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ABSTRACT

In this paper, a new algorithm for blind source separation in
convolutive mixtures, based on minimizing the mutual in-
formation of the outputs, is proposed. This minimization
is done using a recently proposed Minimization-Projection
(MP) approach for minimizing mutual information in a para-
metric model. Since the minimization step of the MP ap-
proach is proved to have no local minimum, it is expected
that this new algorithm has good convergence behaviours.

1. INTRODUCTION

Blind Source Separation (BSS) or Independent Component
Analysis (ICA) is a relatively new subject in signal process-
ing which has been started in the mid 80’s (see [1] and the
references in it). The problem consists in retrieving unob-
served independent signals from mixtures of them, assum-
ing there is neither information about the original source
signals, nor about the mixing system (hence the term Blind).

Suppose that N observed signals z1(n),...,zy(n) are
given, which are assumed to be mixtures of N indepen-
dent source signals s1(n), ..., sn(n) (here, the number of
sources is assumed to be equal to the number of observa-
tions). In the most simple case, the observed signals are
assumed to be a linear instantaneous mixture of the sources

(Fig. 1), thatis, x = As, where x(n) = (z1(n),...,znx(n))7,

s(n) £ (s1(n),...,sn(n))T, and A is the mixing matrix
(assumed to be invertible). Using the sole information about
the signals, i.e. their statistical independence, the separating
matrix B is estimated by maximizing the independence of
the estimated sources y = Bx. It is well-known [2] that
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Fig. 1. Mixing and separating systems.

if there is at most one Gaussian source, then the statistical
independence of the outputs is sufficient for separating the
sources, up to a scale and a permutation indeterminacy.

The instantaneous mixing model may be not accurate
enough in many applications. For example, in speech sig-
nals, the effects of each speech on two different microphones
do not differ only by a scale factor, there is at least some de-
lay. Consequently, the convolutive model arises: the com-
ponents of the mixing and separating matrices are modeled
by linear time invariant (LTI) filters, not scalars. In this
model, the mixing system is shown by x(n) = [A(z)]s(n)
and the separating system by y(n) = [B(z)] x(n).

For convolutive mixtures too, it has been shown [3] that
the output independence is sufficient for signal separation
(up to a filtering and a permutation indeterminacy). How-
ever, in convolutive mixtures, the independence of two ran-
dom processes y; and ys, cannot be reduced to the instan-
taneous independence of y;(n) and ya(n), it requires the
independence of y1(n) and y2(n — m), for all m [4].

Several methods have been proposed for separating con-
volutive mixtures. Most of them are based on higher (than
2) order statistics: cancellation of cross-spectra [3], cancel-
lation of second order [5] or higher order cross-moments
[6], of higher order cross-cumulants [6, 7, 8], of mutual in-
formation of outputs [4], or more generally on a contrast
function [9].

Recently, a new approach for minimizing the mutual in-
formation in a parametric model has been proposed [10],
and applied to BSS in instantaneous (linear and non linear)
mixtures. This approach is based on a non-parametric gra-
dient of mutual information [11]. In this paper, using mu-
tual information as an independence criterion, we extend
the method and design an algorithm for BSS in convolutive
mixtures.
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2. PRELIMINARY ISSUES

2.1. Mutual information

For having a criterion for measuring the independence of
some random variables, we first recall that random vari-
ables y1,...,yn are independent, if and only if py(y) =
H?;l py: (y;). Hence, the Kullback-Leibler divergence be-
tween py (y) and Hfil Py; (¥;), which is called mutual in-
formation of y;’s, can be used as an independence measure:

I(y) = /py(y) In

py(¥y)
ITiss s (i)
This function is always non-negative, and vanishes if and
only if the y;’s are independent. Consequently, a blind source
separation algorithm can be designed based on minimiz-
ing the mutual information of the outputs. It is also shown
that this approach is asymptotically a Maximum-Likelihood
(ML) estimation of the sources [12].

To do this minimization, knowing an expression for the
“gradient” of mutual information is helpful.

dy 9]

2.2. “Gradient” of mutual information

Score Function Difference (SFD) of a random vector has
been first introduced in [4]:

Definition 1 (SFD) The score function difference (SFD) of
a random vector 'y is the difference between its marginal
score function v, (y) (MSF) and joint score function ¢ ,(y)
(JSF):

By (¥) =y (y) — oy (y) 2
where the marginal score function is defined by
Py (¥) = @r(),- - on ()" 3)
with p )
Py \Yi
and the joint score function is defined by
ey (¥) = (1 (¥),- - on(y)" (5)
with 5 )
0 2y Py\Y
i(y) = ——1 =Gy -7 6
ei(y) a9; Py ) L) (6)

The variations of mutual information resulted from a
small deviation in its argument (the “differential” of mutual
information), is given by the following theorem [11]:

Theorem 1 Let A be a ‘small’ random vector, with the
same dimension than the random vector'y. Then:

Iy +A) = I(y) = E{ATB,(y)} +o(A) (D)

where o(A) denotes higher order terms in A, and B3 is the
SFD of y.

From (7), one may call SFD the stochastic “gradient”
of mutual information.

2.3. Minimization-Projection (MP) approach

For minimizing I(y) is a parametric model y = g¢(x, ),
one can think about the following steepest descent-like al-
gorithm:

y <y —uBy(y) ®)

As shown in [10], this algorithm converges to a vector with
independent components without trapping in any local min-
imum. However, after the convergence, the transformation
x — y does not necessarily belong to the parametric family
y = g(x,0). To overcome this problem, it is proposed in
[10] that at each iteration, the above “minimization” step is
followed with a “projection” step, that is, replacing the re-
sulted transformation with its projection on the desired fam-
ily. In other words, there is two steps at each iteration:

e Minimization:
Ly < y—uBy(y).

e Projection:
2. 6y = argming E{|ly — G(x; 0)|*}.
3. y = Q(X,HO).

2.4. Separation criterion in convolutive mixtures

In convolutive mixtures (of two sources), the instantaneous
independence of outputs, that is, the independence of y 1 (n)
and y» (n) is not sufficient for source separation [4]. Instead,
y1(n) and y2 (n—m) must be independent for all m. Conse-
quently, in convolutive mixtures, I(y1(n),y2(n)) cannot be
a separation criterion. And as in [13] we use the separation
criterion:

M

T= Y I(y1(n),y2(n—m)) ©)

m=—M

Theoretically, M must be infinity. However, this is not prac-
tically possible. Moreover, when using p-order FIR separat-
ing filters (which is always possible in separating convolu-
tive mixtures [13]):

B(z) =Bo+Biz7 '+ - +B,z7? (10)

then M = 2p + 1 is sufficient for separation. In fact, each
term of (9) must vanish, which yieldsto 2M +1 =4p+ 3
equations, while (taking into account the scale indetermina-
cies) there are 4(p + 1) — 2 = 4p + 2 unknowns in (10).
As in [13], for reducing the complexity of criterion (9),
I(y1(n),y2(n — m)) is used as the separation criterion,
but at each iteration a different random m is chosen from
{—M,...,M}. Consequently, in average, the same crite-
rion is being minimized, with highly less computations.
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3. ESTIMATING EQUATIONS

Here, we use the idea of MP approach (Section 2.3) to de-
sign an algorithm for separating convolutive mixtures. The
minimization step (8) does not depend on the separating
model. The projection step for convolutive mixtures con-
sists in first finding the filter B(z) which minimizes the er-

ror £ {||y(n) — [B(2)] x(n)||2}, and then replacing y(n)

by [B(z)] x(n). Using the FIR model (10), we are looking
for the matrices By, By, ..., B, which minimize:

¢=B{lly(n) - ];)ka(n -BIF}an

After doing some calculations, we have:

ac

3B, 2> B;E{x(n—j)x"(n-k)}

= (12)
—2E{y(n)x"(n-k)}

Finally, by letting 0C /0By, = O fork = 0,. .., p, and defin-
ing:

Rxx(j, k) £ E{x(n - j)x" (n — k)} (13)
Ryx(j, k) £ E{y(n —j)x" (n—k)}  (14)

we obtain the following system of linear equations for de-
termining the optimum filter which maps x(n) to y(n):

p
ZBijx(jak) :Ryx(oak) ’
=0

k=1,...,p (15)

For 4 x 4 matrices, this system contains 4(p + 1) un-
knowns and 4(p + 1) linear equations. The solution of this
equation is:

B=R,,R} (16)
where:

B£[B, B, --- By 17)

Rux(0,0) Rxx(0,1) R.x(0,p)

o | Rax(1,0) Rux(1,1) Rax(1,p)

Rxx = . . .

Rxx(p; 0) ﬁxx(pa ]-) Rxx(p7p)
(18)

Ryx 2 [ Ryx(0,0) Ryx(0,1) Ryx(0,p) |
(19)

Remark. If we assume that the signals are stationary,
then Rxx and Ry, as defined in equations (13) and (14),

e Initialization: y(n) = x(n).
e Loop:
1. Choose a random m from the set {—M, ..., +M}.
2. Estimate B (i), the SFD of (y1(n),y2(n —m)) T
3. Update the outputs by:
v =y — By (v™)
4. Remove the DC of each output, and normalize its energy.
5. Compute By, k =0,...,p, from (15).
6. Lety(n) = [B(z2)]x(n).

e Repeat until convergence.

Fig. 2. The separating algorithm.

will be the auto-correlation and cross-correlation matrices

Ryx(k — j) and Ryx(k — j), where:
Rxx(k) £ E {x(n)x"(n - k)} (20)
Ryx(k) £ E{y(n)x"(n —k)} @1

And the equation system (15) will be written as:

p
Y BjRux(k—j) =Ryx(k) , k=1,...,p (22)
j=0

which is very similar to Yule-Walker equations in Auto-
Regressive (AR) data modeling. However, here the dimen-
sion is higher, and each component of the above equation
stands for a matrix, not a scalar. This similarity comes from
the similarity of (10) to AR data modeling. However, (15),
which is the counterpart of the “covariance method” in AR
data modelling, is preferred, because no stationarity is as-
sumed in developing it and it better coincides with a finite
number of data points.

4. THE ALGORITHM

Taking into account the classical scale indeterminacy of BSS,
the final separating algorithm for convolutive mixtures will
be obtained as sketched in Fig. 2.

5. EXPERIMENTAL RESULTS

To show the ability of the algorithm in separating convo-
lutive mixtures, we mix two uniformly distributed random
sources with zeros means and unit variances. The mixing
matrix A(z) is:

0.54+0.3z71 +0.1272
14+0.22"14+0.1272

1402271 40.1272
0.5+0.3271 +0.1272
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Fig. 3. The output SNR’s versus iterations.

The parameters of the separation algorithm are: second or-
der filters (p = 2), M = 2p + 1 = 5, adaptation rate
@ = 0.1, and a 500 sample data block. For estimating SFD,
an approach proposed by Pham [14] has been used.

The separation quality is evaluated by output Signal to
Noise Ratio (SNR), defined by (assuming there is no per-
mutation):

E {42
SNR;(in dB) = 10log,, _ By} 23)

E {y’?|81:0}

where yz-|sl:0 stands for what is at the i-th output, where
the ¢-th input is zero. The averaged SNR’s (taken over 100
runs of the algorithm), is shown at Fig. 3. This figure points
out the ability of the MP approach in separating convolutive
mixtures.

6. CONCLUSION

Extending a recently proposed [10] general approach for

mutual information minimization in a parametric model, called

Minimization-Projection (MP) approach, a new algorithm
for separating convolutive mixtures has been proposed in
this paper.

The advantage of the MP approach, is that its minimiza-
tion step (Equation (8)) converges without trapping in any
local minimum [10]. Consequently, it can be conjectured
that the algorithms based on MP approach have better con-
vergence behaviour than the traditional approach of apply-
ing a steepest descent algorithm on each parameter of the
separating model [4].

The main drawback of the method, based on SFD, is
the necessity of estimating a multivariate score function (or
density), which becomes tricky and requires large samples,
when the dimension (i.e. number of sources) grows. Practi-
cally, these approaches are limited to 3 or 4 sources.
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