
SPARSE DECOMPOSITION OVER NON-FULL-RANK DICTIONARIES

Massoud Babaie-Zadeh
���

, Vincent Vigneron
�
, and Christian Jutten

�
�
Department Of Electrical Engineering, Sharif University of Technology, Tehran, Iran�

IBISC Laboratory, University of Evry, Evry, France�
GIPSA-LAB, Grenoble, France

ABSTRACT

Sparse Decomposition (SD) of a signal on an overcomplete

dictionary has recently attracted a lot of interest in signal pro-

cessing and statistics, because of its potential application in

many different areas including Compressive Sensing (CS).

However, in the current literature, the dictionary matrix has

generally been assumed to be of full-rank. In this paper, we

consider non-full-rank dictionaries (which are not even nec-

essarily overcomplete), and extend the definition of SD over

these dictionaries. Moreover, we present an approach which

enables to use previously developed SD algorithms for this

non-full-rank case. Besides this general approach, for the spe-

cial case of the Smoothed
���

(SL0) algorithm, we show that

a slight modification of it covers automatically non-full-rank

dictionaries.

Index Terms— Atomic Decomposition, Sparse Decom-

position, Compressive Sensing (CS), Overcomplete Signal

Representation, Sparse Component Analysis (SCA).

1. INTRODUCTION

Let an � -dimensional vector 	 is to be decomposed as a lin-

ear combination of the vectors 
��
�
���������������
� . After [1],

the vectors 
��
�
��������������� are called atoms and they col-

lectively form a dictionary over which the vector 	 is to be

decomposed. We may write 	����� � !"#$% �&
��'�()*+ , where

)�,-. 
/#0���������1
  
2

is the �345� dictionary (matrix) and +�,6 % #7��������� %  
8�9

is the �:4;� vector of coefficients. If �<=
� , the dictionary is overcomplete, and the decomposition is

not necessarily unique. However, the so called “Sparse De-

composition” (SD), that is, a decomposition with as much

zero coefficients as possible has recently found a lot of at-

tention in the literature because of its potential applications

in many different areas. For example, it is used in Compres-

sive Sensing (CS) [2], underdetermined Sparse Component

Analysis (SCA) and source separation [3], decoding real field

codes [4], image deconvolution [5], image denoising [6], elec-

>
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tromagnetic imaging and Direction of Arrival (DOA) find-

ing [7], and Face Recognition [8].

The sparse solution of the Underdetermined System of

Linear Equations (USLE) )*+?�@	 is useful because it is

unique under some conditions: Let spark
6 ) 8 denote the mini-

mum number of columns of ) which form a linear dependent

set [9]. Then, if the USLE:

)*+A��	 (1)

has a solution + with less than
#B spark

6 ) 8 non-zero compo-

nents, it is the unique sparsest solution [9, 10]. As a special

case, if every �C4D� sub-matrix of ) is invertible (which is

called the Unique Representation Property or URP in [7]),

then a solution of (1) with less than
6 �EFG� 81HIJ non-zero ele-

ments is the unique sparsest solution.

For finding the sparse solution of (1), one may search for

a solution for which the
���

norm of + , i.e. the number of non-

zero components of + , is minimized. This is written as:

minimize
 K
� !"#
L % � L � subject to )*+A��	 (2)

Direct solution of this problem needs a combinatorial search

and is NP-hard. Consequently, many different algorithms

have been proposed in recent years for finding the sparse

solution of (1). Some examples are Basis Pursuit (BP) [11],

Smoothed
���

(SL0) [12, 13], and FOCUSS [7]. Many of these

algorithms, replace the
���

norm in (2) by another function of

+ , and solve the problem:

minimize M 6 + 8 subject to )*+A��	 (3)

For example, in BP, M 6 + 8 is the
� #

norm of + (i.e. �  � !"# L % � L );
and in SL0, M 6 + 8 is a smoothed measure of the

�N�
norm.

However, up to our best knowledge, in all of the previous

works, it is explicitly or implicitly assumed that the dictionary

matrix is full-rank. Note that having the URP is a more strict

assumption than being full-rank, that is, a matrix which has

the URP is full-rank, but a full-rank matrix has not necessarily

the URP. Consider however a dictionary ) which is not full-

rank (and hence has not the URP), but spark
6 ) 8 = J . This

dictionary may still be useful for SD applications, because
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a solution of (1) with less than
�� spark

� � � non-zero compo-

nents is still unique and is the sparsest solution. As an exam-

ple, ����	 
�� 
 ����
���
�� 
 ����
���
�����������
�������
 � is not full-rank (its

3rd row is the sum of its first two rows), but every two of its

columns are linearly independent, and hence spark
� � � ��� .

On the other hand, for a non-full-rank � , the system (1)

does not even necessarily admit a solution (that is, � cannot

be necessarily stated as a linear combination of the atoms����������
��� � � ���! . For example, �"� � 
�� 
 ���� 
 � # cannot be

stated as a linear combination of the columns of the above

mentioned � , because contrary to � , its last row (here, just

the last entrie) is not the sum of its first two rows. In this case,

all the algorithms based on (2) or (3) will fail, because the so-

lution set of (1) is empty. In fact, in this case, since (1) has no

solution, clearly the ‘sparsest solution’ of (1) makes no sense.

Non-full-rank dictionaries may be encountered in some

applications. For example, in SD based classification [8], the

idea is to express a new point � as a sparse linear combina-

tion of all data points �$�����%�&
��� � � '��! , and assign to � the

class of the data points �$� which have more influence on this

representation. In this application, if for example, one of the

features (one of the components of �$� ) can be written as a lin-

ear combination of the other features for all the ‘data’ points����������
��� � � '��! , then the dictionary � is non-full-rank. If

this is also true for the new point � , then we are in the case

that (1) has solutions but � is non-full-rank; and if not, then

(1) has no solution and our classifier (based on most current

SD algorithms) will fail to provide an output.

For a non-full-rank overcomplete dictionary, one may

propose to simply remove the rows of � that are dependent

to other rows, and obtain a full-rank dictionary. This naive

approach is not desirable in many applications. In Com-

pressive Sensing (CS) language, this is like throwing away

some of the measurements, which were useful in presence

of measurement noise for a better estimation of ( (recal that

in parameter estimation, if several measurements are avail-

able, removing all but one does decrease the accuracy of the

parameter estimation).

In this paper, we generalize the definition of sparse de-

composition to non-full-rank dictionaries in Section 2, and

show how to calculate it using previously known SD algo-

rithms in Section 3. Then, in Section 4, we present a unique-

ness theorem. Finally, in Section 5, for the special case of the

SL0 algorithm, we will modify the algorithm itself to directly

cover non-full-rank dictionaries.

2. DEFINITION OF SPARSE DECOMPOSITION

In linear algebra, when the linear system �)(*�+� is inconsis-

tent (underdetermined as well as overdetermined), one usu-

ally considers a Least Squares (LS) solution, that is, a solu-

tion which minimizes ,'�)(-�.�/, , where ,012, stands for the3 �
(Eucidean) norm throughout this paper. Naturally, we de-

fine the sparse decomposition as a decomposition �45 6 �7�8�9:

1�1�1;: 6 < � < �=�)( which has the sparsest ( among all of the

(global) minimizers of ,'�)(>�?�/, (see also Lemma 2):

Definition 1. Let @ be the set of LS solutions of (1), that is:

@+A"BC( D ,'�)(E�?�/, is minimized FG (4)

By a sparse LS solution of (1), we mean the (HIJ@ which
has the minimum number of non-zero components, that is:

K�L�M�NHO PQ <R � ST� D 6 � D U subject to (�IV@ (5)

Note that the constraint �)(��=� in (2) has been replaced

by (HI4@ in (5). If (1) admits a solution, @ will be the set of

solutions of (1), and the above definition is the same as (2).

Remark. The above definition, as well as all of the re-

sults of this paper, also holds for the case W?XY! (determined

or overdetermined case). In this case, non-full-rank means

rank
� � �>Z ! (which ensures that @ is not a singleton).

3. HOW TO FIND THE SPARSE LS SOLUTION: A
GENERAL APPROACH

In this section, we present a simple approach that enables to

use all of the previously known SD algorithms for the non-

full-rank case as well. The idea is to express ([I\@ equiva-

lently as ]^(0�_̀ , where ] is a full-rank1 a b0! matrix, and `
is a length a vector ( a is the rank of � ). Then (5) is converted

to a full-rank (and underdetermined) problem (2), for which

there are many already developed SD algorithms.

To do this, we first characterize the set @ defined in (4).

Let �)c8d < �"eVc8dfc$ghc8d <0i[j< d < be the Singular Value De-

composition (SVD) of � , where the subscripts denote the di-

mensions, e and i are unitary matrices, and:

gJ�klHm%n d n 0 n d8o <0p n�q0 o c p n�q d n 0 o c p n�q d8o <0p n�q^r (6)

in which m � diag
�st �;�� � � �� t n � where

t �*uv�����0�w
��� � � '� a
are the singular values of � . We are looking for all ( which

minimize the cost function xJAv,'�)(>�?�/, � . Then:

xy�v,'eyg i j (E�?�/, � (where (z{8A i[j ( )�v,'e � gh( { �|e j � � , � (where �h{8A�e j � )�v,zgh( { �?� { , � ( e is a rotation)

� nR � ST� D t � 6 {� �?} {� D � :
cR� S n�~ �

D } {� D �
(7)

The second term of x does not depend on (;{ (and hence( ), and the first term can be made equal to zero by setting6 {� ��}8{� �;t �����/��
��� � � '� a . In other words, ( is a minimizer of

1Note that the normal equations �*�/���T�V�0��� cannot be used for this
aim: although it is equivalent to ���*� , its coefficient matrix is non-full-rank.
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� if and only if ����� ��	 � satisfies the following system of 

equations (note that � ��
� � ��������� � �� are arbitrary):��� � � ���������

. . .
...

. . .
...� � ���������
� �� ����� � � �� ��...� ��

� ���� � ���  !� �
... !��
� �� (8)

or in matrix form " #$� % � � 0 � %!& �'( �
)*+ ��	 �,�-./�� , where ./� � �0  � � �������1�2 �� 3 4 . Note also that if 56�78 59�:�
5 � ; , where 5<� is

composed of the first 
 columns of 5 , and 5 � is the remain-

ing =<> 
 columns, then .?�@�A5 	 .B� 0 5 	 � .C�
5 	� . 3D4 , and

hence ./� � �A5 	 � . . In summary, we have proved the follow-

ing theorem:

Theorem 1. Let 
 be the rank of the dictionary matrix E , and
let its SVD be EF�G5<H ��	 , where H is of the form (6). Let
also that 5<� be composed of the first 
 columns of 5 , and I
be defined according to (4). Then �JKLI if and only if:E��M�,�N. � � (9)

where E��O�P" #$� % � � 0 � %!& �'( �
)Q+ ��	 , and ./� � �-5 	 � . .

Using the above theorem, a general approach for finding

the sparsest LS solution (5) is to replace the constraint �JKRI
by (9), and then to use any of the previously known SD algo-
rithms which had been developed for full-rank dictionaries.

4. UNIQUENESS OF THE SPARSE LS SOLUTION

In this section we first state some more characteristics of I ,

and then a uniqueness result for the sparse LS solution.

The following lemma is very famous for LS solutions of

overdetermined linear systems, but it holds for inconsistent

underdetermined systems, too [14, p.279]:

Lemma 1. Among the members of I , the vector � min �-E'S
. ,
where E S is the Moore-Penrose pseudoinverse of E , has min-
imum Euclidean norm.

Although the above result is already known, we prefer to

re-state its proof here, because it comes directly from (8):

Proof. Since T1���UTV�WT ��	 �XTV�WT1�XT , for having minimumT1���UT , the free parameters � ��
� � ��������� � �� in (8) should be

set equal to zero. This gives � min �YE S . , where E S �� H?SZ5 	 . , and:H S � %[\]�F̂ # ( �� % � 0 � %!& \ ( �
)0 & �'( �
) % � 0 & �'( �
) %!& \ ( �
) _ (10)

Lemma 2. A general form for the members of �JKLI is:�,�`E S .La 0Qb >cE S E 3Dd (11)

where
d

is an arbitrary e -dimensional vector.

The above lemma, too, is already known ([15, p.125] and

[16, p.49]). However, we prefer to give another proof here

based on the general form (8).

Proof. Let � be of the form (11). Left multiplying both

sides of (11) by E and using ELE S Ef�gE , we have EL�<�E 0 E S � 3 �-EL� min. That is, the distance of EL� to . is equal to

the distance of EL� min to . , and hence �JKLI .

Now letting �<KhI , we must show that there is a
d

such

that � can be written as (11). From (8), a general form for � � ���	 � is ���i� 0  !�� j:� �:�������1�2 !�� j:� � �
k �
� �l�������1�
k � 3D4 , wherek �
� �l�������1�
k � are arbitrary scalars. It can be written as �l�@�0  !� � j:� �l���������2 !�� j:� � �
�m�������1�
� 3D4 a 0 �m�������1�
�m�
k �
� �l�������1�
k � 3D4 �H S ./�[a 0 �m�������1�
�m�
k �
� �����������
k � 3D4 , and hence:�,� � � � � � H S 5 	 .La � 0 �m���������
�m�
k �
� ���������1�
k � 3 4�-E S .La 0 k �
� �Zn �
� �oa-p�p�plaBk � n � 3
where n/q denotes the r -th column of � . We have therefore to

show that there is a
d

such that
0Qb >iE S E 3Dd �st �q u �
� � k@q*n/q .

Using the definition of E S (just before (10)), it is easy to see

that E S EF�7t �q u@� n/qQn 	q , and hence from orthonormality of� we have
b >sE S Ev�wt �q u �
� � n/qQn 	q . Consequently, it

remains to show that for every k �
� �l�������1�
k � , there is a
d

such

that n 	q d �`k@q for rC� 
 aBxy�������M�2e . This is evident, because

the linear system
0 n �
� �:�������1�2n � 3 	 d � 0 k �
� �l�������1�
k � 3D4 is

underdetermined and full-rank (because of the orthogonality

of n/q ’s), and hence has an infinite number of solutions.

Lemma 3. �zK{I if and only if EL�]�GEL� min, where � min �E S . .

Proof. �9KhI|}~EL�R�gEL� min: Left multiply both sides of

(11) by E , and use ELE S Eg�`E .EL�R��EL� min }Y��KhI : This is because the distance ofEL� to . is the same as the distance of EL� min to . .

Theorem 2 (Uniqueness of the sparse LS solution). If there
is a �JKRI for which T1�XT � � �� spark

0 E 3 , then it is the unique
sparsest LS solution of (1).

Proof. Suppose there are ���sK�I and � � K�I for whichT1�:�:T � � �� spark
0 E 3 and T1� � T � � �� spark

0 E 3 . Then from

Lemma 3, we have EL���'��EL� � ( �sEL� min), and hence Ez�B��
, where �V�-�:��>L� � . Now �N�� � is a contradiction, becauseTM��T � � spark

0 E 3 , and a linear combination of TM��T � columns

of E cannot be equal to zero. Hence �V�-�$}F�����`� � .
5. THE SL0 ALGORITHM

SL0 algorithm [12, 13] is a SD algorithm with two main fea-

tures: 1) it is very fast, 2) it tries to directly minimize the
���

norm (and hence does not suffer from replacing
� �

by asymp-

totic equivalents). For this algorithm, there is no need to use

the general approach of Section 3, and the algorithm may be

modified to directly work for the sparse LS solutions.
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The basic idea of SL0 is to use a smooth measure of the���
norm ( � � � � ), and solve (3) by steepest descent. To take

into account the constraint �	�
��
 , each iteration of (the

full-rank) SL0 is composed of:

� Minimization: �������������
� Projection: Project � onto ��� � �	����
�� :

���������  � �	�  � ! " � �	�#��
 � (12)

For extending SL0 to non-full-rank dictionaries, the pro-

jection step should be modified: � should be projected onto $
instead of ��� � �	�%�&
�� . We show here that this can be done

simply by replacing �  '� �	�  �� ! " in (12) by � ( . This can be

seen from the following lemma:

Lemma 4. Let � � be given. Among all the members of $ , the
minimizer of )��*��� � ) is:

���+� � ,-� ( � 
.���	� � � (13)

Proof. We write )��	�#��
/)0�1)�� � �#�-� � � � � 
2�3�	� � � )��
)��45*��6�) , where 5�7+�8��� � and 6�7�
/���	� � . Consequently,

any minimizer of )��453�96�) corresponds to a minimizer of

)��	����
/) , and vice versa. Moreover (see Lemma 1), among

all minimizers of )��45:�46�) , the Euclidean norm );5')#�<)��=�
� � ) is minimum for 5��+� ( 6 , which corresponds to (13).

In summary, for extending the SL0 algorithm to non-full-
rank dictionaries, just replace �  /� �	�  �� ! " in (12) by � ( .

6. CONCLUSIONS AND PERSPECTIVES

The main aim of this paper was extension of definition of

sparse decomposition, uniqueness result, and algorithms to

cover non-full-rank dictionaries (and to prevent some algo-

rithms to be blocked when encounter a non-full-rank dictio-

nary). As stated before the last paragraph of Section 1, how-

ever, this approach may be also thought as a denoising ap-

proach in CS by means of repeated measurements (recall also

Remark 1), a point which is under more investigation in our

group. As a simple experiment for >?�&@ABCB and DE��FCB with

a zero mean and Gaussian measurement noise with variance

0.01, by repeating each measurement two times and using (9),

the averaged estimation quality of BP increased from 19.8dB

to 22.5dB.
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