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ABSTRACT

In this paper, a new approach for blind source separation
is presented. This approach is based on minimization of
the mutual information of the outputs using a nonparametric
“gradient” of mutual information, followed by a projection
on the parametric model of the separation structure. It is
applicable to different mixing system, linear as well as non-
linear, and the algorithms derived from this approach are
very fast and efficient.

1. INTRODUCTION

Blind Source Separation (BSS) or Independent Component
Analysis (ICA) is a relatively new subject in signal process-
ing which has been started in the mid 80’s [1, 2] (see also [3]
for historical notes). Main insights in this domain has been
then done in Signal Processing [4, 5, 6], and Neural Net-
works [7, 8, 9, 10] communities. The problem consists in
retrieving unobserved independent mixed signals from mix-
tures of them, assuming there is neither information about
the original source signals, nor about the mixing system
(hence the term Blind).

To state the problem, suppose that � observed signals
������ � � � � �� ��� are given, which are assumed to be the
mixtures of � independent source signals ������ � � � � �� ���
(here, the number of sources is assumed to be equal to the
number of observations). The observation vector ���� �
������� � � � � �� ����� is related to the source vector ���� �
������� � � � � ������� by the mixing system � , that is ���� �
�
�
����

�
. The goal of BSS is to construct a separating sys-

tem � (Fig. 1) in order to isolate in each component of the
output vector ���� � �

�
����

�
the image of one source:

����� � ��
�
��������

�
� � � �� � � � � � (1)
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Fig. 1. Mixing and separating systems.

where 	 is a permutation, and �� stands for any invertible
mapping.

Since there is no information about the source signals
but their statistical independence, one can think about de-
signing the system � to produce statistical independent out-
puts. Now, the question of separability arises: “Does the
independence of the outputs (ICA) insure the blind separa-
tion of the sources (BSS)”? In general cases, the answer of
this question is negative, and there exist nonlinear mappings
which mix the source signals and preserve their statistical
independence [11, 12].

However, if a special model is assumed for the mixing
system � , and if the mappings � has to belong to a suited
parametric family ������, then a separability property may
exist for the global (parametric) system � Æ � , i.e. ICA co-
incides with BSS. For example, if � is assumed to be linear
and instantaneous (i.e. it is a mixing matrix), and if � forced
to be a linear instantaneous mapping (i.e. a separating ma-
trix �), then this mixing-separating model is separable [4].
In other words, if � is calculated to produce independent
outputs, then the source signals will be retrieved up to a
permutation and a scale indeterminacy.

Post Non-Linear (PNL) mixtures [11] are special non-
linear mixtures in which a linear instantaneous mixture is
followed by component-wise and invertible nonlinearities
(Fig. 2). This corresponds to the case where the mixture
is itself linear, but the sensors have nonlinear effects (such
as saturation). Although nonlinear system are generally non
separable, it has been proved that the mixing-separating sys-
tem as shown in Fig. 2, is separable [11, 13].

In this paper, we propose a general approach for source
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Fig. 2. Mixing-separating system for PNL mixtures.

separation, based on minimizing the mutual information of
the outputs. In Section 2 some preliminary issues are con-
sidered, and a nonparametric “gradient” for mutual informa-
tion is presented. The basic idea of the approach is stated in
Section 3. Sections 4 and 5 explain how this approach can
be used for separating linear and PNL mixtures. Finally,
Section 6 contains experimental results.

2. PRELIMINARY ISSUES

2.1. Independence Criterion

For determining the parameters of the separating system
which produce independent outputs, a criterion for measur-
ing the statistical independence of the outputs is needed.
Recall that the random variables ��� � � � � �� are indepen-
dent if and only if:


���� �

��
���


������� (2)

A convenient independence measure is mutual information
of ��’s, denoted by ����, which is nothing but the Kullback-
Leibler divergence between 
���� and

��
��� 
������:

���� � ��
���� �

��
���


�������

�

�
�


���� ��

������

��� 
������
��

(3)

This function is always non negative, and vanishes if and
only if the ��’s are independent. Consequently, a source sep-
aration algorithm can be designed based on the minimiza-
tion of the mutual information of the outputs. Recently (see
section 2.3), a nonparametric “gradient” for the mutual in-
formation has been proposed [14]. This gradient, will help
us in minimizing a mutual information. Stating this gradient
requires the definition of multivariate score functions.

2.2. Multivariate Score Functions

In this section, we recall the definitions of multivariate score
functions [15]. For the scalar case, we know the following
definition from the statistics literature:

Definition 1 (Score Function) The score function of a scalar
random variable � is the opposite of the log derivative of its
density, i.e.:


���� � �
�

��
�� 
���� � �


�����


����
(4)

where 
���� denotes the probability density function (PDF)
of �.

But for a random vector � � ���� � � � � ���� we define two
different kinds of score functions. Let 
���� and 
������
denote the joint and marginal PDFs, respectively.

Definition 2 (MSF) The marginal score function (MSF) of
� is the vector whose �-th component is the score function
of the �-th random variable, i.e.:

�
�
��� � �
������ � � � � 
� ��� ��� (5)

where:


����� � �
�

���
�� 
������ � �


�������


������
� (6)

Definition 3 (JSF) The joint score function (JSF) of � is
the gradient of � �� 
����, i.e.:

�
�
��� � ������� � � � � �� ����� (7)

where:

����� � �
�

���
�� 
���� � �

�
���


����


����
(8)

The difference of these two score functions contains infor-
mation about the independence of the components of �, and
hence it worths to give it a formal name:

Definition 4 (SFD) The score function difference (SFD) of
� is the difference between its MSF and JSF:

�
�
��� � �

�
��� ��

�
��� (9)

The following theorem relates the independence of the com-
ponents of a random vector � to its SFD [16].

Theorem 1 The components of the random vector � are in-
dependent, if and only if, its SFD is zero, i.e.:

�
�
��� � �

�
��� (10)

2.3. “Gradient” of mutual information

The variations of mutual information resulted from a small
deviation in its argument (the “differential” of mutual infor-
mation), is given by the following theorem [14]:



Theorem 2 Let � be a ‘small’ random vector, with the
same dimension than the random vector �. Then:

��� ���� ���� � �
�
���

�
���

�
� ���� (11)

where ���� denotes higher order terms in �.

Note that for any multivariate differentiable function ����,
we have:

��� ���� ���� �������� � ���� (12)

A comparison between (11) and (12) shows that SFD can
be called the stochastic gradient of the mutual information.

3. MINIMIZATION-PROJECTION APPROACH
FOR BLIND SOURCE SEPARATION

3.1. Mathematical foundation

For minimizing a multivariate differentiable function ����,
its gradient may be used through the steepest descent algo-
rithm:

�� � � ������ (13)

Having the gradient of the mutual information (Theorem 2),
one can think about a similar approach for its minimization:

� � � � ��
�
��� (14)

Now, the following theorem is stated:

Theorem 3 Let �� be a random vector and denote its SFD
by �

��
���. If:

���� � �� � ��
��

���� (15)

where � is a small positive scalar, then ������� � �����.
Moreover, if �

��
��� is continuous, then the equality holds

if and only if the components of �� are independent.

This theorem proves that the algorithm (14) makes a reduc-
tion in ���� at each iteration. It proves also that the algo-
rithm converges when the components of� are independent:
the algorithm has no “local minimum”.

The proof of the theorem is left to the appendix.

3.2. The approach

As stated in Section 1, in source separation, there is a para-
metric separating system ������, and the parameters must
be determined to produce independent outputs. Although
the algorithm (14) results in independent outputs, it does
not insure that the separating system belongs to the family
������. In other words, by this algorithm, we are directly
manipulating the outputs, and after the convergence there

may be no particular relationship between the observations
(�) and the outputs (�).

To solve this problem, we propose to use a “projection”
approach. That is, at each iteration, the mapping � �� � is
replaced by its projection on the family ������. In other
words, each iteration of the separation algorithm is com-
posed of the following steps:

	 Minimization:
1. � � � � ��

�
���.

	 Projection:
2. �� � ��	
��� �
�� � �������

�
�.

3. � � �������.

Consequently, ���� is being minimized while staying in
the family � � ������. In the following, this method is
called the Minimization-Projection (MP) approach.

The MP approach for BSS is very general, and can be
used in different mixing models. The minimization step is
the same for all mixtures, but the projection step (step 2)
is different: for each mixing model, a different projection
problem must be solved, i.e. one has to found the projection
of a general mapping � �� � on the desired family.

In the following sections, it is shown how the MP ap-
proach can be used for designing new algorithms for sepa-
rating linear and PNL mixtures.

4. APPLICATION TO LINEAR MIXTURES

4.1. Calculating the projected mapping

In linear (instantaneous) mixtures, the separating system is
of the form � � ��. Consequently, finding the projected
mapping (step 2 of the general approach) consists in find-
ing the matrix� which minimizes �
�� ������. This is
given by the following well-known lemma:

Lemma 1 The matrix � which minimizes �
�� ������
is:

�� � �
�
���

� �
�
�
���

����
(16)

4.2. The Algorithm

From the above lemma, the MP algorithm for separating
linear instantaneous mixtures will be obtained as shown in
Fig. 3. Step 3 of the algorithm loop is required to overcome
the mean and scaling indeterminacies.

5. APPLICATION TO PNL MIXTURES

5.1. Calculating the projected mapping

For PNL mixtures, the calculation of the projected mapping
is more complicated than for linear mixtures. The problem
consists in finding the matrix� and the invertible functions



� Initialization: � � �.

� Loop:

1. Estimate �
�
���, the SFD of �.

2. �� �� ��
�
���.

3. Remove the mean of each output, and nor-
malize its energy to 1.

4. � � �
�
���

��
�
�
���

��
��

5. � � ��.

� Repeat until convergence.

Fig. 3. MP algorithm for separating linear instantaneous
mixtures.

�� (see Fig. 2) which minimize �
�� ���������. In this
section, we propose an iterative algorithm for finding this
projected mapping.

First, we note that the invertibility of ��’s implies their
monotonicity. Here, without loss of generality, we assume
that these functions are ascending. In other words, we are
looking for ascending functions � � and matrix�which min-
imize �
�� ���������.

Suppose that we know �. Then, the matrix � which
optimally maps � to � is obtained from (16). Knowing �,
we can compute � again by � � ����. This automatically
defines the functions �� � ������. However, these functions
are not necessarily ascending. To insure �� is ascending,
we change the order of the values ������ ���
�� � � � � ���� �
(� is the length of data block) in such a way that for any
������ � ������ we have ������ � ������. This may be
better explained by its MATLAB code:

% Outside the main loop:
[temp, index_i] = sort(e_i);

% Inside the main loop:
x_i(index_i) = sort(x_i);

This time permutation insures that the function � � � �� ��
�� is ascending. It must be noted that we are using a steep-
est descent iterative algorithm and our initial value for � � is
ascending. Moreover, at each iteration, only a rather small
modification is done in the values of �����. Consequently,
the above time permutation does not result in a huge modi-
fication of the estimated ��; it must be seen as a manner for
preventing the algorithm to produce a non-ascending � �.

After this new estimation of �, we compute a new �

and then the loop is repeated. This results in the iterative
algorithm of Fig. 4 for calculating ��’s and �.

In Section 6 it is shown experimentally that this algo-
rithm converges very fast, typically in 2 to 5 iterations.

� Initialization: � � �.

� Loop:

1. Let � � �
�
���

��
�
�
���

��
��

.

2. Let � � ����.

3. For 	 � �
 � � � 
 � , change the order of
���
� such that the function �� � ������
become ascending (see the text).

� Repeat until convergence

Fig. 4. Finding the projected PNL mapping.

5.2. The Algorithm

Having an algorithm for calculating the projected mapping,
the final MP algorithm can be easily developed.

However, some precautions are required. First note that
there is indeterminacies on the means and energies of � �’s
and ��’s. To overcome these indeterminacies, in each iter-
ation, their means are removed and their energies are nor-
malized (steps 4 and 7 in Fig. 5).

On the other hand, as we are working with a limited
data set, the functions �� must have a sufficient degree of
smoothness. Hence, in each iteration the functions � � are
replaced by the smoothing spline which fits on the data set
���� ���. However, since this smoothing is done in each iter-
ation, the smoothing parameter of this spline (as defined in
the MATLAB’s spline toolbox) must be chosen very close
to 1.

Moreover, two modifications must be done in apply-
ing the algorithm of Fig. 4. First, instead of initializing by
� � �, we can use the value of � obtained in the previous
iteration of MP algorithm which is a better initial estimation
of �. Secondly, we do not wait for the projection algorithm
to converge (even, it is possible that it does not converge,
when the outputs cannot expressed as �����). Instead, we
simply repeat the loop for some fixed number of iterations,
say 5 or 10 times. In fact, even 1 iteration seems sufficient
in many cases, because the whole algorithm is itself itera-
tive, and the value of � in the previous iteration is used as
initial value in the current iteration.

The final separating algorithm is shown in Fig. 5. The
value of � in this algorithm (number of repetitions of the
internal loop), is a small number, e.g. 1 to 10.

6. EXPERIMENTAL RESULTS

Experiment 1. This experiment is to show the efficacy
of the algorithm of Fig. 4 for finding the projected mapping
in PNL mixtures. Here, two zero mean and unit variance



� Initialization: � � � � �.

� Loop:

1. Estimate �
�
���, the SFD of �.

2. Modify the outputs by �� �� ��
�
���.

3. For 
 � �
 � � � 
 �, do:

(a) Let � � �
�
���

��
�
�
���

��
��

.

(b) Let � � ����.

(c) For 	 � �
 � � � 
 � , change the order
of ���
� such that the function �� �
������ be ascending.

4. For 	 � �
 � � � 
 � , remove the mean of ��
and normalize its energy.

5. For 	 � �
 � � � 
 � , let �� be the smoothing
spline which fits on ���
 ���.

6. Let � � �����.

7. For 	 � �
 � � � 
 � , remove the mean of ��
and normalize its energy.

� Repeat until convergence

Fig. 5. Projection algorithm for separating PNL mixtures.

sources are mixed by the mixing system:

� �

	
� ���
��� �



(17)

����� � ����� � ����� �����
�� (18)

and then we let � � �. Now, we apply the algorithm of
Fig. 4 for obtaining ��’s and �. We also define the esti-
mation error by �
�� ���������. Evidently, the optimal
error is zero and is obtained for �� � ���� and � � ���.
Figure 6 shows the variations of this error term versus iter-
ations (one iteration corresponds to computation over � �
���� samples). This experiment shows that the algorithm of
Fig. 6 converges very fast, essentially after 2 to 5 iterations.

Experiment 2. In this experiment, the efficacy of the
MP algorithm for separating PNL mixtures is verified. Here,
we use two uniform random sources with zero means and
unit variances. The mixing system is composed of:

� �

	
� ���
��� �



(19)

����� � ����� � ����� �����
�� (20)

The parameters of the separating system are: � � ���, 1000
samples data block, � � �, and the smoothing parameter
used for smoothing ��’s is �����. For estimating the SFD,
we have used a method proposed by D. T. Pham for esti-
mating conditional score functions [17]. Figure 7 shows the
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Fig. 6. Estimation error in finding best PNL mapping which
maps � to �.
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Fig. 7. Averaged output SNR’s versus iterations in separat-
ing PNL mixtures.

averaged output Signal to Noise Ratios (SNR’s) versus iter-
ation, taken over 100 runs of the algorithm. This quantity
(in dB) is defined by (assuming there is no permutation):

SNR� � �� ��	���

�
���

��� � ����

�
(21)

7. CONCLUSION

In this paper, we proposed a Minimization-Projection (MP)
approach for blind source separation. This approach can be
used in different mixing systems, linear or nonlinear. It is
based on minimization of the mutual information of the out-
puts using a nonparametric gradient of mutual information
(Theorem 2).

Moreover, as it has been shown in Theorem 3, the mini-
mization part of this approach has no local minimum, and in
which the outputs are directly manipulated regardless of the
structure of the separating system. Consequently, it can be
conjectured that it is less probable that this approach traps
in a local minimum compared to the usual approach of ap-



plying a steepest descent algorithm on each parameter of the
separating system.

However, this approach requires the estimation of a mul-
tidimensional PDF, whose dimension is equal to the source
number. It then demands large samples and becomes very
expensive and time-consuming when the number of sources
is large. Because of this drawback, the application of this
approach seems to be restricted to small number of sources,
at most 3 or 4.

A. APPENDIX

Proof of Theorem 3. From Theorem 2, for a small � we
have (up to first order terms):

�������� ����� � ���
�
��

��
�����

�
�

(22)

As �
�
��

��
�����

�
�
� �, then ������� � �����, which

proves the first part of the theorem.
Now, we prove that the equality holds if and only if the

components of �� are independent. If the components of
�� are independent, then from Theorem 1, �

��
��� 
 �.

Consequently ���� � ��, and hence ������� � ����� �
�.

Conversely, suppose that ������� � �����, we have to
prove that the components of �� are independent. This can
be easily proved by contradiction. If the components of � �

are not independent, then from Theorem 1, �
��

��� cannot
be zero everywhere. From continuity �

�
��

��
�����

�
�
�

�. Consequently, from (22) we must have ������� � �����
which is a contradiction. �

Remark. �
��

��� does not need to be continuous ev-
erywhere. It is sufficient that there exists one region on
which �

��
��� is non-zero and continuous, which holds for

any “usual” random vector.
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