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Abstract—Let A be an n×m matrix with m > n, and suppose
the underdetermined linear system As = x admits a unique
sparse solution s0 (i.e. it has a solution s0 for which ‖s0‖0 <
1
2

spark(A)). Suppose that we have somehow a solution (sparse or
non-sparse) ŝ of this system as an estimation of the true sparsest
solution s0. Is it possible to construct an upper bound on the
estimation error ‖ŝ − s0‖2 without knowing s0? The answer is
positive, and in this paper we construct such a bound which, in
the case A has Unique Representation Property (URP), depends
on the smallest singular value of all n× n submatrices of A.

I. INTRODUCTION AND PROBLEM STATEMENT

Let A be an n ×m matrix with m > n, and consider the
Underdetermined System of Linear Equations (USLE) As =
x. It has been shown [1], [2], [3] that if this linear system
has a sparse enough solution, it would be its unique sparsest
solution. More precisely:

Theorem 1 (Uniqueness Theorem [2], [3]). Let spark(A)
denote the minimum number of columns of A that are linearly
dependent, and ‖ · ‖0 denotes the `0 norm of a vector (i.e.
the number of its non-zero components). Then if the USLE
As = x has a solution s0 for which ‖s0‖0 < 1

2 spark(A), it
is its unique sparsest solution.

A special case of this uniqueness theorem has also been
stated in [1]: if A has the Unique Representation Property
(URP), that is, if all n×n submatrices of A are non-singular,
then spark(A) = n+ 1 and hence ‖s0‖0 ≤ n

2 implies that s0

is the unique sparsest solution.
Finding the sparsest solution of underdetermined linear

systems is of significant importance in signal processing and
statistics. It is used, for example, in compressed sensing [4],
[5], [6], underdetermined Sparse Component Analysis (SCA)
and source separation [7], [8], [9], [10], atomic decomposition
on overcomplete dictionaries [11], [12], decoding real field
codes [13], image deconvolution [14], [15], image denois-
ing [16], electromagnetic imaging and Direction of Arrival
(DOA) finding [1], etc. From the atomic decomposition view-
point [17], the columns of A are called ‘atoms’ and the matrix
A is called the ‘dictionary’ over which the signal x is to be
decomposed.
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Finding the sparsest solution (s0) requires a combinatorial
search and is generally NP-hard. Then, many different algo-
rithms have been proposed to find an estimation of s0, for
example, Basis Pursuit (BP) [11], Matching Pursuit (MP) [17],
Smoothed L0 (SL0) [18], [19], etc. The solution ŝ found by
some of these algorithms, e.g. BP, is sparse in the exact sense
(that is, many of its components are exactly zero), while for
some others, e.g. MP and SL0, ŝ is only approximately sparse
(that is, many of its components have very small magnitudes
but are not exactly zero).

Suppose now that by using any algorithm (or simply by
a magic guess) we have found a solution ŝ of As = x, as
an estimation of the true sparsest solution (s0). The question
now is: “Noting that s0 is unknown, is it possible to construct
an upper bound on the estimation error ‖ŝ − s0‖2 only from
ŝ ”? For example, if A has the URP, and ŝ has less than or
equal bn/2c non-zero components, where bxc stands for the
largest integer smaller than or equal x, then the uniqueness
theorem insures that ŝ = s0. On the other hand, if all the
components of ŝ are non-zero but its (bn/2c + 1)’th largest
magnitude component is very small, heuristically we expect
to be close to the true solution s0, but the uniqueness theorem
says nothing about this heuristic.

In this paper, we will see that the answer to the above
question is positive, and we present an upper bound on
‖ŝ − s0‖2 without knowing s0, which (in the case A has
the URP) depends on the magnitude of the (bn/2c + 1)’th
largest component of ŝ, and also to the matrix A. Moreover,
we will see that if the (bn/2c + 1)’th largest component
of ŝ is zero, then our upper bound vanishes, and hence
ŝ = s0. This is, in fact, the same result provided by the
uniqueness theorem, and hence our upper bound can be seen
as a generalization of the uniqueness theorem. In other words,
from the classical uniqueness theorem, all we know is that
if among m components of ŝ, m − bn/2c components are
‘exactly’ zero, then ŝ = s0, but if ŝ has more than bn/2c
non-zero components (even if m − bn/2c of its components
have very very small magnitudes) we are not sure to be close
to the true solution. However, our upper bound insures that
in the second case, too, we are not far from the true solution.
Moreover, our upper bound depends also on A which provides
some explanations about the sensitivity of the error to the



properties of the matrix A.
A related problem has already been addressed in [20], in

which, for the noisy case x = As + e, an upper bound has
been constructed for the error ‖ŝ−s0‖. However, in that paper
it has been implicitly assumed that ŝ is sparse in the exact
sense, that is, ‖ŝ‖0 ≤ bn/2c, otherwise, the upper bound will
go to infinity. On the other hand, if the noise power (‖e‖)
is set equal to zero, the upper bound of [20] for ‖ŝ − s0‖
vanishes, resulting again to the uniqueness theorem. In other
words, [20] can be seen somehow as a generalization of the
uniqueness theorem to the noisy case, while our paper can be
seen as a generalization of the uniqueness theorem to the case
ŝ is not sparse in the exact sense, but is approximately sparse.

The paper is organized as follows. In Section II we review a
result already provided by Mohimani et. al. [19] during their
analysis to the convergence of the SL0 algorithm. Then in
Section III, we present a bound based on singular values of
the submatrices of the dictionary by direct manipulating the
result of Mohimani et. al. This bound will then be improved in
Section IV. Finally, we discuss the case of random dictionaries
in Section V.

II. THE MAIN IDEA

The main idea has been given by Mohimani et. al. (Corol-
lary 1 of Lemma 1 of [19]). We re-state that result here (with
a few changes in notations).

For the n×m matrix A, let P`(A) denote the set of all of
its n × ` submatrices, that is, submatrices of A which have
been obtained by taking ` columns of A (` ≤ m). Moreover,
let:

Mn(A) = P1(A) ∪ P1(A) ∪ · · · ∪ Pn(A) (1)

In other words, Mn is composed of all matrices that are
formed by taking 1 or 2 . . . or n columns of A. The number of
these submatrices (the cardinality of Mn, denoted by |Mn|)
is equal to:

|Mn| =
(
m

1

)
+
(
m

2

)
+ · · ·+

(
m

n

)
. (2)

Define now:
GA , max

B∈Mn(A)
‖B†‖F , (3)

where B† stands for the Moore-Penrose pseudo-inverse of
B, and ‖ · ‖F denotes the Frobenius norm of a matrix. The
constant GA depends only on the dictionary matrix A. Let
also that for a vector y and a positive scalar α, ‖y‖0,α
denote the number of components of y which have magnitudes
larger than α. In other words, ‖y‖0,α denotes the `0 norm of
a thresholded version of y (in which the components with
magnitudes smaller than α are clipped to zeros).

The Corollary 1 of Lemma 1 of [19] states then:

Corollary 1 (of [19]). Let A be an n×m matrix with unit `2

norm columns which satisfies the URP and let δ ∈ null(A).
If for an α > 0, δ has at most n components with absolute
values greater than α (that is, if ‖δ‖0,α ≤ n), then:

‖δ‖ < (GA + 1)mα. (4)
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Fig. 1. The definition of h(k, s): Sort the magnitudes of the components of
s in descending order. Then, h(k, s) is defined as the magnitude of the k’s
element (denoted by α in the figure).

Let now define the notation:

Definition 1. Let s be a vector of length m. Then h(k, s) de-
notes the magnitude of the k’th largest magnitude component
of s.

In other words, h(k, s) is calculated as follows: sort the
magnitudes of the components of s in descending order, and
return the magnitude of the k’th element. Figure 1 illustrates
this definition.

Then, using the above corollary, Remark 5 of Theorem 1
of [19] states the following idea to construct an upper bound
on ‖ŝ − s0‖2: Let αŝ,n , h(bn2 c, ŝ). Since the true sparsest
solution (s0) has at most bn2 c non-zero components, ŝ−s0 has
at most n components with absolute values greater than αŝ,n,
that is, ‖ŝ− s0‖0,αŝ,n

≤ n. Moreover, (̂s− s0) ∈ null(A) and
hence the above Corollary implies that:

‖ŝ− s0‖2 ≤ (GA + 1)mαŝ,n (5)

This result is consistent with the heuristic stated in the
introduction: “if ŝ has at most n/2 ‘large’ components, the
uniqueness of the sparsest solution insures that ŝ is close to
the true solution”.

III. A BOUND BASED ON MINIMAL SINGULAR VALUES

The bound (5) is not easy to be analyzed and worked
with. The dependence of the bound on the dictionary (through
the constant GA) is very complicated. Moreover, calculating
the GA constant for a dictionary requires calculation of the
pseudo-inverses of all of the

(
m
1

)
+
(
m
2

)
+· · ·+

(
m
n

)
submatrices

of A. In this section, we modify (5) to obtain a bound that
is easier to be analyzed and (in a statistical point of view) its
dependence to (the statistics of) A is simpler.

To state the main theorem of this section, let define the
notations:
• For an arbitrary matrix M, smin(M) denotes its smallest

singular value.
• For an arbitrary matrix M, σmin(M) or σmin,M is defined

as:

σmin(M) = σmin,M , min
x

‖Mx‖2
‖x‖2

(6)
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Note that if M has full column rank then σmin(M) =
smin(M), otherwise σmin(M) = 0. Hence, for the
case M is tall and full rank, we use σmin and smin

interchangeably.
• For an arbitrary matrix M, σ(`)

min(M) or σ(`)
min,M denotes

the σmin (defined above) of all submatrices of M that
have been obtained by taking ` columns of M. In other
words, if M is n×m and P`(M) denotes the set of all
n× ` submatrices (` ≤ m) of M, then:

σ
(`)
min(M) = min

N∈P`(M)
{σmin(N)} = min

‖x‖0≤`

‖Mx‖2
‖x‖2

.

(7)

We can now state the following theorem:

Theorem 2. Let A be an n×m matrix with unit `2 norm
columns which satisfies the URP and let s0 be a solution of
As = x for which ‖s0‖0 ≤ n

2 . Suppose that ŝ is a solution of
As = x, and αŝ,n is as defined in the previous section. Then:

‖ŝ− s0‖2 ≤

( √
n

σ
(n)
min,A

+ 1

)
mαŝ,n (8)

Before going to the proof, let state a few remarks on the
consequences of the above theorem.

Remark 1. If ‖ŝ‖0 ≤ n
2 , then αŝ,n = 0, the upper bound (8)

vanishes, and hence ŝ = s. In other words, the above theorem
implies that a solution with ‖s‖0 ≤ n

2 is unique, that is, the
above theorem implies the uniqueness theorem (for the URP
case).

Remark 2. If the URP does not hold for A, it means that
there exists an n× n submatrix of A which is not invertible.
This implies that σ(n)

min,A = 0, and hence the upper bound (8)
goes to infinity. In other words, when the URP does not hold,
the uniqueness of a solution with ‖s‖0 ≤ n

2 does not hold.

Remark 3. If the URP holds, and if ŝ is only approximately
sparse, that is, if m−bn2 c components of it are of very small
magnitudes, then αŝ,n is small, and the bound (8) states that
we are probably (depending on the matrix A) close to the
true solution. Moreover, in this case, σ(n)

min,A determines some
kind of sensitivity to the dictionary: if the URP holds but there
exists a square submatrix of A which is ill-conditioned, then
σ

(n)
min,A is very small and hence for achieving a predetermined

accuracy, αŝ,n should be very small, that is, the sparsity of ŝ
should be held with a better approximation.

To prove Theorem 2, we state first a few lemmas. The first
lemma is very well-known in matrix theory1:

1It is also very easy to be proved: Let M = USVH be the Singular Value
Decomposition (SVD) of M. Then since U and V are rotation matrices, it
is easy to see ‖UC‖F = ‖C‖F , and ‖CV‖F = ‖C‖F , for any matrix
C with appropriate dimensions. For example, if D = UC, then: ‖D‖2F =∑

i ‖di‖22 =
∑

i ‖Uc‖22 =
∑

i ‖c‖22 = ‖C‖2F , where di and ci denote the
columns of D and C, respectively. Consequently, ‖M‖F = ‖USVH‖F =
‖S‖F .

Lemma 1. Let σ1, σ2, . . . , σr are the singular values of a
matrix M. Then:

‖M‖2F = σ2
1 + σ2

2 + · · ·+ σ2
r (9)

‖M†‖2F =
1
σ2

1

+
1
σ2

2

+ · · ·+ 1
σ2
r

· (10)

Lemma 2. Let A be an n ×m matrix and assume that any
of its ` columns, ` ≤ n, are linearly independent. Let also B
be an n× ` submatrix of A. Then:

‖B†‖2F ≤
`

σ
(`)
min(A)

· (11)

Proof: Since the tall matrix B is full-rank, it has ` singular
values, say σ1 ≥ σ2 ≥ · · · ≥ σ` > 0. Hence, from (10):

‖B†‖2F =
1
σ2

1

+
1
σ2

2

+ · · ·+ 1
σ2
`

≤ 1
σ2
`

+
1
σ2
`

+ · · ·+ 1
σ2
`

=
`

σ2
`

· (12)

From the definition of σ(`)
min(A), σ` ≥ σ(`)

min(A), and hence the
above inequality results in (11).

Now, we state the following two lemmas. Although
Lemma 3 has already been known [21, p. 419], we prefer
to present another proof in this paper. However, the proofs of
both of these lemmas are left to the appendix.

Lemma 3. Let B be an n× ` matrix with ` < n (tall matrix).
If we add a new column b to it to obtain B′ = [B,b], then
smin(B′) ≤ smin(B).

Lemma 4. Let B be an n × ` matrix with ` ≥ n (square or
wide matrix). If we add a new column b to it to obtain the
wide matrix B′ = [B,b], then smin(B′) ≥ smin(B).

Proof of Theorem 2: Let us form a submatrix B of A
by taking one column of A and then sequentially append
other columns of A to B. The above lemmas show that
the smallest singular value of B decreases until B becomes
a square matrix, and then it increases. While ` < n, by
adding new columns of A to B, the upper bound `

σ2
`

of (12)
increases (because its nominator increases and its denominator
decreases) until n

σ2
n

. Therefore, since σ(n)
min(A) is the smallest

singular value among all the smallest singular values of all
n× n submatrices of A, then:

∀B ∈Mn, ‖B†‖2F ≤
n

(σ(n)
min(A))2

(13)

and hence GA ≤
√
n

σ
(n)
min (A)

. Combining this with (5) proves (8).

Remark 1. The discussions after Theorem 2 show that
σ

(n)
min(A) is an important parameter of a dictionary (which has

the URP). The calculation of σ(n)
min(A) requires examination of

all
(
m
n

)
submatrices of A. Although this should be done only

once for a dictionary A, it is still very time consuming and is
probably NP-hard.



Remark 2. Since calculation of σ(n)
min(A) is not easy for

a dictionary, if we can find a lower bound for σ(n)
min(A) that

can be calculated easily, then we would have an upper bound
which can be calculated easier. Note also that the minimum
singular value of the whole dictionary A says nothing about
σ

(n)
min(A), because from Lemma 4, if after a square B we

continue adding columns from A to B, its minimum singular
value increases.

Moreover, in Lemma 2.2 of [12] it has been shown that
if Bn×` is a submatrix of A, with ` ≤ n, then σ2

min(B) ≥
1−M(`− 1), where M denotes the mutual coherence of A,
i.e. the maximum of absolute values of correlations between
the columns of A. This result seems useless for our problem
(` = n), because for example for the case of concatenation of
two orthonormal bases, it has been shown that M ≥ 1√

n
, and

hence for ` = n the right side of this inequality is negative.

IV. MODIFYING THE BOUND

In this section, we modify the bound (8) in two senses:
Firstly we show that the bound can tightened by dropping the
constant

√
n. Secondly, we restate the theorem in a form that

covers the case spark(A) < n + 1, that is, the case the URP
does not hold for A.

Theorem 3. Let A be an n×m matrix with unit `2 norm
columns, and assume that any n× q submatrix of A has full
column rank (q ≤ n). Let also that s0 be a solution of As = x
for which ‖s0‖0 ≤ q

2 . Suppose that ŝ is a solution of As = x,
and set αŝ,q = h(b q2c, ŝ). Then:

‖ŝ− s0‖2 <

(
1

σ
(q)
min,A

+ 1

)
mαŝ,q (14)

To prove this theorem, we first state a modified version of
(4):

Lemma 5. Let A be an n×m matrix with unit `2 norm
columns and assume that any n × q submatrix of A has full
column rank, and let δ ∈ null(A). If for an α > 0, ‖δ‖0,α ≤
q, then:

‖δ‖2 <

(
1

σ
(q)
min,A

+ 1

)
mα. (15)

The proof of this lemma is left to Appendix.
Proof of Theorem 3: s0 has at most b q2c non-zero com-

ponents and ŝ has at most b q2c components with magnitudes
larger than α. Therefore, ŝ − s0 has at most q components
with magnitudes larger than α. Moreover, (̂s−s0) ∈ null(A).
Hence, the conditions of Lemma 5 hold for δ = ŝ − s0 and
α = αŝ,q , which proves the theorem.

Remark 1. Similar to the reasoning after Theorem 2, it
can be seen that the above theorem implies that a solution
with ‖s‖0 ≤ q

2 is unique. The largest value of q for which
any n × q submatrix of A has full column rank is exactly
what is defined as spark(A)−1. Consequently, a solution with
‖s‖0 ≤ 1

2 spark(A) is unique (which is again the uniqueness
theorem).

Remark 2. Having in mind Remark 3 after Theorem 2
about the sensitivity, and from Lemma 3, it can be seen that
(15) states also some kind of ‘sensitivity’ to the degree of
sparseness of the sparsest solution (s0). Let p , ‖s0‖0, and
set q = 2p, and suppose that q ≤ spark(A) − 1 (that is,
any n × q submatrix of A has full column rank). Then the
conditions of Theorem 3 have been satisfied and hence:

‖ŝ− s0‖2 ≤

(
1

σ
(2p)
min,A

+ 1

)
mαŝ,2p (16)

In other words, whenever s0 is sparser, p is smaller, hence
σ

(2p)
min,A is larger, and therefore a larger αŝ,2p is tolerable (that

is, we have less sensitivity to exact sparseness of ŝ) .

V. RANDOM DICTIONARIES

As stated in the remarks of Section III, σ(n)
min(A) (or af-

ter (14) and (16), σ(q)
min(A) for a q ≤ n) is an important

parameter of a dictionary. However, estimating σ
(q)
min(A) for

a deterministic matrix is probably NP-hard and intractable
for large dictionaries (although it has to be computed only
once for a given dictionary). This is because it seems that
for calculating σ(q)

min(A) we would need to examine all n× q
submatrices of A which is a combinatorial and intractable
task. Even finding a computationally tractable lower bound
for σ(q)

min(A) would provide us a computable upper bound for
the error.

On the contrary, for random matrices, there are already
many works for finding a lower bound on their least singular
values [22], [23]. Moreover, for a random A with indepen-
dently and identically distributed (iid) entries, we need no
more to examine all of its

(
n
q

)
submatrices, because all n× q

submatrices are statistically identical. Random dictionaries are
also practically important, because they are frequently used in
compressed sensing [6]. We note also that random matrices
have the URP with probability 1.

In random matrix theory, it is easier [24] to bound below
the smallest singular value of a random n × q matrix for the
case q/n = c < 1 than the case q = n. A famous result by
Marc̆henko and Pastur [23] states that if the entries of Bn×q ,
q < n are iid and Gaussian (or any other distribution with
fourth order moment of order O( 1

n2 )) with mean zero and
variance2 1

n , as n, q → ∞ and q
n → c < 1, the empirical

distribution of singular values of B converges almost surely to
a distribution bounded between 1−

√
c and 1+

√
c. Moreover,

it has been shown (in [25] for the Gaussian case and in [26]
for iid entries with finite fourth moment) that almost surely its
minimum singular value converges to 1−

√
c. Another result

from Davidson and Szarek [27, Eq. (4.36)], [28] states that for
the Gaussian case:

P
{
σmin < 1−

√
q

n
− r
}
≤ e−nr

2/2, (17)

where P{·} stands for the probability of the event {·}.

2Note that the condition on variance is satisfied if the entries of B are
zero-mean and its columns are of unit `2 norm.
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For square random matrices, it has been shown that if the
entries of an n × n random matrix are iid Gaussian with
zero-mean and variance 1/n, where n is large enough, then
its smallest singular value satisfies [23, Theorem 2.36] [22,
Theorem 5.1], [29]:

P{σmin ≤
r

n
} = 1− e−r−r

2/2 (18)

In fact, even an n of order 4 or 5 is considered large enough
for the validity of the above formula [22, Fig. 5.2]. From the
Taylor expansion 1− e−r−r2/2 = r− r3/3+O(r4) the above
formula states that for small ε’s [22, Lemma 7.4]:

P{σmin ≤
ε

n
} ≈ ε (19)

These results can provide us stochastic upper bounds for
‖ŝ− s0‖2, as stated below.

Theorem 4. If there exists a solution s0 for As = x such that
‖s0‖0 ≤ bn/2c, then for any other solution ŝ:

P
{
‖ŝ− s0‖2 < (

n

ε
+ 1)mαŝ,n

}
≥ 1−

(
m

q

)
(1− e−ε−ε

2/2)

(20)

Note again that for small ε’s, 1− e−ε−ε2/2 ≈ ε.
Proof: From (15), for q = n, if ‖ŝ − s0‖2 ≥ (n/ε +

1)mαŝ,n then (1/σ(n)
min,A + 1)mαŝ,n ≥ (n/ε + 1)mαŝ,n, and

hence:

P
{
‖ŝ− s0‖2 ≥ (

n

ε
+ 1)mαŝ,n

}
≤ P

{(
1

σ
(n)
min,A

+ 1

)
mαŝ,n ≥ (

n

ε
+ 1)mαŝ,n

}

= P
{
σ

(n)
min,A ≤

ε

n

}
= P

 ⋃
B∈Pn(A)

σmin(B) ≤ ε

n


≤

∑
B∈Pn(A)

P
{
σmin(B) ≤ ε

n

}
=
(
m

q

)
(1− e−ε−ε

2/2)

Theorem 5. If there exists a solution s0 for As = x such that
‖s0‖0 ≤ bcn/2c for a fixed 0 < c < 1 (such that cn is an
integer less than n), then for any other solution ŝ:

P
{
‖ŝ− s0‖2 < (

1
1−
√
c− r

+ 1)mαŝ,(cn)

}
≥ 1−

(
m

cn

)
e−nr

2/2
(21)

Proof: Is similar to the proof of the previous theorem
using (14) for q = cn.

For example, by taking c = 0.5 and r = 0.2, the above
theorem states that if s0 is sparser than n/4, that is, if ‖s0‖0 ≤
bn/4c, then:

P
{
‖ŝ− s0‖2 < (11.765)mαŝ,(n/2)

}
≥ 1−

(
m

0.5n

)
e−0.02n

Remark. A closer look (e.g. via a few numerical examples)
at (20), (21), reveals that it is easier to construct upper bounds

for error ‖ŝ − s0‖2 where c < 1 than c = 1. In other words,
although the uniqueness theorem guarantees that a solution
with less than n/2 non-zero entries is unique, constructing an
upper bound for ‖ŝ− s0‖2 with a good confidence using (20)
is difficult. On the contrary, for the cases where the number
of non-zero components of the sparsest solution is less than
a fraction of n/2, for example ‖s0‖ ≤ n/4, highly better
bounds are possible (via (21)), and the more sparsity, the better
bounds. This can be seen as a statistical explanation to the
fact that in numerical algorithms of computing the sparsest
solution, the estimation quality decreases where the sparsity
of s0 approaches n/2 [30], [19].

VI. CONCLUSIONS

In this paper, we showed that it is possible to construct
an upper bound on the estimation error ‖ŝ − s0‖2 without
knowing s0, which is based on σ

(n)
min , the smallest singular

value of all n × q submatrices of A. Moreover, we saw that
for the case the URP does not hold, or the case the `0 norm
of the sparse solution is smaller than the theoretical limit
n/2, other bounds are possible based on σ

(q)
min, the smallest

singular value of all n×n submatrices of A, for a q < n. For
random dictionaries, this result suggests that the problem of
finding sparsest solutions of linear systems and the problem of
finding lower bounds on smallest singular values are closely
related. Moreover, we developed two stochastic error bounds
for random dictionaries. From these bounds, we saw that it is
possible to statistically explain why, in algorithms computing
the sparsest solution, the estimation accuracy decreases where
the sparsity approaches n/2.

APPENDIX

Proof of Lemma 3: We know:

smin(B) = min
x∈R`

‖Bx‖2
‖x‖2

, smin(B′) = min
x∈R`+1

‖B′x′‖2
‖x′‖2

(22)
Let x′ = [x, y]T , and define:

f(x, y) ,
‖B′x′‖2
‖x′‖2

=
‖Bx + by‖2√
‖x‖22 + y2

(23)

Let x1 be the minimizer of ‖Bx‖2
‖x‖2 , and (x2, y2) be the

minimizer of f(x, y). Then since (x2, y2) is the minimizer
of f(., .):

smin(B′) = f(x2, y2) ≤ f(x1, 0) = smin(B) (24)

Proof of Lemma 4: In this case, since B is wide (‖ · ‖
stands for the `2 norm):

smin(B) = min
‖x‖=1,x∈R`

‖BTx‖, smin(B′) = min
‖x‖=1,x∈R`

‖B′Tx‖

We write:

‖B′Tx‖22 =
∥∥∥∥[ BTx

bTx

]∥∥∥∥ = ‖B′Tx‖22 + ‖bTx‖22

and hence ∀x, ‖B′Tx‖2 ≥ ‖BTx‖2, which proves the lemma.



Proof of Lemma 5: The proof is based on some modifi-
cations to the proof of Lemma 1 of [19].

Let ml be the number of components of δ which are larger
than α, and ms be the number of components of δ that are
smaller than or equal to α. Note that ms + ml = m. We
discriminate two cases:

Case 1 (ml ≥ 1,ms ≤ m − 1): In this case, there is at
least one component of δ larger than α. Let δl be composed
of the components of δ which have magnitudes larger than
α, and Al be composed of the corresponding columns of A.
Similarly, let δs be composed of the components of δ which
have magnitudes less than or equal to α, and As is composed
of the corresponding columns of A. Since δ ∈ null(A), 0 =
Aδ = Alδl + Asδs, and hence:

b , Alδl = −Asδs (25)

From b = −Asδs:

‖b‖2 = ‖Asδs‖2 = ‖
∑
i

δs,ias,i‖2 ≤
∑
i

|δs,i|︸︷︷︸
≤α

‖as,i‖2︸ ︷︷ ︸
1

⇒ ‖b‖2 ≤ msα ≤ (m− 1)α < mα (26)

From b = Alδl, and since from the assumption ml ≤ q and
hence is of full column rank:

‖b‖2 = ‖Alδl‖2 ≥ σmin(Al)‖δl‖2

⇒ ‖δl‖2 ≤
‖b‖2

σmin(Al)
(27)

Note that in the above, the assumption ml ≤ q was essential,
otherwise ‖Alδl‖2 and σmin(Al) could be zero. Combining
now (27) and (28), we will have:

‖δl‖2 <
mα

σmin(Al)
(28)

Moreover, ‖δs‖2 ≤ msα ≤ mα. Therefore:

‖δ‖2 ≤ ‖δl‖2 + ‖δs‖2 <
mα

σmin(Al)
+mα (29)

Now, from the definition (7) and Lemma 3, σmin(Al) ≥
σ

(ml)
min (Al) ≥ σ(q)

min(Al), which proves the lemma.

Case 2 (ml = 0,ms = m): In this case, all the components
of δ have magnitudes less than or equal α, and hence we can
simply write ‖δ‖2 ≤ mα which satisfies also (15).
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