solution of

P0 [7]. Moreover [6] defines Sw(k) as the sum of k smallest
weights. It is proved in [6] that for the problem P0,w with
positive weights, if there exists some s satisfying (1) and

‖s‖0,w <
Sw(Spark(A))

2
, (6)

then it is the unique solution of P0,w.
To generalize the above uniqueness conditions to negative

weights, let us first make the following assumptions:
• H1: The weight vector w has at most n negative weights.
• H2: The solution of P0,w has at most n − 1 nonzero

components, i.e. it has a “suitable” sparsity.

Remark 1: If H1 is not satisfied, i.e. if there exist more than
n negative weights one can assign 0 to all other components
and reach a system with at least two different solutions (see
Lemma 1 in the appendix for a detailed proof).

The following theorem states a condition for the uniqueness
of the solution of P0,w.

Theorem 1: Assume that H1 and H2 are satisfied and s is
a solution of (1) such that

‖s‖0,w <
Sw (Spark (A))

2
+ |wmin |

(
Spark (A)

2
− n + 1

)
, (7)

where wmin , mini wi , then s is the unique solution of P0,w.

Proof is left to appendix.
Remark 2: Note that (6) is not a special case of (7) where

all the weights are positive. In other words, (6) is stronger
than the special case of (7) for positive weights. However, (7)
is tight. To show this tightness, consider the problem (5) with
A, b and w be equal to

A =


1 1 0 0
1 0 1 1
0 1 1 0


, b =



1
2
1


,w =



−4
−4
6
6



.

It is seen that A is a fullrank matrix and Spark(A) = 4.
Moreover,

Sw(Spark(A))
2

+ |wmin |

(
Spark(A)

2
− n + 1

)
= 2.

1It is also worth noting that if in P0,w the weighted `0 norm is replaced
by a weighted `1 norm, where negative weights exist, the resulting problem
may have no solution, because weighted `1 norm is not bounded below for
negative weights.

It is seen that s1 = (1, 0, 1, 0)T and s2 = (0, 1, 0, 2)T are both
solutions to As = b, and for both of them ‖s1‖0,w = ‖s2‖0,w =

2. Moreover, no other solutions of (1) can have a weighted `0
norm smaller than 2, because a solution s of (1) is in the form
of s = (α, 1−α, α, 2−2α)T for any α ∈ R. So if α < {0, 1}, all
the components of s are different from zero. Then ‖s0‖0 = 4
and ‖s‖0,w = 4 > 2 i.e. (7) is not satisfied. The cases α = 1 and
α = 0 correspond to s1 and s2, respectively. Both are solutions
of P0,w and do not satisfy the condition (7), although very
marginally since (7) is then 2 < 2. So this example illustrates
Theorem 1 by contradiction.

B. Algorithm

In order to solve P0,w, we use the WSL0 algorithm of [6].
Careful examination of the equations of WSL0 in [6] reveals
that the method does not use the assumption of positivity of
wi’s and hence it is directly applicable to the general case
of having both positive and negative weights. However, the
initialization of that algorithm (which is the minimizer of the
weighted `2 norm) heavily uses the assumption of positivity
of all weights. Actually, the weighted `2 norm with negative
weights is not necessarily bounded from below. So, in this
paper, we heuristically use the minimizer of the unweighted `2
norm problem [8] (that is, A†y where A† is the Moore-Penrose
pseudo-inverse of A) as initialization of the algorithm.

C. Simulation

We have designed an experiment in which we show that
if the uniqueness condition of Theorem 1 holds then WSL0
algorithm results in a good reconstruction. In order to do that,
first we consider a 100 by 300 random matrix A and two
vectors s1 and s2 such that As1 = As2 and ‖s1‖0 = 60 (s1
is nonzero in its first 60 components) and ‖s2‖0 = 50 (s2 is
nonzero in its first 5 components and its last 45 components).
It is seen that, s2 is sparser than s1. Then, we assign a weight
vector w such that ‖s1‖0,w < ‖s2‖0,w. To do this, we assign
wi = −0.9 for i = 1, 2, . . . , k and 1.2 otherwise (k varies
from 1 to 120). It can be seen that s1 satisfies the uniqueness
condition of Theorem 1 when k ∈ [53, 68].

After running WSL0, we expect, when the uniqueness of
Theorem 1 holds (i.e. for k ∈ [53, 68]) that the algorithm will
estimate s1 rather than s2. We compare the estimated solution
ŝ to s1 and s2 by calculating the signal to noise ratio (SNR)
which is defined as

SNRi = 20 log10(
‖si ‖2
‖si − ŝ‖2

) i = 1, 2. (8)

Fig 1 shows that whenever the uniqueness condition holds
(i.e. for k ∈ [53, 67]), the WSL0 algorithm provides a good
estimation of the solution of P0,w.

III. AN APPLICATION EXAMPLE

As an application of weighted `0 norm minimization with
some negative weights, we consider here the classification
problem. The aim of this problem is to determine the class of
an input data based on a previously labeled training dataset.
One of the methods to solve this problem is SRC (Sparse
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Fig. 1. The figure shows the SNR criterion related to s1 (top graph) and
s2 (bottom graph) versus k , the number of negative weights. The uniqueness
condition holds for s1 when k ∈ [53, 68] (the dashed lines depict this interval)
and in this interval, the WSL0 algorithm has estimated s1 properly. Note that
the WSL0 algorithm never chooses the sparsest solution s2. Also note that
when k < [53, 68], the algorithm may or may not converge to s1, since the
uniqueness condition does not hold anymore.

Representation based Classification) which was introduced in
[4]. The SRC method is based on solving a P0 problem. In
order to have better performance [9] suggests to solve the
following P1,w problem (an `1 relaxation of P0,w)

min
s

m∑
i=1

wi |si | s.t . As = y, (9)

where A = [a1 |a2 | · · · |am] is the matrix containing all the
training vectors, y is the input vector and the weight vector w
defined as

w = [w1,w2, · · · ,wm], wi = ‖ai − y‖22 . (10)

This is so called WSRC algorithm. [10] solved a P0,w problem
directly (using WSL0 algorithm) with the same (positive)
weight vector as (10) and achieved better results. Since [9]
uses the term WSRC for classification based on weighted `1
norm minimization, we use the term WSRC0 for classification
based on weighted `0 norm minimization.

In this section, we propose a new weight vector (which has
some negative components) and we solve the P0,w problem
with this new weight vector in order to show its superiority
with respect to the SRC and WSRC0 methods with positive
weights. To achieve a better performance, our idea is to use
negative weights for the atoms that are very close to the input
vector. We propose the following weight vector

wk = ‖y − ak ‖22 − t . (11)

It is seen that if the distance between an atom and the input
vector is lower than

√
t, its corresponding weight would be

negative. So the presence of that atom would be favorable
to the cost function (that is, weighted `0 norm of the de-
composition). We shall denote the WSRC0 method with our
proposed weight vector with WSRC0N. As we will show in
our examples, with a good choice of the threshold value t, the
performance of WSRC0N is better than WSRC0.
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Fig. 2. Error percentage versus the percentage of present negative weights.
This figure is obtained for different thresholds used in classifying the monk2
dataset.

TABLE I
COMPARISON OF THE PERCENTAGE OF ERROR OBTAINED BY RUNNING
EACH OF THESE THREE ALGORITHMS: SRC, WSRC0 WITH POSITIVE

WEIGHTS (WSRC0P) AND WSRC0 WITH OUR PROPOSED WEIGHT
VECTOR (WSRC0N)

benchmark SRC WSRC0P WSRC0N

zoo 5.9 4.9 4

monk2 11.8 4.2 2.8

heart 25.9 19.6 18.9

To verify the performance of WSRC0 with this new weight
vector, a series of experiments were carried out. This experi-
ments are conducted on the KEEL benchmark datasets [11]
and YALE facial recognition dataset [12]. For performing
these experiments, the leave-one-out method [13] was used.
In this method, one vector is considered to be the test vector
and the remaining vectors are used as training data. Then
the classification is performed. This step is repeated until the
number of repeats reaches the number of sets.

To perform these classifications we needed to see how to
choose the value of t so that the algorithm would deliver
an acceptable performance. Therefore we have performed the
classification on monk2 dataset for different values of t hence
changing the percent of negative weights. As it can be seen
from Fig 2 the algorithm performs best when around 2-15
percent of the weights are negative. As depicted in Fig 2,
small changes in the percentage of negative weights (in the
2-15 interval) results to small changes in the percentage of
error. Therefore we can conclude that the WSRC0 method is
robust with respect to the percentage of negative weights.

Table 1 shows the results for the 3 different benchmarks
of KEEL dataset: zoo, heart and monk2. In each experiment,
the value of t is chosen such that around 10 percent of the
weights become negative. In the experiment results (Table1
and Fig 3) the WSRC0 algorithm is denoted WSRC0P with
only positive weights and WSRC0N with both positive and
negative weights. As you see, the performance of WSRC0 with
this new weight vector surpasses the performance of SRC and
WSRC0 methods.

The YALE facial recognition dataset encompasses 15
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Fig. 3. Error percentage comparison of SRC, WSRC0 with positive weights
(WSRC0P) and WSRC0 with our proposed weight vector (WSRC0N) algo-
rithms for the YALE facial recognition dataset.

classes and each class has 11 gray images. We reduced the
dimensions of the images before classification. In order to
do that, we use Principal Component Analysis (PCA) method
[14]. Then we choose the threshold t such that around 10
percent of weights become negative.

We plot the percentage of error versus the number of
principal components for SRC, WSRC0 with positive weights
and WSRC0 with our proposed weight vector. Again, WSRC0
with our proposed vector surpasses SRC and WSRC0 with
positive weights.

IV. CONCLUSION

In this paper, a generalization of weighted sparse signal
decomposition to negative weights was studied, and a condi-
tion and tight bound for the uniqueness of negative weighted
`0 norm minimization was presented. Then, the uniqueness
condition was evaluated numerically. Finally by proposing a
weight vector with some negative weights, we showed its
superiority in the classification problem comparing to SRC
and WSRC0 algorithms.
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APPENDIX

Lemma 1: If A is an n by m full rank matrix and w is a
weight vector which has more than n negative weights, then
the problem P0,w has at least two different solutions.

Proof: Suppose that we have t negative weights and t >
n. Without any loss of generality we assume that these are
[w1, . . . ,wt ]. We need only to find two solutions s1 and s2
of As = b such that none of the first t entries of these two
solutions are equal to zero, and all of their other entries are
equal to zero (obviously, such vectors are both solutions of
P0,w, because the minimum value of ‖.‖0,w is

∑t
i=1 wi which

is equal to ‖s1‖0,w and ‖s2‖0,w). Assume that there is at most
one vector which satisfies the above condition. We define

A = {s ∈ Rm |As = b , si = 0 ∀i ∈ {t + 1, . . . ,m}},

A j = {s ∈ A|s j = 0} j = 1, 2, . . . , t .

It is obvious that A j ’s ( j = 1, 2, . . . , t) are all proper affine
subspaces of the affine space A. We consider two cases
separately:

1) Card(A\
⋃t

j=0A j ) ≤ 1, where Card(·) stands for the
cardinality of a set. If Card(A\

⋃t
j=0A j ) = 1 then there

exists a vector s such that A\
⋃t

j=0A j = {s}. Therefore
A = {s}∪(

⋃t
j=0A j ) (Note that {s} is also a proper affine

subspace of A). Now if Card(A\
⋃t

j=0A j ) = 0, then
A\

⋃t
j=0A j = ∅. Therefore we have A =

⋃t
j=0A j .

So in both cases we have written A as a finite union of
proper affine subspaces of itself which is a contradiction
[15]. So this case can never happen.

2) Card(A\
⋃t

j=0A j ) ≥ 2. That means there exist two
different vectors s1 , s2 in A\

⋃t
j=0A j . Therefore by

the definition of A and A j ’s, s1 and s2 are nonzero
in their first t components and zero everywhere else.
Therefore s1, s2 are two different solutions of P0,w.

Proof of Theorem 1: Arguing by contradiction, assume
that there exist two vectors s1 and s2 that satisfy ‖s1‖0,w =

‖s2‖0,w <
Sw (Spark(A))

2 + |wmin |(
Spark(A)

2 − n + 1). Without loss
of generality, assume that w is sorted such that

w1 ≤ w2 ≤ . . . ≤ wt < 0 ≤ wt+1 ≤ . . . ≤ wm .

Assuming H1 and H2, we have t < n and ‖s1‖0, ‖s2‖0 ≤ n−1.
Now we define a new weight vector (called w′) as wi

′ =

wi + |w1 | for i = 1, 2, . . . , m. It is obvious that w′ is a non-
negative weight vector. ‖.‖0,w and ‖.‖0,w′ are related as

‖s‖0,w′ =
m∑
i=1

|xi |0w′i =
m∑
i=1

|xi |0(wi + |w1 |)

= ‖s‖0,w + ‖s‖0 |w1 |.

Therefore,

‖s1‖0,w′ <
Sw(Spark(A))

2
+ |w1 |(

Spark(A)
2

− n + 1 + ‖s1‖0).

So, it can be seen that

‖s1‖0,w′ <
Sw(Spark(A)) + |w1 |Spark(A)

2
+|w1 |(‖s1‖0−(n−1)).

Using H2, we must have |w1 |(‖s1‖0− (n−1)) ≤ 0 which yields

‖s1‖0,w′ <
Sw(Spark(A)) + |w1 |Spark(A)

2
.

Using the definition of w′, the previous inequality becomes:

‖s1‖0,w′ <
Sw′ (Spark(A))

2
. (12)

Similarly

‖s2‖0,w′ <
Sw′

(
Spark (A)

)
2

(13)

Then according to positivity of w′ and triangle inequality for
`0 norm (note that although the so called `0 “norm” is not a
mathematical “norm”, it satisfies the triangle inequality)

‖s1 − s2‖0,w′ =

m∑
i=1

|s1i − s2i |0w
′
i ≤

m∑
i=1

(|s1i | + |s2i |0)w′i .



Note that
∑m

i=1(|s1i | + |s2i |0)w′i = ‖s1‖0,w′ + ‖s2‖0,w′ . Using
(12) and (13),

‖s1 − s2‖0,w′ < Sw′
(
Spark (A)

)
.

Therefore s1−s2 has at most Spark(A)−1 nonzero components
because its `0,w norm is less than the sum of Spark(A) number
of smallest weighs. So ‖s1 − s2‖0 < Spark (A). But according
to the fact that s1 and s2 are the solutions of the linear system
As = b, we have As1 = As2 = b. Therefore A(s1 − s2) = 0.
So we have found ‖s1 − s2‖0 columns of A that are linearly
independent and this contradicts the definition of Spark(A).
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