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ABSTRACT

A geometric method for separating PNL mixtures, for
the case of 2 sources and 2 sensors, has been presented.
The main idea is to find compensating nonlinearities to
transform the scatter plot of observations to a parallel-
ogram. It then results in a linear mixture which can
be separated by any linear source separation algorithm.
An indirect result of the paper is another separability
proof of PNL mixtures of bounded sources for 2 sources
and 2 sensors.

1 INTRODUCTION

Blind Source Separation (BSS) consists in retrieving in-
dependent source signals, say s = (s1, . . . , sN )T , from
observations consisting of a mixture of them, say x =
(x1, . . . , xN )T . There is no prior information either
about the sources or the mixing system, hence the term
Blind. This problem has first been introduced in the
80’s [1] and has been studied by many researchers in the
last decade (see [2] for state-of-the-art and references).
There exist many algorithms, based on the estimation
of a separating system such that the output signals are
independent. For linear mixtures, it has been shown
[3] that, when at most one of the sources is Gaussian,
the independence implies the separation of the sources,
up to a scale and a permutation. One then says the
linear mixtures are separable. Conversely, general non-
linear mixtures are not separable, except if one adds
structural constraints or regularization techniques. In
this paper, we consider Post Non-Linear (PNL) mix-
tures (Fig. 1), which are special nonlinear mixtures with
structural constraints, and are separable [4].

Puntonet et al [5] proposed a geometric approach
for separating sources from two mixtures of two in-
dependent and bounded random variables s1 and s2.
Then, the joint Probability Density Function (PDF)
pS1S2(s1, s2) has non-zero values only within a rectan-
gular region. Moreover, the joint PDF, pX1X2(x1, x2),
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Figure 1: PNL mixing-separating model.

of the mixtures has non-zero values only within a par-
allelogram, whose borders determine the mixing matrix
A. If the mixing matrix is:

A =
[

1 a
b 1

]
(1)

i.e. x = As, the borders of the joint PDF in (x1, x2)
plane are straight lines with slopes equal to b and 1/a.
As a result, if the number of observed data is sufficient,
we can estimate this parallelogram and consequently the
parameters a and b of the mixing matrix.

In this paper, we used a geometric approach for sepa-
rating two independent sources from two PNL mixture
(Fig. 1). For these mixtures, the joint plot is a parallel-
ogram in the (w1, w2) plane, and a ‘nonlinear’ region in
the (e1, e2) plane (see Fig. 3). For separating the mix-
ture, we first have to estimate two compensating non-
linear functions g1 and g2 to transform this region to a
parallelogram. Then, the sensor nonlinearities are com-
pensated, and the sources can be separated by means of
any linear BSS algorithm.

2 PRELIMINARY ISSUES

Suppose the joint plot of the observations is mapped, by
the nonlinearities g1 and g2, into a parallelogram in the
(x1, x2) plane. Does it insure that g1 ◦ f1 and g2 ◦ f2 are
linear? The answer is positive, as proved in this section.

Theorem 1 (main theorem) Consider the transfor-
mation: {

x1 = h1(w1)
x2 = h2(w2)

(2)

where h1 and h2 are analytic functions. If the borders
of a parallelogram in the (w1, w2) plane are transformed



to the borders of a parallelogram in the (x1, x2) plane,
and the borders of these parallelograms are not parallel
to the coordinate axes, then, there are constants a1, a2,
b1 and b2 such that:

{
h1(x) = a1x + b1

h2(x) = a2x + b2
(3)

Remark 1: With (2), w2 = cte is mapped into
x2 = cte. Moreover, if h1 and h2 are monotonous, then
the point order on this line remains unchanged (h2 in-
creasing) or reversed (h2 decreasing). Therefore, the
borders of any transformed region in (x1, x2) are the
mappings of the borders of the corresponding region in
(w1, w2).

Remark 2: The theorem shows that, as in the linear
mixtures, with bounded sources, the borders of the joint
plot are sufficient for separating the sources.

Remark 3: The existence of the constants b1 and
b2, emphasizes on a ‘DC’ indeterminacy which always
exists in separating the sources, but is generally skipped
by using zero-mean sources.

Remark 4: The theorem provides a proof of the
separability for two PNL mixtures of two bounded
sources.

To prove the theorem, we need the following Lemma:

Lemma 1 Let f be an analytic function on the inter-
val Df such that 0 ∈ Df . Suppose that for all x in a
neighborhood of 0 we have:

f(x) = c1f(c2x) (4)

where c1 �= 1 and c2 �= 1.

1. If ∃n ∈ N such that c1c
n
2 = 1, then ∃a ∈ R such

that f(x) = a xn, ∀x ∈ Df ,

2. if ∀n ∈ N, c1c
n
2 �= 1, then f(x) = 0, ∀x ∈ Df .

Proof: From (4), we deduce f (n)(x) = c1c
n
2f (n)(c2x)

where f (n)(x) denotes the n-th order derivative of f . By
letting x = 0, we conclude that, ∀n such that c1c

n
2 �= 1,

we have f (n)(0) = 0. Then, the final result comes from
the Taylor expansion of f around x = 0.

Proof of theorem 1: In the proof, we assume, without
loss of generality (the general case is trivial by changing
the variables), that h1(0) = h2(0) = 0 and the origin is
a corner of the parallelogram.

Consider two borders of the parallelogram crossing
the origin. Since the mappings of w2 = c1w1 and w2 =
c2w1 (the borders in the (w1, w2) plane) are x2 = d1x1

and x2 = d2x1 (the borders in the (x1, x2) plane), we
have (note that c1, c2, d1 and d2 are neither zero nor
infinite, and c1 �= c2 and d1 �= d2):

{
h2(c1w) = d1h1(w)
h2(c2w) = d2h1(w) (5)

Combining these equations, with a little algebra, leads
to:

h2(w) =
d1

d2
h2(

c2

c1
w) (6)

The conditions of Lemma 1 are now satisfied, and we
conclude that h2(w) = awn. Then, from this result
and (5), we also conclude h1(w) = a′wn. However, if
n �= 1, then the mappings of any borders, which are not
crossing the origin, are not straight lines. Hence, n = 1,
i.e. h1 and h2 are both linear.

3 SEPARATING ALGORITHM

Keeping in mind the theorem 1, we separate the sources
with three steps: (i) determining the borders of the joint
plot, (ii) computing nonlinear transformations g1 and
g2, which transform these curves into a parallelogram,
and (iii) separating the sources from the resulting linear
mixture.

3.1 Compensating for the nonlinearities

In this section, we develop an iterative method for deter-
mining the nonlinear transformations which transform
the boundary curves to a parallelogram. The main idea,
is to minimize the difference between the transformed
boundary curves and the best parallelogram which fits
on them. Hence, in each iteration, we modify g1 and
g2 for decreasing this error, the parallelogram being as-
sumed to be fixed, then we calculate the parallelogram
which optimally fits on the transformed boundary, and
so on.

Consider the vertical line e1 = c, with values c for
which two intersections occur with the borders of the
joint plot. Let us denote e2 = Le(e1) the set of intersec-
tion points with smaller coordinates e2 (we call it the
‘lower’ boundary) and e2 = Ue(e1) the set of intersec-
tion points with larger coordinates e2 (we call it the ‘up-
per’ boundary), as shown in Fig. 3. The corresponding
curves in the (x1, x2) plane are denoted by x2 = Lx(x1)
and x2 = Ux(x1). Moreover, for the sake of simplicity,
here we assume that, in (1), a and b are both positive.
This restriction insures that the functions Ue, Le, Ux

and Lx are all invertible. Without this restriction, the
method remains applicable, but instead of working with
these functions, we must consider each border piece (4
pieces), which makes the equations too complicated for
stating the main points.

3.1.1 Finding compensating nonlinear functions

Suppose that we have found the ‘best’ parallelogram fit-
ted on the curves Lx and Ux, and denote the lower and
upper borders of this parallelogram by ll and lu, respec-
tively (each one is composed of two straight lines). For
finding mappings g1 and g2, we minimize the error be-
tween this parallelogram and the actual curve in (x1, x2)



plane. For determining g2, the cost function is:

E2 = E
{

[Lx(x1) − ll(x1)]
2
}

+ E
{

[Ux(x1) − lu(x1)]
2
}
(7)

This criterion is in fact:

E2 = E
{[

g2(e2) − ll
(
g1(e1)

)]2}
e2=Le(e1)

+ E
{[

g2(e2) − lu
(
g1(e1)

)]2}
e2=Ue(e1)

= E

{[
g2(e2) − ll

(
g1

(L−1
e (e2)

))]2
}

+ E

{[
g2(e2) − lu

(
g1

(U−1
e (e2)

))]2
}

(8)

Note that in the first equality of the above equation, the
expectations are calculated on the curves e2 = Le(e1)
and e2 = Ue(e1), while on the second equality, they are
taken over the whole range of e2, since the constraints
are moved into the brackets.

Now, let ĝ2 = g2 + ε2, where ε2 is a ‘small’ func-
tion. Direct calculations show that, up to the first order
terms, we have (note that ll and lu – corresponding to
the parallelogram boundaries – are assumed to be fixed):

Ê2 − E2

2
= E

{[
g2(e2) − ll

(
g1

(L−1
e (e2)

))]
ε2(e2)

}

+ E
{[

g2(e2) − lu

(
g1

(U−1
e (e2)

))]
ε2(e2)

}

=
∫ +∞

−∞
G2(e2)ε2(e2)pe2(e2)de2

(9)

where pe2(e2) is the PDF of e2 and:

G2(e2) � 2g2(e2) − ll

(
g1

(L−1
e (e2)

)) − lu

(
g1

(U−1
e (e2)

))
(10)

The above equation shows that the ‘gradient’ of E2 with
respect to the function g2 via the weighting function
pe2(e2) can be defined as the function G2. In other
words the schematic algorithm g2 ← g2 − µG2, where
µ is a small positive constant, insures decreasing of
E2 (provided that all the other parameters remain un-
changed). In the same manner, one derives the algo-
rithm g1 ← g1 − µG1, where:

G1(e1) � 2g1(e1) − l−1
l

(
g2

(Le(e1)
)) − l−1

u

(
g2

(Ue(e1)
))

(11)
insures a reduction in:

E1 = E
{[L−1

x (x2) − l−1
l (x2)

]2}

+ E
{[U−1

x (x2) − l−1
u (x2)

]2} (12)

Note that, although the criteria (7) and (12) are dif-
ferent, their joint minimization solves our problem.

3.1.2 Fitting the parallelogram
In this subsection, we deal with the problem of fitting
a parallelogram to the curves Lx and Ux. As in the
previous section, let ll and lu denote the lower and upper
borders of the desired parallelogram:

ll(x1) = β01 + β1(x1 − α1)− + β2(x1 − α1)+
lu(x1) = β02 + β2(x1 − α2)− + β1(x1 − α2)+

(13)

where (u)− � min(0, u) and (u)+ � max(0, u).
Suppose that the curves Lx and Ux are known via

M sample points (x1(k), x21(k)) and (x1(k), x22(k)),
k = 1, . . . , M , where x21(k) = Lx(x1(k)) and x22(k) =
Ux(x1(k)). We are looking for the constants α1, α2, β01,
β01, β1 and β2 which minimize C = Cl + Cu, where:

Cl =
∑

k

[x21(k) − ll(x1(k))]2

Cu =
∑

k

[x22(k) − lu(x1(k))]2
(14)

Assume we know the change-points α1 and α2. Then
we must find β = (β01, β1, β2, β02)T which minimizes:

C = ‖x21 − L1β‖2 + ‖x22 − L2β‖2 (15)

where x21 = (x21(1), . . . , x21(M))T , x22 =
(x22(1), . . . , x22(M))T and:

L1 =




1 (x1(1) − α1)− (x1(1) − α1)+ 0
...

...
...

...
1 (x1(M) − α1)− (x1(M) − α1)+ 0




L2 =




0 (x1(1) − α2)+ (x1(1) − α2)− 1
...

...
...

...
0 (x1(M) − α2)+ (x1(M) − α2)− 1




Solving ∂C/∂β = 0 leads to:

βopt = (LT
1 L1 + LT

2 L2)−1(LT
1 x21 + LT

2 x22) (16)

Determining the change-points α1 and α2 for mini-
mizing C is difficult. Instead of this, we compute the
values of α1 and α2 which minimize Cl and Cu, respec-
tively. This is done by using the Hudson’s algorithm
[6].

3.1.3 Estimating borders
Equations (10) and (11) require the estimation of the
borders Le and Ue. For this purpose, we first divide
e1 in K regular intervals. Let e′1(k) be the mid-point
of the k-th interval. Then we denote e′2,L(k) the mini-
mum value of e2 among all the points which are in the
corresponding strip of e1, and e′2,U (k) their maximum.
Then, we estimate Le and Ue as the smoothing splines
fitting on the points (e′1(k), e′2,L(k)) and (e′1(k), e′2,U (k)),
respectively. This choice results in error smoothing, but
the smoothing parameter of the splines (as defined in
MATLAB spline toolbox) must be chosen close to 1, to
be able to model rapid changes in the borders.



3.2 Separating Linear mixture
After having estimated the best parallelogram fitted on
the joint plot in (x1, x2) plane, the estimated separating
matrix is:

B =
[

1 1/β2

β1 1

]−1

(17)

Finally, for limiting the degree of freedom in determin-
ing the functions gi, we apply a smoothing procedure on
these functions at each iteration (as in [7]). Moreover,
the DC and energy indeterminacies are removed by fil-
tering and normalization at each iteration.

4 EXPERIMENTAL RESULTS

Here, we present the separation result for mixtures of
a sine and a triangle waveform. The sources are mixed
by:

A =
[

1 0.5
0.5 1

]
(18)

and the sensor nonlinearities are:

f1(x) = tanh(x) + 0.1x

f2(x) = tanh(2x) + 0.1x
(19)

The main parameters are: the sample size is 3,000,
M = 500, µ = 0.05 and λ = 0.99999 (λ is the smooth-
ing parameter of all the smoothing splines, used for es-
timating Le and Ue, and for smoothing the gi’s). Fifty
intervals are used in the range of variations of e1 for
estimating Le and Ue.

Figure 2 shows the output Signal to Noise Ratios
(SNR’s) in dB, defined by (assuming there is no per-
mutation):

SNRi = 10 log10

s2
i

(yi − si)2
(20)

Figure 4 shows the resulting estimated parallelogram
in the (x1, x2) plane. The fluctuations in the estimated
borders comes from estimation errors due to the sparse
number of points close to the borders in the joint plot
in the (e1, e2) plane. However, the experimental results
show that although these borders have been roughly es-
timated, the separating parameters are close to the op-
timal ones, due to spline smoothing estimation of gi’s.

5 CONCLUSION

In this paper, we proposed a geometric method for sepa-
rating sources in PNL mixtures. The algorithm is based
on the estimation of component-wise nonlinear map-
pings which transform the joint plot of the observations
into a parallelogram, which results in compensating the
sensor nonlinearities. After this compensation, we have
a linear mixture which can be processed by any linear
BSS algorithm. The algorithm is robust enough to er-
rors in estimating the border of joint plot of observa-
tions, but it requires a sufficient number of samples,
and its extension to mixtures of more than two sources
seems tricky.
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Figure 2: Output SNR’s versus iteration.
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[1] J. Hérault and C. Jutten, “Space or time adaptive
signal processing by neural networks models”, in
Intern. Conf. on Neural Networks for Computing,
Snowbird (Utah, USA), 1986, pp. 206–211.

[2] A. Hyvärinen, J. Karhunen, and E. Oja, Independent
Component Analysis, John Wiely & Sons, 2001.

[3] P. Comon, “Independent component analysis, a new
concept?”, Signal Processing, vol. 36, no. 3, pp. 287–
314, 1994.

[4] A. Taleb and C. Jutten, “Source separation in post
nonlinear mixtures”, IEEE Transactions on Signal
Processing, vol. 47, no. 10, pp. 2807–2820, 1999.

[5] C. Puntonet, A. Mansour, and C. Jutten, “A geo-
metrical algorithm for blind separation of sources”,
in Actes du XVème Colloque GRETSI 95, Juan-Les-
Pins, France, Septembre 1995, pp. 273–276.

[6] D. J. Hudson, “Fitting segmented curves whose
joint points have to be estimated”, Journal of the
American Statistical Association, vol. 61, no. 316,
pp. 1097–1129, December 1966.

[7] M. Babaie-Zadeh, C. Jutten, and K. Nayebi, “Using
joint score functions in separating post non-linear
mixtures”, Scientia-Iranica, 2002, accepted.


