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Abstract

Score Function Difference (SFD) is a re-
cently proposed “gradient” for mutual
information which can be used in Blind
Source Separation (BSS) algorithms based
on minimization of mutual information. To
be applied to practical problems, SFD must
be estimated from data samples, and till
now there are several algorithms for the
estimation of SFD from data. However, the
comparison of the performances of these
algorithms has never been addressed in
the literature. The criterion usually used
in the literature for comparing different
SFD estimators is the quality of separation
in BSS algorithms. But this practical
criterion does not show that the considered
estimation method makes a really good
estimation of the actual SFD. In this paper,
a simple method for evaluating the perfor-
mance of an SFD estimator is proposed,
and using it the performances of the cur-
rently known SFD estimators are compared.
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Information, Score Function Difference estimation,
SED estimation.

*This work has been partially funded by Sharif University
of Technology, by French Embassy in Tehran, and by Center
for International Research and Collaboration (ISMO).

399

Introduction

Blind Source Separation (BSS) [1],[2] consists in
retrieving unobserved independent mixed signals
from mixtures of them, assuming there is informa-
tion neither about the original sources, nor about
the mixing system. Since the only information
about source signals is their statistical indepen-
dence, a general approach for BSS is to design
the separating system which transforms again the
observations to statistically independent outputs.
This approach is called Independent Component
Analysis (ICA), and for linear mixtures, it is shown
to result in retrieving the sources up to some trivial
indeterminacies [3].

ICA can be obtained by optimizing a “contrast
function” i.e. a scalar measure of the independence
of the outputs [4],[3]. One of the widely used con-
trast functions is mutual information (MI), which
has been shown [4] to provide an asymptotically
Maximum-Likelihood (ML) estimation of source
signals in linear instantaneous mixtures. Recently,
a non-parametric “gradient” for mutual informa-
tion, called Score Function Difference (SFD), has
been proposed [5]. SFD has been used success-
fully in separating different and complicated mix-
ing models [6].

To be applied to practical problems, algorithms
based on SFD require its estimation from data.
Several methods for estimating SFD have been in-
troduced in the literature [6],[7],[8]. These SFD
estimation methods are all applied to the blind
source separation problem, and they result in dif-
ferent performances in BSS. However, a compari-
son of the performance of these different estimators
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have never been addressed in the literature.

It should also be noted that when a SFD estimator
is used for BSS, the quality of source separation
by no means shows that the estimation method
is a really good estimator of the actual SFD. For
instance, the authors have recently shown [9] that
when applied to BSS, a “poor” estimation of SFD
may have advantages to a “better” SFD estimator.

One problem in comparing the performances of
SFD estimators is that SFD depends on a multi-
variate probability density function (PDF), and
hence its theoretical value (to be served as a basis
for comparing the performances of the estimators)
is not easy to calculate. In this paper, we are go-
ing to propose a simple method for comparing the
performances of different SFD estimators, and use
it to compare the performances of the currently
known SFD estimation algorithms.

The paper is organized as follows. Section 1 re-
views the essential materials to express the “gra-
dient” of mutual information. The comparison
method is developed in Section 2. Section 3
presents some experimental results. Finally, con-
clusions are made in Section 4.

1 Preliminary Issues

1.1 Mutual information

For designing a system which generates indepen-
dent outputs, we need a criterion for measuring
their independence. Recall that random variables
x1,...,xN are independent if and only if py(x) =
Hfil Daz,; (x;), where p stands for the Probability
Density Function (PDF) . A convenient indepen-
dence measure is mutual information [10] of z;’s,
denoted by I(x), which is the Kullback-Leibler di-

vergence between py(x) and Hi\il Da; (x4):

N
I(x) = D(px(x) || [] pe: (@)
= 1)
Px(x)

= w(X)In —————dx
o0 [T, oo ()

It is well-known that this quantity is always non-
negative, and vanishes if and only if the z;’s are
independent. Consequently, the parameters of the
separating system can be calculated based on mini-
mization of the mutual information of the outputs.
To do this minimization, knowing an expression for
the “gradient” of the mutual information is help-
ful. Such an expression, which has been already
proposed [5], requires multivariate score functions.
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1.2 “Gradient” of mutual information

The variations of mutual information resulted from
a small deviation in its argument (the “differential”
of mutual information), is given by the following
theorem [5]:

Theorem 1 Let A be a ‘small’ random wvector,
with the same dimension as the random vector x.
Then:

Ix+8)—I(x) = E{ATB, ()} +0(A) (2)
where o(A) denotes higher order terms in A.

In this Theorem, the function 8, (x), called Score
Function Difference (SFD) [11], is defined as fol-
lows.

Definition 1 (SFD) The score function differ-
ence (SFD) of a random vector x is the difference
between its marginal score function 1 (x) (MSF)
and joint score function ¢, (x) (JSF):

Bx(x) = ¥ (x) — px(x)

where the marginal score function is defined by

(3)

Yu(x) = @Wi(@),.yn(en)”  (4)
with
_ _ p;(l”z)
Yi(z;) = ~ In py, (z;) = @) (5)
and the joint score function is defined by
Px(x) = (p1(x),.-,on(x)" (6)
with
. 0 . %Px(x)
pi(x) = _Bmi In px(x) = _T(X) (7)

SFD plays an important role for minimizing the
mutual information. In fact, for any multivariate
differentiable function f(x), we have:

flx+A)— f(x) = ATVf(x) +o(A) (8)

Then, a comparison between (2) and (8) shows that
the so-called SFD can be called the stochastic gra-
dient of the mutual information.

2 Proposed comparison method

In this section, we explain our comparison method.
First we recall that the SFD of a random vector is
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identically zero if and only if its components are
statistically independent [6].

Consider now two independent random variables
s1 and ss which both have “Bimodal Gaussian”
distributions having modes with means +1 and —1
and equal variances. In other words:

G(s;—1,0%) + G(s;+1,02)

Ps; (S) = 2 )

i=1,2

9)
where ps, () is the PDF of s;, and G(+; 4, o) stands
for the PDF of a Gaussian random variable with

mean g and variance o>:

Lexp{_w} (10)

G(t;p,0%) £
(t;p,07) 572
Signals with the PDF of (9) are very common in
digital telecommunications: they arise in transmit-
ting one bit of data through an Additive White
Gaussian Noise (AWGN) channel.

Because of the independence of s; and s3, the SFD
of the random vector (s;,s2)? is equal to zero.
Now, we mix the signals s; and s by a rota-
tion transformation to obtain statistically depen-
dent random variables z; and x», i.e.:

x1\ _ [cosf —sinf s1
<x2> - (sinﬁ cosf ) <32> (11)
where 6 is the angle of rotation.

In the following we will theoretically calculate
ﬁx(:nl,:ng) = (B1($1,$2),B2($1,$2))T, the SFD of
the random vector x = (z1,z2)7. It is clear that
B+ () depends on #. Then the function (the ‘energy
of SFD’):

C0) = E{|I6x(x)II} = / 185 () 1P (x) dx

) (12)
gives a complete description of the behavior of the
SFD. By a “complete description of the behavior”
we mean showing the behavior for different degrees
of statistical dependence. For example, for § = 0,
z1 and xo are independent, and hence the SFD
is zero and C(0) = 0. When 6 increases, x; and
x2 will be dependent and hence the value of C(6)
will no longer be zero. Then when 6 reaches 7, x;
and z will become again independent, and SFD
vanishes.

Consequently, we use the theoretically calculated
C(0) (for 8 =0to # = T) as a basis for comparison
of the performances of different SFD estimators:
the one which follows better the variation of C(9)
versus 6 gives a better SFD estimation for different
degrees of independence between random variables.

In the following two subsections, the theoretical
values of the mutual information of z; and z» (as
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a measure of their dependence) and C(6) versus 6
will be calculated.

2.1 Mutual Information of random vari-

ables r; and zo

To calculate the mutual information of z; and z-,
we first calculate their joint and marginal PDF’s,
and then use the definition given in (1).

Because of the independence of the random vari-
ables s; and ss, the density of the random vector
s £ (s1,52)7 is written as ps(s) = ps, (51) s, (52),
where p;, (+) is given by (9).

Now let R = R(f) denote the mixing matrix in
(11), which is the rotation matrix by angle 6, and
x £ (z1,23)7. Then (11) is written as x = Rs,
and hence:

Px(x) = ps (RT *X)
= ps, (€1 o080 + xo8in ) - ps, (—x1 sinf + x5 cos f)

(13)

Consequently, the joint density of the random vari-
ables z; and z2 is known. Now we calculate the
marginal densities of these random variables.

Firstly, note that the sum of two random Gaussian
variables with means p; and ps and variances U%
and 03 is a Gaussian random variable with mean
p1 + p2 and variance o7 + o3. Consequently:

G(t; p,07) % G(t; i, 03) = G(t; 1 + pi, 07 + 03)

(14)
where G(t; u,0?) is defined in (10) and “*’ stands
for convolution. Moreover, if z is a Gaussian ran-
dom variable with mean p and variance o2, then
az (where a is a scalar) will be a Gaussian random

variable with mean ay and variance a?02. Conse-
quently:
Lt 2 2 2
HG(—;IMU ) = G(t;ap,a”0”) (15)
al a

Now form x; = s1 cosf — s5 sinf, the PDF of z; is
written as the convolution of the PDF’s of random
variables s; cos @ and —sy sinf. Moreover:

1 S1
s > t = T s A
p1cosb‘() |C050|p 1(C080)

G(t;cos0,0? cos? 0) + G(t; — cosf, 02 cos® §)
2

(16)

where the second equality is written by (9) and
(14). In a similar manner:

G(t; — cosf, 0% sin® §) + G(t; cos 6, 0% sin” 6)

P—s55in0 (t) =
(17)
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Convolving both sides of (16) and (17), and using
(14) we obtain:

1 1
= ZG(tQNhUQ) + ZG(t; —p1,0%)

1 1
+ ZG(t;umUQ) + ZG(t; —pi2,0°)

De, (1)
(18)

where gy £ cosf + sinf and ps = cosf — siné.
Moreover, it can also be easily verified that x» has
the same distribution given by (18).

Now it remains to do the integration of (1) to
calculate the mutual information. We have done
this integration numerically using MATLAB (for
o = 0.5), and obtained the diagram of Fig. 1.

0.35

0.3r

Mutual Information
o o
© L © N
= (6] N o

o
=)
a

o

o

/4

/ /2
Angle of Rotation (rad)

Fig. 1 Mutual Information of 21 and x2 versus 6

2.2 Score Function Difference of random
vector X

For calculating the SFD, it suffices to calculate
P4 (x) and px(x), and the use the definition in (3).
Combining (5) and (18), 9;(+), the i-th component
of the MSF of x, is obtained as:

Yi(t) =

G'(tp1,0) + G'(t —p1,0) + G'(tp2,0) + G'(; —p2, 0

Gt pa,0) + Gt —p1,0) + G(t; p2, 0) + G(t; —p2, 0)

(19)

where G/ (t; u, o) is the derivative of G(t; u, o), de-
fined in (10), with respect to ¢.

From (1), for calculating the JSF od x we need the
partial derivatives of py(-) with respect to z; and
x2. This can be easily derived from (13):

Opx

5% (x) = P, (51)Pss (52) €0 = o (51)1, (52) sn

(20)
Opx

BT(X) = pl, (51)Pss (52) Sin 0 + pg, (51)p}, (52) cos O
2

(21)
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where s;1 = x1 cosf+ x5 sinf, and so = —xz1 sinf +
x2 cosf. The above equations, completely deter-
mine B, (z1,22) for each value of (z1,%2).

Finally, knowing the explicit expressions of all the
functions of the integral in (12), it may be numer-
ically calculated. Fig. 2 shows the obtained C(6)
versus 6, for o = 0.5.

0 /4 /2
Angle of Rotation (rad)

Fig. 2 C(0), the energy of SFD, versus 6

2.3 Proposed Comparison Criterion

In the previous section, the exact value of C(6)
versus # has been calculated. Now, for evaluating
the performance of different SFD estimation meth-
ods, we create two source signals according to the
distribution given by (9). Then, for each value of
f (in the range 0 to m/2), the observation sam-
ples are calculated using (11). The SFD of these
observations are then estimated by different SFD
estimation methods. Finally, for each SFD esti-
mation algorithm, we plot the obtained C'(6), and
visually compare it with the true C'() of Fig. 2.

3 Experimental results

We have applied the explained method to the
existing SFD estimators proposed in [6], [7], [8].
In all simulations, 500 data samples have been
used for estimating the SFD. The simulation
has been done 100 times for each method, and
the obtained C'(f) have been averaged through
these 100 simulations. Fig.’s 3 through 7 show the
resulted averaged C(#) for each estimator versus 6.

Remark 1. Fig.’s 3 through 7 clearly show
the performance of different SFD estimation,
in the sense of their ability to follow the exact
variations of the energy of SFD, as it is seen in
Fig. 2. However, for none of these estimators the
‘value’ of the estimated SFD is correct. If we
re-run the simulations with a different number
of sample points (instead of 500, as in the above
figures), we will obtain different ‘values’ for the
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Fig. 3 Polynomial method.
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Fig. 4 Histogram method.

estimated SFD’s. This shows that there is a
kind of ‘normalization’ in the current estimators
of SFD (that is, the estimated values depend
on the number of data points). This problem
has not been already noticed in BSS algorithms,
because they used SFD (as the gradient of mutual
information) in gradient based algorithms (e.g.
y <y — pfBy for the MP approach [6]), and any
scaling error in the estimation of SFD is absorbed
within the step size parameter of these algorithms

(1)

Remark 2. As stated before, the quality of a
SFD estimator (in the sense of this paper) does not
generally insure a good quality of a BSS algorithm
based on that estimator. In fact, for having a good
separation quality in a BSS algorithm, we just need
that the SFD be well estimated for nearly indepen-

wrsy

°

Estimated §FD Ener,

S

°

o

Angle of Iﬁ{t%tion (rad) /2

Fig. 5 Kernel method.
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Fig. 6 Pham’s method.
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Fig. 7 The authors’ method ([8]).

dent random variables (around 8 = 0 and 6 = 7/2
in the above figures). This is because a gradient
based BSS algorithm converges when the estimated
SEFD vanishes. If the estimated SFD vanishes in
the correct place (independent outputs), we obtain
a good separation quality. For dependent signals
(0 < 8 < m/2 in the above figures), the errors in
the values of the estimated SFD are not so im-
portant for a BSS algorithm, provided that these
errors do not ‘badly’ change the sign of the esti-
mated derivative of MI of outputs with respect to
the parameters of the separating system.

A good example is estimating the inverse of the sys-
tem (11) by the algorithm 6 + 6 — poI(Rx)/06,
and using the polynomial SFD estimator. Then it
is shown [9] that the poor behavior of this estima-
tor around § = /4 (see Fig. 3), will even change
the sign of the estimated 0I(Rx)/d6, but in an
advantageous manner: it prevents the algorithm
from getting trapped in the local minimum of MI
at § = /4 (see Fig. 1).

Conclusions

In this paper, the SFD for a special kind of dis-
tribution was first theoretically calculated. Then,
this actual value of SFD was used as a basis for
comparing the performance of the existing SFD es-
timators. We found out that a normalization error
exists in all of the existing SFD estimators, which
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has not been already seen because of the manner
these estimators are used in BSS algorithms. The
reason of this error has not yet been known, and
needs more investigation.
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