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ABSTRACT

In this paper, a new algorithm for blind inversion of Wiener
systems is presented. The algorithm is based on minimiza-
tion of mutual information of the output samples. This min-
imization is done through a Minimization-Projection (MP)
approach, using a nonparametric “gradient” of mutual in-
formation.

1. INTRODUCTION

When linear models fail, nonlinear models appear to be pow-
erful tools for modeling practical situations. Many researches
have been done in the identification and/or the inversion of
nonlinear systems. These assume that both the input and
the output of the distortion are available, and are based on
higher-order input/output cross-correlation [1] or on the ap-
plication of the Bussgang and Prices theorems [2, 3] for
nonlinear systems with Gaussian inputs. However, in a real
world situation, one often does not have access to the distor-
tion input. In this case, the blind identification of the non-
linearity becomes the only way to solve the problem. This
paper is concerned by a particular class of nonlinear sys-
tems, composed by a linear subsystem followed by a mem-
oryless nonlinear distortion (see Fig. 1 and Fig. 2). This
class of nonlinear systems, also known as Wiener systems,
is a nice and mathematically attracting model, but also a
actual model used in various areas, such as biology [4], in-
dustry [5], sociology and psychology (see also [6] and the
references therein). Despite its interest, at our knowledge,
it only exists one completely blind procedure for inverting
such systems [7]. The basic idea of the method is based
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Fig. 1. A Wiener system consists of a filter followed by a
distortion.
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Fig. 2. A Hammerstein system consists of a distortion fol-
lowed by a filter.

on source separation techniques. It consists in changing the
spatial independence of the outputs - required for inverting
nonlinear mixtures - into a time independence of the output
- required for inverting the filtered observation, i.e.the blind
inversion of Wiener system.

2. PRELIMINARY ISSUES

2.1. Mutual information

For designing a system which generates an output with in-
dependent samples, we need a criterion for measuring the
independence of different samples. Recall that random vari-
ables y1, ..., yn are independent, if and only if:

N
py(y) = H Py (4i)- @)

A convenient independence measure is mutual information
of y;’s, denoted by I(y), which is nothing but the Kullback-



Leibler divergence between p,, (y) and Hf;l Dy (Y5):

N
I(y) = D(py(y) || [] pv: (wi))
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It is well-known that this function is always non-negative,
and vanishes if and only if the y;’s are independent. Con-
sequently, the parameters of the inverse system (the func-
tion g and the coefficients of the inverse filter) can be found
based on minimization of the mutual information of the out-
put samples.

To do this minimization, knowing an expression for the
“gradient” of the mutual information is helpful. Such an
expression, which has been already proposed [8], requires
multivariate score functions.

2.2. “Gradient” of mutual information

The variations of mutual information resulted from a small
deviation in its argument (the “differential” of mutual infor-
mation), is given by the following theorem [8]:

Theorem 1 Let A be a ‘small’ random vector, with the
same dimension than the random vector y. Then:

Iy + &)~ I(y) = E{A"B,(y)} +o(A) (3)

where o(A) denotes higher order terms in A.

In this Theorem, the function 3, (y), called Score Function
Difference (SFD) [9], is defined as follows.

Definition 1 (SFD) The score function difference (SFD) of
a random vector y is the difference between its marginal
score function 1, (y) (MSF) and joint score function ¢ (y)
(JSF):

where the marginal score function is defined by
Yy (¥) = W1(1), - ¥n(yn)" 5)
with )
Py, \Yi
i(yi) = —=—1Inpy, (y;) = — 2. 6
Yi(yi) dy; P (yi) ) (6)
and the joint score function is defined by
with )
. _ 0 L a_yipy(Y)
pi(y) = o Inpy(y) = o) @)
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SFD plays an important role for minimizing the mu-
tual information. In fact, for any multivariate differentiable
function f(y), we have:

fy+A)—fly) = A"V (y) +o(A) )

Then, a comparison between (3) and (9) shows that the so-
called SFD can be called the stochastic gradient of the mu-
tual information.

The following theorem relates the independence of the
components of a random vector y to its SFD [10].

Theorem 2 The components of the random vector y are in-
dependent, if and only if, its SFD is zero, i.e.:

by (y) = Yy (y) (10)

3. INVERSION CRITERION

From the previous section, the general idea for determining
the inverse system is to take the mutual information of the
output samples as the inversion criterion, and then to use a
gradient based algorithm for minimizing it. This gradient
algorithm is based on the “gradient” of mutual information
as proposed by (3).

However, using I(y(0),y(1),y(2),...) is computation-
ally too expensive. This is because of the fact that using
SFD as the gradient of mutual information, requires the es-
timation of multivariate densities, and the computational
load of this estimation increases when the number of ran-
dom variables increases. Consequently, we use the pairwise
independence of the output samples:

J = I(y(n),y(n —m)) (11)

m=1

where p denotes the degree of separating filter. This crite-
rion needs only the estimation of bivariate PDFs.

The criterion (11) is still expensive. For implement-
ing it, we use a stochastic manner, that is, at each iteration
we use a different random m between 1 and p. With this
trick, in average, we are minimizing the criterion (11) but
with less computation (note that the information in different
terms of (11) are not totally independent, and hence it can
be intuitively seen that this trick does not highly affect the
number of required iterations for convergence). This is sim-
ilar to what is done in [10] for blind separating convolutive
mixtures.

4. MINIMIZATION-PROJECTION APPROACH

Recently, a Minimization-Projection (MP) approach for blind
source separation has been proposed [11]. The idea of this



approach is using the following algorithm for minimizing
I(y):

y <y —pBy(y) (12)

This algorithm is similar to the steepest descent gradient al-
gorithm for minimizing a multivariate function. It has been
shown [11] that (12) converges to a random vector with in-
dependent components and has no local minimum.

However, in (12) the output is directly manipulated and
after its convergence, there may be no particular relation be-
tween the outputs and the observations. To solve this prob-
lem, in each iteration, the mapping e — y is replaced by its
projection on the desired family of transformations.

The same idea can be applied in blind inversion of the
Wiener system of Fig. 1, with a few modifications. Each
iteration of this minimization-projection (MP) approach is
composed of the following steps:

e Minimization:
1L y(n) < y(n) —p

OL(yr(n), y2(n —m))
dy(n) '
e Projection:
2. [gopt; WOpt(Z)] = 2

= argmin F{ (y(n) - [W(z)]g(e(n))) }-
9,W(2)

3. y(n) = [Wopt(2)]gopt(e(n)).

where 01 (y1(n), y2(n — m))/dy(n) denotes a non-parametric

‘gradient’ of I(y1(n),y2(n —m)) with respect to the out-
put signal. For developing this gradient, we first define the
following notation for an arbitrary signal z(n):

[t

x(n —m)
That is, x(™) (n) denotes a vector composed of the signal
and its delayed version with m units.
Now suppose that there is a small perturbation in the
output signal:

x™ (n) (13)

g(n) =y(n) + e(n) (14)
where ¢(n) stands for a *small’ signal. Consequently:
3™ (n) = y'™ (n) + €™ (n) (15)

Hence from Theorem 1 we have (up to first order terms):

13" () = I(y™ () = E {#*(m)"e™ (m) }
= E{B{ ()e(n)} + E{B5(n)e(n —m)}
= E{B{ ()e(n)} + E{B5(n +m)e(n)}
= E{(Bi(n) + B3 (n+m))e(n)}

where 5*(n) = (81 (n), 83 (n))" £ Byom (y™ (n)). Note
that in the above simplification we have assumed that the

n) (16)
n)
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signals are stationary. This equation shows that the desired
gradient is:

9I(y(n),y(n —m))
dy(n)
In other words, moving in the opposite direction of the above
gradient (i.e. choosing e(n) = —u %&?—m))) insures
areduction in I(y(n),y(n —m)).

=pi(n) +B5(n+m)  (17)

5. CALCULATING THE PROJECTED MAPPING

Using the approach of previous section needs, in step 2, the
calculation of the function g and of the filter W (z) = wo +
wiz 4+ wpz~P which minimize the error:

E{(y(n) — [W(2)lg(e(n))*}

In this section, we propose an iterative algorithm for deter-
mining this optimal system, inspired from a similar method
used in blind source separation of Post Non-Linear (PNL)
mixtures [11].

First, suppose that g and hence x(n) are already known,
and we are looking for T (z) which minimizes:

(18)

2

E{(y(n) = W (2)]z(n)))"}

From the orthogonality principle [12], this error is mini-
mized if and only if:

E{(y(n) = [W(2)]z(n))z(n - k)}

i.e.

(19)

=0, k=0,...

P
(20)

Z wiE{x(n —i)x(n —k)} = E{y(n)z(n — k)} (21)
i=0

forall 0 < k < p. By defining:

Tea (1, k) 2 F {z(n —i)z(n —k)} (22)
rye (k) = E{y(n)z(n — k)} (23)
we have:
D e k)wi =rya(k), k=0,...,p  (24)
=0
Then, by defining:
742(0,0)  1rz4(1,0) T2e (D, 0)
R, 2 rm('O, 1) rm(:l, 1) rm('p, 1) (25)
ree(08) rar(Lp) - rs(pp)
Ty £ [ ryz(o) ryw(l) Tyz(P) ]T (26)



e Initialization: z = e.

e Loop:
1.
2.
3.

Obtain W (z) from (27).
Letz(n) = [W(2)]"y(n).

Change the order of z(k) such that the
function z = g(e) become ascending (see
the text).

e Repeat until convergence

Fig. 3. The projection algorithm.

Eq. (24) can be written;

where w = (wg, w1, ...,w,)T. The above equation deter-
mines the optimal filter W/ (z).

Therefore, by knowing g, we can determine W (z) from
(27). But g is not known and must be determined. Note
that this function must be invertible and hence monotonous.
Here, without loss of generality, we assume that it is ascend-
ing. Now, we can propose the following iterative algorithm
for determining g:

First assume an initial value for g. This determines z(n)
and the optimal W (z). By knowing W (z) and y(n) we can
recalculate z(n). The values of z(r) and e(n) automati-
cally define a function g. This function is not necessarily
ascending. If it is not ascending, the order of values of z(n)
will be changed such that for every e(n) < e(ns) we have
z(n1) < x(nz). In MATLAB this can be done by the in-
structions:

sort (e) ;
sort (x) ;

[temp, index]
x (index)

This new z determines a new g and the above procedure is
repeated until convergence. Figure 3 shows the final projec-
tion algorithm.

It must be noted that we are using a steepest descent it-
erative algorithm and our initial value for g is ascending.
Moreover, at each iteration, only a small modification is
done in the values of z(n). Consequently, the above time
permutation does not result in a huge modification of the
estimated g; it must be seen as a manner for preventing the
algorithm to produce a non-ascending g.

Another remark is needed for the step 2 of the algorithm.
This step can be done by the recursive equation:

1

w_o (y(n) —wrz(n —1) — - wpz(n — p)) (28)

z(n) =
However, the filter obtained in (27) may be non-minimum
phase, and hence non-invertible. To overcome this diffi-
culty, one may neglect the obtained W (z) in the current
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iteration, or replace it with the minimum phase version of
W (z) (e.g. using MATLAB function polystab).

Finally, we note that the expected values in the above
equations must be estimated. In practice, this is done by
empirical averaging.

6. THE ALGORITHM

Having a method for calculating the projected mapping (step
2 of the approach presented in Section 4), the inversion al-
gorithm is evident.

However, some modifications are needed. First, it must
be noted that there are mean and scale indeterminacies in
both z(n) and y(n) signals. Consequently, for removing
their effects, in each iteration the means of z(n) and y(n)
are removed and their energies are normalized.

Moreover, two modifications must be done in applying
the algorithm of Fig. 3. First, instead of initializing by
x(n) = e(n), we can use the value of x(n) obtained in
the previous iteration of MP algorithm which is a better ini-
tial estimation of z(n). Secondly, we do not wait for the
projection algorithm to converge (even, it is possible that
it does not converge, when the output cannot expressed as
[W(z)]g(e(n)) ). Instead, we simply repeat the loop for
some fixed number of iterations, say 5 or 10 (in fact, even 1
iteration is sufficient in many cases, because the whole al-
gorithm is itself iterative, and we use the value of z(n) in
the previous iteration for its initial value in this iteration).

Another important point is the initialization of the global
MP algorithm, that is, the determination of output for the
first iteration. For doing it, we use the approach proposed
in [13]. The idea of this approach is as follows:

1. Because of the central limit theorem [12], v tends to
have a Gaussian distribution, which is distorted by the
nonlinear function f. As an initial estimate for g, we
use a nonlinear function which creates a Gaussian x.
It can be seen [13] that such a function is given by:

(29)

where F, is the Cumulative Density Function (CDF)
of e and ®~! is the CDF of a (zero mean and unit
variance) Gaussian distribution.

g:q)iloFe

Since we are looking for an output with independent
samples, as an initial estimate for the filter W (z) a
filter which creates output with decorrelated sam-
ples may be used. Such a filter is given by the Linear
Predictor Coefficients (LPC) of the x sequence. In
MATLAB it can be obtained by the 1pc function.

The final inversion algorithm is given in Fig. 4. In this
figure, p denotes the order of the inverse filter, and K (the
number of repetitions of the internal loop) is a small number
(1to 10).



e Initialization: g = ® ' o F., z = g(e), W(2)
Ipc(z, p), y(n) = [W(2)]z(n).
e Loop:

1. Choose arandom 1 < m < p.
2. Estimate the SFD of y ™) (as defined in (13)).
3. Modify the output by (see (17)):

AI(y1(n),y2(n —m))
dy(n)

y(n) < y(n) —p

Fork=1,...,K,do:

(@) Find W (z) from (27).

(b) Stabilize W(z).

(c) Compute z(n) = [W(2)]"" y(n).

(d) Change the order of z(k) such that the
function = g(e) be ascending.

5.
6.
7.

Remove the mean of = and normalize its energy.

Lety(n) = [W(2)] g(e(n)).
Remove the mean of y and normalize its energy.

e Repeat until convergence

Fig. 4. MP algorithm for blind inversion of Wiener systems.

7. EXPERIMENTAL RESULTS

Here, for checking the efficacy of the proposed algorithm,
we present an experimental result using uniform random
sources and a very hard nonlinear distortion.

In this experiment, the source signal is a uniform ran-
dom source with zero mean and unit variance. The filter h
is the low-pass filter H(z) = 1+ 0.5z — 0.2272, and the
nonlinear distortion function is f(z) = tanh(10z). Then,
the algorithm of Fig. 4 is used to obtain the inverse sys-
tem. The parameters of the algorithm are: 7" = 1000 (num-
ber of observed samples), p = 15 (order of inverse filter),
= 0.2 (step size) and K = 1 (number of repetition of the
internal loop). For estimating the SFD, a method proposed
by D.-T. Pham for estimating conditional score functions is
used [14].

As performance criterion, we have used the output Sig-
nal to Noise Ratio (SNR), defined by:

: E{s*}
SNR (in dB) = 101log; iy — 7]

Figure 5 shows the averaged output SNR’s versus itera-
tion, which is taken over 10 runs of the simulation. Also, the
distribution of x samples versus e and v samples is shown
in Fig. 6. These distributions show the estimated g and the
compensated function g o f. It can be seen that the nonlin-
earity is not very well compensated at the edges, which is

(30)
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Fig. 5. Averaged output SNRs versus iteration.

2 2 s
1 1
80 e menam e o

-05 0 0.5 1 -2 0 2 4
e v

Fig. 6. Left) z versus e, Right) = versus v.

not so important, because there is not a large number of data
points in this region (as proved by the value of SNR).

Finally, Figures 7 and 8 show the coefficients of the fil-
ters W(z) and W (z)H (z), respectively. Especially, Fig-
ure 7 almost reduces to a Dirac: it then shows that the in-
verse of the linear part is well estimated.

This experiment shows that although the nonlinear dis-
tortion is very hard, the algorithm has been capable in esti-
mating the inverse system.

12 . . . . . . .
1
08l
06f
—~ 04l
=
=
S o2f I
ok . H_ e

10

-0.6
-2 0 2 4 6 8

12 14 16

Fig. 7. The coefficients of the estimated inverse filter w(k).
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Fig. 8. The coefficients of the global filter w(k) x h(k).

8. CONCLUSION

In this paper, a new method for blind inversion of wiener
systems is proposed. This method is a Minimization-Projection
approach for minimizing mutual information of the output
samples, which is inspired from a similar approach for blind
source separation [11]. The experimental results shows the
efficacy of the developed algorithm, even for very hard non-
linear distortions.
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